What is the best biomarker to track your oxidative stress burden? Joshua Fessel explains why F2-isoprostanes provide the best assessment of our ongoing oxidative state.

Today’s topic is understanding your oxidative stress levels via lipid peroxidation. We previously took a broad look at measuring and lowering oxidative stress in episode 4 with Dr. Cheryl Burdette.

Now, we are going to take a look specifically at one of the more accurate and reliable markers: F2 isoprostanes, a measure of lipid peroxidation. This is an important marker for the fact that every cell membrane in the body is comprised mainly of lipids and damage to these delicate structures can lead to a host of degenerative health conditions, including cancer.

“…I have a personal sort of one-man crusade to actually get rid of the term oxidative stress because I think it’s too nonspecific. It sort of carries with it the idea that every free radical that’s produced in a living system is bad and we know that’s not right.”
– Joshua Fessel

Our guest is Joshua Fessel, Assistant Professor of Medicine and Pharmacology at Vanderbilt University. His research interest focuses on pathways that control molecular metabolism looking at the Krebs cycle. For example, mitochondrial function and interactions between oxidative stress and cellular metabolism is what we’re looking at today.

Dr. Fessel has done 49 studies on these subjects and he’s worked on research in isoprostanes directly with L. Jackson Roberts, one of the researchers responsible for the discovery of isoprostanes in 1990.

He’s also the founder of Vanderbilt’s Mitochondria Interest Group, which is the multidisciplinary group of nearly a hundred investigators who study all aspects of mitochondria, biology, and metabolism. Obviously mitochondria is another thing that comes up in his show quite often.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • Dr. Fessel distinguishes between “good” oxidative stress (oxidant signaling) and “bad” oxidative stress (oxidant injury) (7:15).
  • The site of free radical production within a cell or within the body may determine lifespan (12:35).
  • Current relevance of tracking levels of F2 isoprostanes and other biomarkers of lipid peroxidation products (17:15).
  • Lack of reliable intervention for slowing the aging process at this time (17:15).
  • Study that found caloric restriction decreases F2 isoprostane levels (20:15).
  • Types of markers that exist today and relative usefulness of F2 isoprostane (22:35).
  • Measuring the byproducts of free radical reactions vs. measuring actual free radical levels helps distinguish between signal and injury (23:30).
  • Chemistry of F2 isoprostane formation is well-known and the molecule tends to be stable and measurable compared to other biomarkers (24:49).
  • Biomarkers of Oxidative Stress (BOSS) studies established isoprostanes as among the most robust biomarkers for oxidative stress (26:55).
  • Distinctions between in vivo (within a living organism) and in vitro (in a test tube or petri dish) (27:55).
  • Lipid oxidation products are useful to study because lipids are present in every cell of the body (29:57)
  • Effects of dietary antioxidants and exercise on isoprostane levels (33:27).
  • Single high-fat meal doesn’t significantly raise isoprostane levels (36:06).
  • Most advantageous times of day to collect blood and urine samples (37:50).
  • Seasonal variation with regard to sample collection (38:56).
  • Effects of acute illness or injury on biomarker levels (39:38).
  • Ability of supplements to lower TBAR and MDA levels (41:10).
  • Dr. Fessel’s tips on how to weed out poor-quality studies when reviewing research on a supplement (43:42).
  • Dr. Fessel describes the Feeding Danny Project: a year-long case study on an organic, whole-foods dietary intervention for a morbidly obese man that is being made into a documentary (47:03).
  • Baseline metabolic functions and biomarkers Dr. Fessel will be testing on Danny: cholesterol, HbA1c, blood sugar, triglycerides, kidney and liver function (52:56).
  • Dr. Fessel’s wish list of comprehensive testing he would do in the absence of budgetary constraints: thyroid function, isoprostane levels, malondialdehyde levels, TBARS, hsCRP, plasma ascorbate, vitmain E and other antioxidants (53:42).
  • Discussion of health parameters that can improve in response to dietary or lifestyle interventions before weight begins to change: blood sugar management, cholesterol levels, LDL particle ratios, inflammatory markers, correlating fitness tracking data with lab biomarkers (55:15).
  • Dr. Fessel’s personal weight loss journey (61:25).
  • Biomarkers Dr. Fessel tracks on a daily basis and his recommendation for the one best way to use data to improve health, longevity and performance.

Joshua Fessell

The Tracking

Biomarkers

    Lipid Oxidization Levels

  • F2 isoprostanes: Inflammation-promoting byproduct of lipid peroxidation. A byproduct of cellular aging and a more direct marker of lipid peroxidation levels in your body than TBARS and MDA. F2 isoprostane levels in urine should be below 8.4 pg per ug creatinine. Pubmed lists 1330 studies that include F2 isoprostanes.
  • Isofurans: Byproducts of oxidation of arachidonic acid. Exert similar effects to isoprostanes. Used as a measure of mitochondrial membrane damage.
  • Lipid Peroxidation

  • Malondialdehyde (MDA): A naturally-occurring byproduct of fatty acid oxidation and arachidonic acid metabolism. A highly reactive free radical used as a biomarker for oxidation. Can be monitored but doesn’t provide actionable information.
  • Thiobarbituric acid reacting substance (TBARS) Assay: A method for measuring free radical activity, that is commonly used but problematic. It is difficult to obtain accurate values because the test itself causes free radical formation. As with MDA, this marker has been used extensively in the research.
  • DNA Damage

  • Guanosine: Nucleic acid base that forms part of the structure of DNA. A biomarker that can be monitored but doesn’t provide actionable information.
  • ADO DG guanosine: Analog of guanosine and a byproduct of cellular aging.
  • 8-OHdG: 8-hydroxy-2′ -deoxyguanosine: Byproduct of free radical interaction with DNA. A potential biomarker for oxidative injury vs. oxidative signaling. Tested via a first void urine test to show levels of oxidative stress in the body. This marker is supported by over 2000 research studies. See the Pubmed entry here.
  • Cardiovascular Risk

  • High Sensitivity C-Reactive Protein (hsCRP): A gold standard measurement for inflammation that other inflammatory biomarkers, such as F2 isoprostane, can be measured against. This is an inflammation marker that is used to also track cardiovascular risk. Values of below 1 are shown to represent low cardiovascular disease risk, however the most desirable level is close to 0 (e.g. 0.1 or 0.2 mg/dL). Pubmed currently contains over 2,900 research studies on hsCRP.
  • LDL-P: Measures the density of your LDL particles. Research shows that small LDL particles are the ones that play a role in cardiovascular disease. This test is not yet routine, but provides the most accurate evaluation of cardiovascular risk today.
  • Biomarkers Used on Feeding Danny Project

  • Cholesterol: The cholesterol panel covers a number of markers related to lipoproteins in the blood. There are standard markers that all doctors and labs will run, and some newer specialist labs that are more specific and accurate.
  • Triglycerides: Should be below 100, optimally under 70.
  • Fasting Blood sugar: Typically taken first thing in the morning after an 8 hour fasting period. Ideal healthy levels are around 73 mg/dL. A cut off point to keep below is 92 mg/dL as an indication of blood sugar disregulation.
  • Hemoglobin A1c (HbA1c): Measure of glycated hemoglobin, or hemoglobin to which glucose has become attached – a process that occurs when blood sugar levels become excessively elevated. A proxy measure used to assess your average blood sugar over a period of time. Since haemoglobin is part of the red blood cells it is exposed to blood sugar over the lifetime of the red blood cell, thus giving a measure. As such this measure is used to identify blood sugar control issues. Levels of 5% or higher can be indications of blood sugar disregulation. HbA1c has been well researched and has been included in more than 34,000 studies published on Pubmed.
  • Basic Kidney Function Test: Blood screen for basic kidney function that Dr. Fessel plans to monitor in the Feeding Danny project. May include uric acid, blood urea nitrogen, creatinine and albumin.
  • Basic Liver Function Test: Blood screen for basic liver functions that Dr. Fessel plans to monitor in the Feeding Danny project. May include bilirubin and liver enzymes such as alkaline phosphatase, LDH, SGOT/ALT and GGT.
  • Basic Thyroid Function Test: Can include thyroid stimulating hormone (TSH), T-4, T-3 uptake, Free Thyroxine Index. Dr. Fessel noted these as nice to have, but too expensive for the project’s funds.
  • Other Biomarkers of Oxidative Stress Mentioned

  • Glutathione: Major antioxidant enzyme used by the body. Dr. Fessel has seen that this is depleted in smokers. The optimum range Christine Burdette’s Dunwoody Labs (from episode 2) uses is 658.3 – 988.5 µM, sample report here.

Lab Tests and Devices

  • NMR Lipoprofile Test: LDL particle number testing was mentioned. This lab test is currently the gold standard of cardiovascular risk assessment which it does by looking at the LDL particle number and size.
  • Precision Xtra Blood Glucose and Ketone Monitoring System: Pinprick blood sugar and blood ketone measuring device that you can use at home.
  • Fit Bit Charge: Fitness tracking device. Suggested by Damien as a way to monitor progress in the Feeding Danny project.

The Tools & Tactics

Supplements

  • Curcumin: Bioactive compound in the spice turmeric. Works as an antioxidant in part through the process of hormesis – a low-dose form of stress that stimulates the stress adaptation response in a healthy way. The most effective forms of curcumin are Curcumin BCM95 and Liposomal Curcumin. Learn more about hormesis in episode 8 with Todd Becker.

Other People & Resources

People

  • L.Jackson Roberts II: Medical researcher who discovered isoprostanes and founder of Vanderbilt University’s Mitochondria Research Group.
  • Aubrey de Grey: Mentioned by Damien regarding his research on longevity. Listen to Aubrey deGrey discuss his longevity research here.
  • Bob Troia: Tech entrepreneur mentioned by Damien regarding his long term experiment in which he tracked his own blood sugar levels for an extended period of time. Damien’s interview with Bob Troia on his n=1 experiments.

Resources

  • Biomarkers of Oxidative Stress Study (BOSS): Series of studies sponsored by the National Institute of Environmental Health Sciences and NIHS to determine the best markers of oxidative stress or oxidant injury in a living system. Mentioned by Dr. Fessel in regards to establishing isprostanes as the gold standard.
  • Feeding Danny: Documentary of a year-long dietary intervention that Dr. Fessel is involved with.

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: I just want to thank you so much for joining us today.
[Josh Fessel]: Sure. Thanks for having me. This is really fun for me. This is a new thing for me, but I’m really looking forward to it.
[Damien Blenkinsopp]: Excellent, Dr. Fessel. I really enjoy these too, so we’re both coming at it with enthusiasm.
[Josh Fessel]: Absolutely.
[Damien Blenkinsopp]: First of all, I always like to hear people’s stories a little bit about how they started working with what they’re working with. How did you get interested in the subject of oxidative stress and start working on that?
[Josh Fessel]: Oh, that’s a great question. I’ve been thinking about oxidative stress for the last almost 16 years and it really started when I was in graduate school or looking to start graduate school. I started a training program to train both as an MD – so it was clinical – a clinically trained physician – but also to get a PhD to do a research degree in some area. I was casting about, looking for what I thought would be an interesting area of study for my PhD research and I ended up talking to a guy named Jack Roberts, goes by Jack. His full name is L. Jackson Roberts, II. If you looked for him in the literature, that’s how you’d find him.
I sat down to talk to Jack and found out that he and I – the important part of the conversation was that he and I were very much of a like mind when it came to thinking about science. That the idea was that you could take the fundamental principles of chemistry and physiology and apply those to living systems in a way that you could learn meaningful stuff. It turned out that what Jack studied and still studies actually – he still has a very active lab – is oxidative stress and free radical injury in biological systems. I was really drawn to the approach that the lab took, basing things in organic chemistry and biochemistry and then going all the way to studies in living people. So that’s how I first got interested in it and what was going on in the lab. It was one of those things that I thought it would be fun when I started and it turned out to be even more fun than I thought it would be.
[Damien Blenkinsopp]: That’s great to hear.
[Josh Fessel]: Yeah. So that’s really how I got started and things really took off. We did some work to discover a new class of biomarker for oxidative injury and that led to an interest in mitochondrial function and how oxygen is regulated dynamically in a living system. That kind of led to what I do now, which is more focused on a broader perspective, looking at mitochondrial function and molecular metabolism, carbon source utilization in living systems. What are the fuels, how do they get used, and how do those decisions get made.
[Damien Blenkinsopp]: Great. So does that still involve oxidative stress that you’re looking at?
[Josh Fessel]: Absolutely, yeah. The two are very closely linked. I think about it like a car engine and if a car engine runs perfectly with perfect efficiency, every drop of fuel is converted to motion to useful energy. But we all know that that doesn’t really happen and that you get leaks in the system. Some of that from a car engine leaks out as heat – sometimes it leaks out as an actual sort of fuel or other things and the human body is really no different. And so if the cellular engine runs perfectly, every molecule of fuel is converted to carbon dioxide and water and useful energy, but that doesn’t happen perfectly and the byproduct – the leak – is free radicals and that gets you right into oxidative stress.
[Damien Blenkinsopp]: Right. Why do you feel this is an important subject? Oxidative stress. Are these leaks? And maybe we could talk about the broad strokes of where the leaks are bigger and smaller. But, in terms of oxidative stress, why do you think that’s something worth looking at? And would it be worth tracking, for instance, in people as they age or as they through different health conditions or even, perhaps, when they’re looking at performance.[Josh Fessel]: So, I definitely think it’s something worth looking at. I’ll tell you, I have a personal sort of one-man crusade to actually get rid of the term oxidative stress because I think it’s too nonspecific. It sort of carries with it the idea that every free radical that’s produced in a living system is bad and we know that’s not right. Some of them are quite useful and serve signaling roles, bacterial killing roles. Some of them, under particular circumstances, are harmful and I think that’s what we really worry about. So, I talk a lot of times and I’m trying to be more rigorous in my scientific writing talking about oxidant injury versus oxidant signaling and teasing those two apart. But I definitely think it’s something worth studying, quantifying, tracking in detail because fundamentally, I think, we still don’t really understand all of the concepts that tease apart useful oxidant production from harmful. And so one of the ways I think that we can start to get at that is collect data and be careful about how we define the conditions that we’re studying and then from there you can begin to kind of back calculate and figure out okay in this situation a little bit of stress to the system maybe was actually useful; whereas in this other situation, it was clearly harmful. So I think in spite of the fact that people have been studying free radical biology and oxidative stress for decades now, there’s still a lot we need to learn before we really can translate those findings into something actionable.
[Damien Blenkinsopp]: Alright. Yeah, there’s still many different theories. I guess you’re juggling and trying to prove and disprove different ones. Let’s take a step back. It’s always interesting to see how someone, especially someone working in this area and doing the studies and everything, it’s interesting what they do themselves. Have you tracked your own oxidative stress or you follow that? Do you ever look at that in yourself and have you compared it over maybe a few years or anything like that?
[Josh Fessel]: That’s a great question. So, I have measured my own levels of – I probably shouldn’t admit this. We aren’t really supposed to do this, but we all do in science where you need a so called normal sample and so a lot of times that ends up being you. So in some small studies, yeah, I have actually done that. On a routine basis, there’s nothing that I track as far as oxidative stress or products of redox reactions. This question always comes up as to what would a person track. I think in a research setting there are a lot of things that are useful to look at and I’ve certainly participated as I say in research studies of, for example, looking at products of lipid peroxidation and looking at oxidized lipids that float around in the plasma. And I think that’s really useful, but when it comes to what I would recommend to a person or what I do myself, I tend to be a little more conservative because I really – hang up isn’t exactly right – but I focus on that word actionable because I might be able to tell you that on any given day [unclear 10:47: oh [ axles of] isoprostanes] are this, and my levels of guanosine are this and my levels of malondialdehyde or whatever the product is. But I don’t really know what to do with that and so when it comes to a person in the real world – whether it’s you or me or a patient of mine or whoever – I tend to focus on pretty low level stuff and this is true in my own life. I tend to focus on pretty low level stuff that we know has a pretty clear impact on health and wellbeing.
[Damien Blenkinsopp]: By that you mean that you like to focus on biomarkers which are being used consistently for a longtime of 20 years of research behind them, a link to specific disease conditions or aging?
[Josh Fessel]: That’s exactly right. You got it.
[Damien Blenkinsopp]: My understanding is that – I’ll maybe start calling it oxidant injury. Maybe that would be the correct term. But as I understand it, like F2 isoprostanes and Ado DG guanosine – I always have a problem with pronouncing that one – but these are linked to aging as one byproduct, just as we get olderthese tend to correlate where they’re kind of sloping and steadily get higher. Is that true?
[Josh Fessel]: In general, that is true. In a broad sense, most products of oxidant injury will tend to increase with age and this gets at the whole free radical theory of aging. The idea that at the molecular level, one of the things that drives the aging process is that slow leak of free radicals that’s just part of the normal process of being alive and having an active metabolism in an environment that is or an atmosphere that’s 21% oxygen. And I think there’s some core validity to that idea. In general, I think its right. In the specifics, I think there’s still a lot more learning. I was just reading a paper this morning, for example – it was just published – that where in a given cell or organism free radicals are produced can have a pretty profound impact on lifespan. Now this was in a very simple model organism and how this actually maybe applies to you or me – that’s anyone’s guess. But I think that’s what makes it fun that in general I think the theory has validity and that’s evidenced by the fact that somebody that’s 80 years old, by and large, is going to have a higher circulating level of F2 isoprostanes than somebody who’s 20. But there are a lot of variables that come into play and we’re just teasing all those out and I think it’s really fun to do that.
[Damien Blenkinsopp]: Yeah, I guess there’s like two things we’re often trying to do. Sometimes we’re trying to diagnose or basically zero in on something we can act on. [Inaudible] is actionable. Here at The Quantified Body we’re all about action. Exactly the same like idea. If we’re measuring it and it’s not actionable, we’ll there’s not much point especially as a lot of these tests of devices or things out there are relatively expensive and we talked about that on shows before. So you have to really be careful about which measures you’re wanting to invest your time in because it also takes times, conveniences, all sorts of pay offs in our equation in terms of your lifestyle and the benefits you’re getting out of it. So, in terms of the payoff for these, would it be interesting, for instance, to relate that to age? If you’re interested in longevity, would it be interesting to track? You’ve focused a lot of your work on F2 isoprostane and the benefits of that marker. So, based on your knowledge, would it be something useful? If I started tracking it right now and continued for the next 10 years, would it be possible to compare myself to benchmark people of the same age? And then also maybe get concerned if it tended to go into an upward trend that I felt was sharper than I’d want at this stage of life?
[Josh Fessel]: That’s a really interesting question and I’m trying to think if I know of a study where anybody’s done that where they’ve actually looked over time of a cohort of people to see what happens. I can’t call one to mind, which is not the same thing as saying it hasn’t been done. It might be very interesting. You’re exactly right when you say that the way that you’d want to think about that, the first thing you’d want to know is fairly large group of essentially normal people or more or less normal people of varying levels of fitness and varied diets and all that kind of thing. What does the population look like with respect to any biomarker be it F2 isoprostanes or whatever? And then that gives you a basis for comparison. And then it might be very interesting to see what one’s individual trend over time was with regard to that some markers would be easier to do that with than others. There are lots of ways to measure these things and some of those – some of the methods are more robust than others and that kind of thing. And so, for example, we’ve talked a little bit about F2 isoprostanes and related lipid peroxidation products that I’ve studied over time. Those are really, really robust markers. They’re chemically stable. They’re detectable in every biological sample type you can think of. They’re detectable at pretty small levels, so you don’t need a huge signal to confidentially say okay the level of F2 isoprostanes in the blood or the urine or whatever was this. The problem is that they are expensive to quantify and for a really robust measurement it requires a pretty sophisticated setup. It’s mass spectrometry and blah, blah, blah. So, it sort of fails that aspect or it fails on that criteria and for an ideal test which should be easy, cheap, reliable, robust, [and] applicable to a wide range of situations. So I think we’re still – in terms of what a person would do on a day to day basis, I think we still don’t have the perfect thing to look at and I’ve had people ask me, “Well should I send in a sample for this array of tests for oxidative stress or whatever?” And my general answer is if you want to know and you’ve got the disposable income to do it, yeah that’s probably okay. But it shouldn’t be the top thing on your budget because there are lots of simple things to do that we know are going to have a positive impact on oxidative stress and on every other aspect of health. You know dietary things to think about, regular exercise, [and] all that kind of stuff. So in that regard – the other thing is that as far as the normal aging process goes, I don’t yet have an intervention that I can tell you to try that will reliably slow down or modify the aging process. There are few things that look promising, but I couldn’t say oh you seem to be aging rapidly. Why don’t you try this?
[Damien Blenkinsopp]: That’s an interesting discussion and longevity is one of the things we look at and we recently had Aubrey de Grey on the show. If you’ve heard of him or you follow some of his work, he’s very focused on longevity and promoting ending the aging equation and investing in research. He actually wrote a book about the mitochondrial theory of radicals and so on. So I’m sure you’ve connected there. So, he’s looking at a whole bunch of markers every year – 160. But I think he feels like you do, he’s really looking for something that goes perhaps an extreme, I think. I think maybe this is like an angle that could be interesting. It’s like if something goes extreme in terms of its nearly off the normal curve. It’s in the top 10% or the top 5%. Then he gives you reason to kind of look at it. But while it’s remaining within a range, which has been detectable, then I think what you’re saying is like it’s not like it’s very actionable or you already can think of something. And I guess oxidative stress – there’s still a lot of controversy around it – oxidative injury. So, when it comes to vitamins – vitamin C, vitamin E, succinate, and other interventions that people use to try to increase their antioxidant levels and lower oxidative stress, I guess in terms of the actual research supporting that and evidence that’s not really there yet. But we were just talking about it before this chat and we’ll talk about it more is the diet. And there’s obviously a lot of people doing different diets today and it’s a subject we’ve discussed before and we’ll keep coming back because there’s so much confusion over which diets work and which don’t and what they’re useful for. But I think it does come to mind that your diet could have an impact on your oxidative stress levels. So, potentially tracking F2 isoprostane once per year and changing your diet for a year and seeing what happens or perhaps a shorter amount of time, might be something relevant just to see if that has an impact in terms of how would you compare it to say inflammation such as high sensitivity CRP, which is a bit very common standard measure of inflammation. So you can often see an impact in CRP when it comes to diet – pretty substantial. It varies. I’ve been following mine, for instance, for a very, very long time and as I’ve changed my diet and optimized it, like it’s virtually zero at this point where it started at closer to 1, like around .8 – it was somewhere around. Which isn’t high, but it’s just you can see the difference over time. So, I’m wondering if you could see that kind of change over time if you feel that you might be able to see that. I know maybe in the research it might not exist, but sometimes if we’re looking to kind of go ahead of the research and just see – it’s like then it equals one experiment and maybe we can inspire someone to do some research if we go ahead.
[Josh Fessel]: Absolutely. I think that kind of thing could be very valuable and in small studies those sorts of interventions have been done where people have been transitioned to – for example, Jack Roberts – the guy I mentioned – the guy that discovered isoprostanes did a small study where he took young, relatively healthy – in other words, no chronic diseases – nonsmoking adults, but who were overweight and measured F2 isoprostane levels and they were increased and had them participate in a program of caloric restriction. So they did and it was pretty robust. It was about a 40% caloric restriction. So 60% of their typical core needs average over like a 3 day period or something like that.
[Damien Blenkinsopp]: So, could you just specify? Is that caloric restriction based on normal human needs or was it based on their original intake?
[Josh Fessel]: If I remember – I got to think about that. It may have been based on normal dietary recommendations. I’m trying to remember the specifics of that.
[Damien Blenkinsopp]: We can check that. We can link to the study or whatever.
[Josh Fessel]: Yeah.
[Damien Blenkinsopp]: It’s not essential, but I thought it was interesting. I imagine they probably did it at normal human intake.
[Josh Fessel]: I think that’s probably what they did actually. Although, as I recall, they did sort of do a food diary and the caloric intake that these people had, while they were overweight, it wasn’t wildly off what the normal recommendations were. Maybe 10% different or something like that. But the only intervention of this short period of time was a caloric restriction and there was a rapid fall in plasma F2 isoprostane levels well before there had been any substantial weight loss. I think the average weight loss at the time of the nadir of F2 isoprostanes was something like a pound or two. So it was not a significant percentage of bodyweight, but there was this really pretty impressive effect on this marker of oxidant injury and so I think what you’re describing – tracking over time within and individual and modifying diet in some way, be it increased antioxidant intake or even somebody had weight to lose and they wanted to try a more calorically conservative diet and then track markers like that, I think that could be very informative if the means exist to do it and all that kind of thing.
[Damien Blenkinsopp]: Well so let’s talk a bit more about the isoprostane because you’re work has kind of shown, as I understand, that it’s one of the better markers compared to the ones that are used more popularly, we’ll say today, still because they’re kind of the ones – I don’t know how you say it – the ones that have been in place a long time. So, what kind of markers exist today and why do you feel the F2 isoprostane has been a more useful marker?
[Josh Fessel]: That’s a great question. So there are tons of markers that you can look at and most of them are some byproduct of free radicals reacting with some large class of biological molecules. So you can look at the products of free radical reactions with sugars or lipids or proteins or DNA or – and depending on where you start from, that determines what kind of product you end up with.
[Damien Blenkinsopp]: So it’s kind of like you’re just trying to measure the volume of free radicals by what happens when they hit other thing and –
[Josh Fessel]: That’s right. That’s exactly right. Yeah because, by their nature, free radicals are fairly evanescent things. They’re reactive and they don’t last long. There are techniques to actually measure the radicals themselves and those rely on techniques like electron paramagnetic resonance measurements and that sort thing. So they’re specialized techniques and they’re really kind of research only sorts of deals. So if you really want to know about the radicals themselves that’s what you end up doing. But for most of us and again if you’re thinking about oxidant injury in particular, I actually find it more useful to look at the byproducts of reactions that we know to be fairly uncontrolled reactions because, in my mind, that conceptually gets you back to a process that’s injury as opposed to a deliberate signal. So you can look at anything from – we mentioned 8-oxo guanosine. That’s a product of free radical interaction with DNA. You can look at malondialdehyde, which comes from lipids and can come from some protein oxidation. There are protein carbonyl assays you can look at and they all tell you some information. The reason that we’ve settled on F2 isoprostanes and related compounds is that we know a lot about the chemistry of formation. We know from the moment the inciting radical is generated, we can walk through the reactions that lead to F2 isoprostane formation. And this is through work that Jack did. When these things were first discovered in the 1990’s, we know that once they’re formed, they hang around in a more or less unchanged structure – a more or less unchanged form. And further when they do get metabolized, we know what the metabolites are. So there’s no source of spurious generation. When you look at things like malondialdehyde or like the TBARS assay, the thiobarbituric reacting substance – the problem with assays like that is that they tend to generate some signal in the process of the measurement of itself and so it’s hard to know, except in a relative sense, how much of what you’re measuring was there to start with and how much of it came about as a result of the measurement itself. By contrast, I’ve heard Jack tell this story a few times of when they discovered the isoprostanes back in the early 90’s, they did an experiment where they took a beaker of urine and sat and measured the level of isoprostanes in the urine and then sat the beaker of urine on a hotplate for about 72 hours which ought to – any spurious generation’s going to happen, that’ll do it and the levels were exactly the same as they had been 3 days before.
[Damien Blenkinsopp]: Wow.
[Josh Fessel]: Yeah, so really robust and –
[Damien Blenkinsopp]: Yeah. So that means you could ship it around the world. So you’re talking about urine samples here?
[Josh Fessel]: Yes, yes.
[Damien Blenkinsopp]: Right. So that’s also very accessible –
[Josh Fessel]: Correct.
[Damien Blenkinsopp]: Compared to blood. Yeah.
[Josh Fessel]: That’s correct, yeah. So exactly what you say has been done. We’ve analyzed urine samples from the deep jungles of Southeast Asia looking at measurements in patients with malaria and all that kind of stuff. So it really is robust in that regard. There’s also a series of studies actually that are sort of interesting reading called the Biomarkers of Oxidative Stress Study or the BOSS study. And this was published in four or five installments. It was a study sponsored by the National Institute of Environmental Health Sciences and the NIHS wanted to know exactly the question that you’re asking. What are the best markers of oxidative stress or oxidant injury in a living system and so they did head to head comparisons of a variety of different biomarkers in a bunch of different contexts starting with different oxidants, looking at different biologic samples and the isoprostanes emerged as of one of the most robust. I don’t want to overstate – it’s certainly not the only thing that’s useful to look at. But in the BOSS studies, the isoprostanes emerged as one of the most robust across a variety of context, samples, that kind of thing. But the BOSS studies are NIH sponsored. They’re publicly available. They’re kind of interesting reading actually.
[Damien Blenkinsopp]: Great. Yeah, we’ll definitely link to all of this stuff in the show notes. One of the big things I understood was there was a difference between in vivo and in vitro. Could you talk a little bit about that because sometimes people go and read studies or they go to a link for a study and it’ll be in vitro. They just assume that it’s going to be exactly the same in the body. So, first of all in vivo means inside the body and in vitro basically means in a test tube.
[Josh Fessel]: In a living system.
[Damien Blenkinsopp]: Right.
[Josh Fessel]: That’s right. So most of the time when people talk about in vitro they’re talking about something up to cells growing in a dish. So, it might pure chemicals in a test tube, it might be cells growing in a dish, something like that. In vivo is referring to in some intact living system. Sometimes as simple as a worm or a fly, but it’s an intact organism. Worm, fly, mouse, human, something like that. So the distinction is really important. You can make lots of things happen in a test tube or in cells in a dish that may never happen in a living system for a thousand different reasons. Just as one sort of easy example to grasp, if you’ve got cells growing in a dish, they have a very limited capacity to respond to any insult you throw at them and you know that’s not true of an intact human being for example. You’ve got all sorts of immune responders and chemical antioxidants and the liver and the kidneys eliminate toxins and this and that. So there’s interplay of a hundred different systems in an intact organism that may run counter to or may enhance the effect that you’re looking at and so to extrapolate from a test tube or cells in a dish to a person or even a mouse in a cage, that’s a long stretch. Now what we constantly do in our research is exactly that. We find something interesting in a very simplified system in vitro and then we say can we find any echo for this in the living system, can we see the same thing, or how was it modified between the cells and the dish and the person in the lab.
[Damien Blenkinsopp]: Great, great. And in terms of these oxidant injury markers, I’m trying to adopt your expression there, what did you find in terms of the markers? Were there some of them which were working better with in vivo? Because I mean at the end of the day we want to know what’s going on in the body of course.
[Josh Fessel]: That’s exactly right. One of other reasons we really like lipid peroxidation products in general or that I really like lipid peroxidation products in general and isoprostanes in particular and related compounds is that every cell with a membrane is fair game for study. So, for example if you wanted to measure DNA oxidation products, well there are are cells in your body that lack DNA. Red blood cells, for example, have no DNA in them. Platelets have little shreds of DNA. But every cell has a membrane, so every cell is fair game for study and it lets you really refine your question. It also means that if I can get ahold of the membrane, I can study it in vivo even down to the subcellular level. So I can take a sample of liver tissue, skeletal muscle, whatever and get the mitochondria out of it and measure the levels of isoprostanes or isofurans or whatever in the mitochondrial membrane and I can tell you something about what happened to that level of detail in a living system and so that’s how we try to bridge that gap between things that are very simplified in vitro and move into in vivo. But there are lots of things you can do in that regard. There’s a lot of literature for example on looking at oxidized DNA floating around in the plasma as a marker, not only of oxidant injury, but of cellular injury. So people are looking at the DNA contained within mitochondria, for example, and looking not only at how much is there floating around in the plasma because it’s not really supposed to be there in it’s free form, but of that how much of it is oxidized and how extensively. And you can get a really pretty granular view of what must be going on at the cellular level. Now, it doesn’t tell you things like is it in one specific spot in the body or is this a whole body thing, but you can get pretty detailed information in a living human. From a research standpoint, a living human is a really complex and sort of filthy place to do your research, right. It’s very uncontrolled. There are a million variables that you can’t do anything about and yet that’s what you have to do and the techniques are such that we, in a research setting, we can get pretty detailed.
[Damien Blenkinsopp]: Yeah because I mean the body has so many variables. If you’re just thinking about it. It has a long dynamic equation – some crazy calculous. There’s so many variable that to do science is actually really difficult because you can’t control so many different variables that are going on. So, you have to appreciate the efforts people are making to study how we work just in the incredible in-complexity. We’ve looked at hormesis quite a bit, which I think illustrates quite well the concept you’re explaining here about in vivo being different where we have things like our hormetic curcumin for example. You put it into the body and it ends up creating some kind of anti-stress kind of like an antioxidant effect. Although the mechanism as we understand it today is actually a small oxidant kind of injury as I understand it. So there you see it’s causing the opposite of what you thought. I’m sorry – It’s very illustrative of the importance of focusing on the in vivo. So, okay we understand why you like isoprostane. What kind of things have you seen our reduced high levels of isoprostane if anything? You mentioned caloric restriction as being seen. Are there any other things that have been seen that have some kind of impact on it?
[Josh Fessel]: Yep. You can supplement dietary antioxidant intake and see a measurable effect on isoprostanes and there are a number of studies that have done that using various dietary sources. Regular exercise is a pretty clear – it’s interesting and this may get to that idea of hormesis. There was a study where they took people – and this maybe isn’t surprising when you say it out loud. They took ultra-marathoners and measured their levels of isoprostanes right before and right after an ultramarathon and then maybe up to a week later. And not surprisingly, right after the run and obviously these are extremely fit people, right after the run their levels of isoprostanes were incredibly high.
[Damien Blenkinsopp]: Sky high, yeah.
[Josh Fessel]: Yeah.
[Damien Blenkinsopp]: Cancer patient levels.
[Josh Fessel]: Right, right or more. I mean if you just looked at the numbers and didn’t know what had happened, you’d say oh my God, what’s going on with these people. But as you say, it’s the biological of that which doesn’t kill you makes you stronger and so clearly these are fit and when you look at their baseline levels, their baseline levels were quite low. So regular exercise we know improves the efficiency of the machinery that tends to leak free radicals or improves the ability to respond and maybe both. So it’s a lot of the things that you might guess at anyway. The healthy diet that’s low in fat and high in fresh fruits and vegetables, that kind of thing. Oh, the other really big thing is we know from a number of studies that smokers are under a huge constant oxidant stress. It not only enhances the formation of free radicals and masking goes hand in hand with this, depletes levels of multiple different endogenous antioxidants. So, the other thing that we know is beneficial is if you smoke, please stop.
[Damien Blenkinsopp]: Alright. So, you’re talking about glutathione and –
[Josh Fessel]: Yep. Glutathione, ascorbate. I can’t remember if there was a measurable effect on vitamin E or not. Lipoic acids – many of the usual suspects and they were all depleted in the smokers.
[Damien Blenkinsopp]: Great, great. So, I guess increasing your glutathione or having low glutathione is going to have an impact on your isoprostane levels just because you’re indigenous antioxidant system is different. You brought a very important aspect of it there. They weren’t for a run for a few hours and they completely changed their isoprostane levels. So then we have to think about, okay we really have to control. If this can change that rapidly – give that that was quite an extreme circumstance. But what kind of things do we have to control for it to make sure that we’re not getting some kind of useful reading with isoprostanes.
[Josh Fessel]: Yeah, that’s a really good question. So, we know that people who are heavier – who are overweight or obese – have higher levels. So you got to control for that. As I say, we know that smokers have higher levels, so you have to control for variables like that. It ends up being a lot of the variables that you would control for in a fitness type of study anyway. It turns out that the specifics of – at least in a short time window – the specifics of dietary composition aren’t as important as you would think. So, year’s back we actually did an experiment in the lab where a bunch of us – because we wanted to know is it possible that what you’re measuring when you measure a plasma level of isoprostanes for example is coming in with the food you’re eating. A bunch of us in the lab went and got a very high fat meal from a popular fast food chain and measured our levels.
[Damien Blenkinsopp]: I wish you would say the name, but we can guess.
[Josh Fessel]: I won’t necessarily say the name.
[Damien Blenkinsopp]: Have they been in the news lately?
[Josh Fessel]: Almost certainly. So we measure our levels beforehand – blood and urine. And then ate a very fatty meal and then I think it was something like 6 to 8 hours later, measured plasma and urine levels and they really didn’t change. Which was kind of a surprise, but it was very reassuring. It suggested that what you’re measuring is more reflective – or at least, if it’s not more reflective of a steady state, it’s at least not so sensitive that you can tip with –
[Damien Blenkinsopp]: With just one meal.
[Josh Fessel]: That’s right.
[Damien Blenkinsopp]: Right, right. Okay.
[Josh Fessel]: But, overall dietary composition is something you would want to know something about if you were doing a controlled measurement.
[Damien Blenkinsopp]: Is there anything about time of day or with a lot of blood tests we do fasting. Will it make any difference if we fast say 6 or 8 hours or 12 hours and then do it in the morning? Or is it okay to do in the evening – to take your sample then if urine for example? Are those kind of influences important? How about like summer or winter? Are these good questions because if I imagine if I’m interested in tracking this just say for aging or for some other aspect, then I want to know that I’m not just going to get hectic data basically. Like one day up, one day down. One season up, one season down and basically can I be completely fooling myself that I’m tracking anything useful?
[Josh Fessel]: That’s exactly the right question to ask. So, as far as we know – at least in plasma levels – there’s no diurnal variation and that’s true actually of a lot of the different measures, not just isoprostanes. If you’re measuring anything in urine, in general, the best time to measure is the first morning urine. Not necessarily because you get diurnal variation, but what happens is you’re awake throughout the day. You tend to take in fluid and that’s going to tend to dilute your sample. But that’s true of almost literally anything you would measure in the urine.
[Damien Blenkinsopp]: Well that’s a great rule that you just gave use there.
[Josh Fessel]: Yeah. And then as far as seasonable variation – that’s a really interesting question. To the best of our ability to determine, no there isn’t any seasonal variation. I actually did a study when I was in graduate school to see if sun exposure had any impact because you’re delivering radiation to a large area of the body if you’re out in the sun and radiation is ionizing and creates free radicals and so I wanted to know was there any acute effective of sun exposure and the short answer is no there isn’t. So, for all those reasons, these tend to be pretty robust measurements and like I say, some measures are going to be a little more noisy than others, but in general these are things that – the one thing that would have an impact on the acute measurement of any index of oxidant injury would be if you had some sort of acute illness. So, if you had that flu for example. We know that people who are acutely ill have – and we’ve probably best studied oxidant injury in the setting of acute illness. We know that people who are acutely ill will have higher levels and the sicker you are the higher they’ll tend to be. So, if you were doing any kind tracking of any biomarker really over time, you’d want any individual measurement to be fairly representative of how you are on a day to day basis.
[Damien Blenkinsopp]: Absolutely. So I actually ran into this problem very early in my tracking. I was tracking high sensitivity of the C reactive protein. And the second time I ever tracked it – this is going back like 8 years or so – very early – and I actually had an injury to my coccyx by falling – I can’t remember – falling over something. Very painful, it was really horrible.
[Josh Fessel]: That sounds awful.
[Damien Blenkinsopp]: Yeah, yeah. It was because you can’t sit down. It’s very difficult. But anyway, I took my CRP and it was like much, much higher of course. I can’t remember the levels. I think it was 8 or something, which it was completely off the chart compared to what it was. I honestly had to look and it really wasn’t worth me spending my money on that CRP this time just to find that yes, you have a coccyx injury or any other injury, you kind of expect these kind of things. So very, very important point there.
So just wind of the isoprostane discussion. So we didn’t’ really talk about TBARS. The thing about TBARS and the MDA is when you look at, for instance, supplements and things like this, you often see that they talk about the TBARS as supporting evidence that it’s lowering lipid peroxidation. Do you feel like it’s reasonable to trust statements from backing supplements and stuff? Should we really be looking at the isoprostane levels? And can we trust – if we’re reading stuff on supplements and it seems that lowering lipid peroxidation, would you trust that or what issues would you see with trusting that TBARS method?
[Josh Fessel]: Yeah, that’s a great question. So, what I often tell my patients when they ask about supplements is remember the job of the person who printed that label is to sell you the supplement. So know that whether they’re making a claim about TBARS and MDA or isoprostanes or protein carbon meals – so know that. The question, I guess, is to dig in and find out what are the quality of the data that they’re sighting? And it seems like you’re speaking to a really engaged and educated audience here and so my advice would be dig into it and see do they site a study? And if so, go find the study and look at it. And if it doesn’t make sense, go talk to your physician or whoever – somebody that you know has some background to help you pick through it and say – because some of the studies that are out there that have looked at TBARS and malondialdehyde and all that – they’re fine studies. They’re well designed and you’re going to get relative quantifications that probably do tell you something. There are plenty of studies of isoprostanes out there that are not as well designed and probably not as informative as better design study of TBARS. So whether you trust the claim or not – I always go in with skepticism and my first question is okay well let me see if I can find the study they’re actually talking about. If I can, I’ll look at it and say okay this is actually pretty good or this has some problems. And then the other thing is independent of that, I’ll look for other investigations of the same thing. So maybe the study they site isn’t that good, but there are 10 other studies that have been better done and they actually seem to suggest yeah there’s something here or the conclusion is no, there’s really nothing here. So I say take each on a case by case basis, but get as much data as you can before you spend your hard earned money and educate yourself on the front end.
[Damien Blenkinsopp]: Great. Is there anything in particular which would, if you were reading a study and it had TBARS in it, is there anything in particular you would look at for that marker which you’d be like, “Ah that could be an issue.
[Josh Fessel]: Yeah. Sometimes it’s hard to pick out what can be the issues. If I’m reading a study – this happened once. I was reading a study that were analyzing samples that were 10 years old and that gave me pause because anything that sits around long enough, unless it’s stored under really rigorous conditions will show generation of malondialdehyde and isoprostanes and all the other products of oxidant injury or oxidative stress just by virtue of sitting around. So, when I saw that it was red flag to me that oh, I need to interpret this data cautiously. Are they making comparisons between groups and how comparable are those groups, really? Exactly as you eluded to? You’re controlling for the things that could influence that. Did they study? Was there intervention in a group who, on average, was 10 or 20 years younger than their control group? Well that’s a problem for reasons that we’ve already discussed. So, I look for things and these may sound goofy. Like of course they would control for that, but sometimes they don’t or can’t or won’t or didn’t or whatever and so you just look for things like that. That’s true not just for TBAR’s measurements, but for anything.
[Damien Blenkinsopp]: So there’s nothing specific that you highlight that you know is a weakness of the TBARS?
[Josh Fessel]: Not really. I’ll say that the one caveat I guess with TBARS, Is that the more complex the sample that they’re measuring, the more cautiously I’d interpret the data. So, for example, if it’s a study of TBARS in urine, urine is a biological sample. It’s pretty simple. It’s got salt and a little bit of protein and few other things and that’s about it. Plasma on the other hand, is really complex. It’s got proteins and lipids and a few cells. So if you were making measurements using the TBARS protocol in urine, I would tend to hang a little more validity on that than if you were in the plasma. I think it’s a dirtier biological matrix.
[Damien Blenkinsopp]: That’s interesting because I think most people assume that blood’s the ultimate measure. So, just of now, does an isoprostane – does urine correlate well with the blood sample levels? So, are they pretty much exactly the same?
[Josh Fessel]: They’ll tell you the same information. And the nice thing with isoprostanes is that – because we’ve had it come up before where people say, “Well how do you know they aren’t being made in the kidney and that’s really what you’re measuring?” That’s a fair question. So the one nice thing about isoprostanes is that we also have defined metabolites that are excreted in the urine. So the only way you can get that is if you formed the compound, released it in the blood, and then the enzymes that metabolize isoprostanes have a chance to work on it. So, you can measure urinary metabolites and they’re very stable compounds and say there’s no way this was generated in the kidney, this had to come from the total body pool. But in general, yes, they do correlate.
[Damien Blenkinsopp]: Great, great. Thank you very much. Okay, so I know that you’ve been starting to get involved in a project that’s going on. We have someone who wanted to change something in their life and so I brought that up and it’s very interesting case study to bring up on the program. So, it’s called Feeding Danny. Could you give us a quick background about it?
[Josh Fessel]: Sure. I’d be happy to. Thanks for asking about it. Yeah, so this is a project that started with my friend and my wife’s friend, Danny. Danny, like a lot of people has struggled with his weight over time and Danny is very overweight. In medical terms, you would say he’s morbidly obese. He carries a lot of extra weight. I’m guessing and I don’t know for sure – I’m guessing he weighs he weighs somewhere around 350-400 pounds. He’s a big dude and has health problems associated with his weight. He’s got joint problems, sleep apnea, asthma, all sorts of things. And so he has tried many different ways to get a handle on this and has had a lot of trouble and like I said, he’s clearly not alone in that. And so what came about is two friends of his approached him with the idea that they wanted to stage what you might describe as a dietary intervention. They said, “If you’ll allow us to do it, we will take over your diet for a year’s time and change everything about what you’re eating. We will make sure that the only thing going into this system are all natural, organic, pesticide-free, hormone-free foods and that by doing that we feel certain that you will, not only lose weight, but you’ll see improvements on any number of health related measures and act scenes.” And so when I heard about this I said I would love to help out if I can because I love my friend Danny and I want to help him, but beyond that I thought this was a really interesting concept on a single person as you say case study and that’s really what it is. Can you do this dramatic intervention and see a positive change. What I thought I could offer was to bring the medical perspective to things just in terms of overall fitness, but also bring the science perspective because I come from a slightly different place than the women that are doing this. Their names are Leilani and Vanessa. I tend to think about things in a very sort of pragmatic, low level kind of way. I think this will work because if you’re eating a diet like they’re describing – and it does include meat and that sort of thing as we discussed. This is not a strict vegan diet or anything like that. But I think if you’re eating a diet that’s high in fruits and vegetables and whole grains and lower in saturated fats and all that kind of stuff, you’re going to lose weight because your caloric intake is going to go down. I suspect what we’re going to learn is that as we go along they are thinking more along the lines of eliminating toxins from the diet and that sort of thing and I always halt a little at that because as I say, just as I don’t like the term oxidative stress because it’s nonspecific, I don’t like the idea of toxins because that’s nonspecific. What do you mean -What toxin, can I measure it, what are the levels, that kind of thing. And so, it doesn’t really matter who’s right as long as it works and so I’m excited to participate in this. What they’re proposing to do is to do this intervention for a year. They’ve uprooted their lives in Chicago and have moved to Nashville. They just got here about a week ago. What they want to do is do this for a year and document it on film and hopefully at the end of it have a true representation of what happens over the course of that year.
[Damien Blenkinsopp]: Alright. Those things are great – documentaries – because they can be inspiring for people, often more inspiring than this show when we’re talking about scientific data like this one for a lot of people. So, they’re really, really great, but it would also be like really cool if there were some controls in place to kind of understand a little bit like what really did happen. So, my understanding is that the intervention is basically a diet of organic foods, right. So they’re going to be buying specifically organic, certified organic produce and probably they’re going to basically eliminate all of the stuff in the middle of the supermarket. So you’ll walk around the edges and you’ll grab all the vegetables, fruits, meats and so on, but most of the stuff in packages isn’t going to be included in the diet.
[Josh Fessel]: That’s correct and ideally they’ll actually, in as many instances as possible, eliminate the supermarket and go to the farm where it’s being raised. And Nashville’s actually a good place to do that. There are a lot of certified organic farms and you can locally source just about everything. So this is kind of an ideal place to try what they’re proposing.
[Damien Blenkinsopp]: I guess somebody other kind of confounders in terms of diet because the diet world is so complex in terms of all the people have different opinions. Whether it’s grass-fed meat or its grain-fed meat, there’s a whole question of grains. In this case it seems like grains isn’t the issue. But like we were just talking before like it’s just important to define exactly what the diet intervention are in it – what limitations are and what the limitations aren’t to kind of get started. What kind of other things would you feel would be worthwhile controlling for? I understand the budget probably isn’t going to be really high, right, in terms of testing and things like that? But there’s probably some things they could track and it would probably maybe help the documentary or just be useful to kind of look at afterwards and be like yeah. So maybe we can say that toxins did play a role or – although I haven’t come across so far a kind of generic marker of toxins like you’re kind of alluding to. I’m not sure it is a generic toxin marker unless you want to say oxidant injury potentially. So what would be your thoughts on kind of if you wanted to get a baseline today before everything started and to see where things are at and then I know what kind of time scale would control certain things and at the end, in one year’s time, what would you like to control for if you could?
[Josh Fessel]: Yeah, that’s a great question and this is something that we’re in discussions about right now because, you’re exactly right, budget is going to be limiting and so there are some things that I think we’ll need to do just from a general sort of health monitoring standpoint. There are some things I’d like to do that we may or may not be able to do, but all of it is in service to trying to figure out did anything actually work. Where my thinking is, is that we’re going to need to look at some really standard, basic measures of health, particularly metabolic health, and this is real simple stuff like cholesterol, like hemoglobin A1C, blood sugar, triglyceride levels in the blood, if I had basic kidney and liver function, that kind of thing. If I had a complete wish list, I’d probably want to know about thyroid function and that kind of thing. And then to branch out from the traditional, clinical indices as far as biomarkers and thinking about what else I would want to know. I would actually be really interested to know what the circulating levels of isoprostanes were and compare that with circulating malondialdehyde or TBARS. I would love to know high sensitivity CRP. I would love to know what plasma levels of ascorbate and vitamin E and all the other small molecule antioxidants. I think that would all be fascinating and to see how those change with this fairly profound diet modification that’s going to happen. How much of that we’ll be able to do I don’t really know. Since some of those things make sense clinically, some of those things are more on the research side and this is an interesting case study, but in the strictest terms this is not a research study. So, we’re going to have to be a little judicious in how we go about these things. But nonetheless, I think what we’ll end up doing is certainly hitting all the things that we need to look at just from a basic health and safety standpoint and then I hope that there’s additional funds available to dig into some of these other things, not only to get a baseline, but hopefully to measure them periodically over time and see what did we really do.
[Damien Blenkinsopp]: Yeah. That’s great. And I think you’ve mentioned a lot of different things and I think especially for people to get the value out of the markers they’re tracking and given how most things are still pretty expensive today. Some of the things you mentioned I thought particularly kind of practical are blood sugar regulation. You mean just taking like the blood sugar reading.
Recently, had a conversation with Bob Troia on The Quantified Body. He was on the one of the recent podcasts and he tracked his blood sugar every day for a long time. It was interesting to see it went up and down all time based on what he’d been doing the night before and everything. so the problem that I realize is like sometimes when I’m having my blood panels, I’ll get my fasting blood sugar taken and I realized I’m kind of wasting my time because, unless I’ve been very careful about what I’m doing the night before, in terms of exercise and intake and everything. But on the other hand, there’s a pretty cheap method. It’s the Precision Extra pinprick blood sugar devices where you can take a couple of reading. It’s pretty cheap. Unfortunately you have to prick your finger and you have to think about okay is Danny going to want to prick his finger like once every day or maybe once a week or like whatever you’re trying to control for. Obviously, blood sugar regulation’s one thing that’s going to fit with the research that there’s definitely going to be some changes there. One of the things I was thinking of is cardiovascular risk. Is that something he’s worried about? Given the weight and everything, we worry about that a lot. There’s one other test out there that I’ve been meaning to get someone on the show for, for a while is the LDL particle number, which the research has been looking at more sharply because it correlates better. They are looking at some other things they are using CRP which is one you mentioned too. So, just kind of figuring some of the other things I thought would be interesting and of course like a weighing scale because in terms – like I think one of the great things about this project is that you could take pictures every day and obviously there’s going to be video footage, which is going to motivating for other people, but sometimes you can’t see it yourself as well when you’re measuring. But if you got a scale and you’re just jumping on it every day, that’s a very easy thing to keep you motivated to see that something is happening. We have to be aware of something that you said earlier in our conversation today. Which is that there were benefits being seen with caloric restriction before any of the pounds were coming off in your example, right. So we have to also be aware that although sometimes maybe the weight isn’t’ coming off, there are other improvements that are going on inside our bodies.
[Josh Fessel]: That’s absolutely true and that’s why I hope we’ll be able to quantify as many different parameters as possible as you say. In terms of a quantified body, a quantified life a bathroom scale is probably one of the most useful things you can have. But you’re exactly right in that let’s say that weight loss – let’s be pessimistic and say there isn’t as much weight loss as we there’s going to be, we might still have one real victory, but you’ve got to know what to look for. You got to be able to look for it. And so for exactly that reason I think the more carefully selected data we can have in this case – and this is true, not just in the case of Feeding Danny, but in a broader sense I think that’s useful. My clinical life is in part spent in the intensive care unit taking care of critically ill patients and that’s about as quantified as you can get on an acute basis and all of that information can be really helpful, not only as individual data points and not only as trends, but also as a gestalt of what’s going on with the person. And i think this maybe a similar conceptual exercise over a much longer time scale. So I’m hopeful that we’ll be financially able to look at all these things. But if nothing else, like you say, daily weights and looking at blood sugar over time and things like -one of the things that I hope we’ll be able to do – one of the sort of quantified self-measures that I haven’t personally gotten into, but that I think has a lot of potential utility for not much investment is looking at actigraphy things like the fitness trackers and whatever. But just getting a sense of over days/weeks, what is your activity level? What are you really doing? And patterns emerge that you would never observe as you say on a day to day basis.
[Damien Blenkinsopp]: That will be interesting for this project as well because like I’m sure as your weight goes down your activity naturally tends to rise.
[Josh Fessel]: That would be my hypothesis.
[Damien Blenkinsopp]: And then as a benefit that most people aren’t going to think of like straight away, but it would be great – just have a Fitbit – be wearing a Fitbit. We discussed on one of our last episodes about the whole market and basically the Fitbit tends to be one of the better trackers at the moment. Or another one as long as it’s giving you directional info, it would be really interesting just to see that. So I think these projects are great, like I said, for inspiring other people for change. So good luck with that. In terms of your own personal life, just always interested to find out what people are doing with themselves. Are there any biomarkers or personal data you track on any kind of routine basis or monitor just related to health, longevity or performance, anything about your body really?
[Josh Fessel]: Yeah. So, the bathroom scale is there. So I track my weight every day and I track that pretty closely. At times I’ve even charted it out, made graphs, that sort of thing. That’s been really informative. I’m a pretty careful calorie counter. I keep a really close count on a daily basis of the calories going in and –
[Damien Blenkinsopp]: Is that just by kind of eyeballing? Like that’s roughly 200 I’m consuming right there.
[Josh Fessel]: It’s about that. I mean I spend a lot of time reading labels and that kind of thing. I’ve had periods where I had the flexibility in my schedule to actually weigh foods and that sort of stuff and carefully measure out serving sizes and I love being able to do that. In terms of satisfying the practical demands of every day, it’s a lot of times by eye, but I’ve been doing it for a while and so actually have a pretty good database built up of “Oh okay I know that this is going to be this many calories and so on”. And I do that essentially on a daily basis.
[Damien Blenkinsopp]: Okay, great. So you kind of track roughly how much you consumed in a day of calories and you track your weight. Has anything interesting come out of that for you whether it be accountability? What kind of value have you got out of that?
[Josh Fessel]: Yeah, absolutely. Like so many people, I’ve struggled with my weight for a long time too and so at my heaviest I was probably about 230, 240 pounds.
[Damien Blenkinsopp]: Just out of interest, how are you now?
[Josh Fessel]: So now I weight between 145 – 150.
[Damien Blenkinsopp]: Okay. So like a big deal, a lot of difference.
[Josh Fessel]: Yeah. So I lost a lot of weight. Some of it was diet modification, some of it was activity, most of it was diet actually. But by being very careful about tracking calories and tracking daily weights and that sort of thing, I’ve been able to take that weight off and keep it off and that’s worked really well for me. It’s also made me very conscious about the dietary choices that I make. So, in general, I’m – lazy isn’t the right word – but I like to spend mental energy on particular things. And one of the things that I don’t love to spend a lot of time thinking about is what am I going to eat for any given meal? Or, if I’m hungry and I want a snack, I want to sort of check that box and get on with whatever it is I’m actually interested in doing. And so that coupled with being careful about calorie accounts has really had a great positive impact on my diet because the things that you can mindlessly eat without destroying your daily calorie count, tend to be pretty healthy things. So that’s worked really well for me and I’ve had some patients that that’s worked really well for. Others are much more exercise oriented and that’s the area that I’ve started more recently tracking my exercise over time with following either how many calories burned in any given workout session or I’m mostly doing treadmill and cardio aerobic kind of stuff.
[Damien Blenkinsopp]: So you’re using the machines or using your own device?
[Josh Fessel]: I use the machines typically. I haven’t yet invested in, like I say, an actigraph or a Fitbit or anything like that, which I think would be really interesting. But I’ve started tracking what kind of distance do I do and to motivate myself a little bit because I know that the piece that I am personally missing is regular physical activity. I think the data are really solid that that has health benefits beyond weight control and that sort of thing. So I’m trying to live by example as when I tell my patients to do this – and these are people – so I’m a pulmonary doctor by specialization. So the patients that I see all have lung disease. So here I am telling these people that have difficulty drawing breath to go exercise and it’s pretty hypocritical of me if I don’t make the effort myself.
[Damien Blenkinsopp]: Great, thank you for that. Okay, so last question. We’re talking about data on this show. So, do you have one recommendation? Like what’s the most important insight you have about using data in a way that’s going to be valuable to improve health, longevity, or performance? What would recommendation would it be?
[Josh Fessel]: If I were going to say anything about using data to guide performance, health status, anything, it would be to pay close attention to know what it is that the data are telling you or going to tell you before you get it and know what you’re going to do about it before you get it. This gets to the whole actionable thing. So, not all data are useful. If you don’t know what the data are really telling you, not useful. And if you know what they’re telling you, but you can’t do anything about it, not useful. And this is true in really any context I think. So before I would get a test results or order any kind of assay or whatever, I would want to know. And I do this in my research lab, I do this in my clinical practice. Before you order a test, before you run an experiment, have an idea of what it’s going to tell you and what you’re going to do with the likely or the potential outcomes. If it’s this, then I’ll do this. If it’s that then I’ll do this other thing. And if you can’t set that up on the front end, that’s not going to be a useful piece of data to you, so don’t waste your time or spend your money.
[Damien Blenkinsopp]: Great and we talk often about things being actionable, which is kind of like a jargon. It’s a bit of a jargon word, so I really liked the explanation you just gave, which was very clear and it was kind of like an exercise. It’s like before, plan what action you’re going to take once you find out the data is this, once you find out the data is that. And that’s a way of learning if it’s actionable – that it’s actually going to be valuable. But I think a lot of people don’t think about it. So I think that’s really a great piece of advice. It’s a great exercise before anything you’re going to think through that way. It will kind of force you to understand if it’s going to be of value to you in terms of taking action on it.
[Josh Fessel]: Well thank you. Yeah, that’s exactly right. That’s why I force myself to do it because if you don’t know – if you can’t make a plan, then it’s probably not actionable. And so maybe wait until you have other information or maybe discard it entirely and change the line of inquiry.
[Damien Blenkinsopp]: Well Josh, like final thing. Where can we reach you, get in contact? Are you on Twitter? Are you on a website? Where can people find you?
[Josh Fessel]: That’s a great question. No, I’m kind of a lead eye. I don’t even have a Facebook page, but I’m pretty findable. So, google search for Josh Fessel will find me. I’m on the faculty at Vanderbilt University. So, I’m that Josh Fessel. And I think there are a couple other people out there with the same name, but a google search and if you include Vanderbilt you’ll find me. That will link to my faculty page that talks about my particular background and my research interests and that sort of thing. And I think email addresses are there too. So, I can be reached any number of ways. I’ve spared the world my thoughts a 140 characters at a time. So, like I said, I’m a little behind the times there. But, yeah, I’m pretty findable online and that’s probably the best way to do it.
[Damien Blenkinsopp]: Great. Well Josh, thank you so much for your time today. I really appreciate it. It’s been a great discussion.
[Josh Fessel]: Oh, no. Damien, thank you. It’s a pleasure.

Leave a Reply

This episode is about experimenters in the field of biohacking, the people actually in the trenches doing stuff. We’re focusing on wearable devices such as watches, shirts, bracelets, necklaces and on and on.
We’re focusing on wearable devices such as watches, shirts, bracelets, necklaces and on an on. Basically, anything that you can put on your body that can give you data on your performance.

Wearables are here to stay and there are more coming out to track different aspects of our biology, of our health and our fitness, and so on. Which of these devices give us the most accurate data? How can we make good use of the data and improve our lives instead of just letting all those numbers cause confusion and distraction?

“You really have to get this intersection of who is the user. How much data do they want? Are we giving them enough data and is it accurate data?”
– Troy Angrignon

Troy Angrignon is an emerging technologies consultant with expertise in marketing strategies and segmentation for wearables. Troy spends a lot of his time testing several of the latest wearables while doing a range of relatively extreme athletics and feats, including military style training like that done by SealFit. He reviews and compares the products then maps them all out into big ‘x and y’ diagrams simplify data and make test easier to understand.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Troy’s interest in wearables started with early generation sports watches that could tell the user how much recovery time they would need after a particular workout. (4:05).
  • Improvements in utility of wearable devices over the past 10 years from sport watches to fitness trackers, to activity trackers to smart watches. (6:25).
  • Value of wearable tech depends on the user’s activity level and goals – Troy Angrigon’s 5-tier approach ranging from the semi-active user who needs little more than a watch with a timer to measure how long or how fast they ran to the pro athlete looking for clinical data. (7:33).
  • Devices currently available that cater to the tracking needs of elite-level endurance athletes: Garmin 920Xt and Fenix. (11:10).
  • Discussion of accuracy of wearable devices – Damien notes that tests have shown the degrees of error to be roughly the same between manufacturers. (13:10).
  • Devices currently available that are accurate enough for optimizing performance at a high level (17:10).
  • Problems with current software that misinterprets sedentary activity such as watching t.v. and reports it as sleeping. (20:32).
  • Fitbit Surge design advantages – combines GPS with optical heart rate monitoring (21:42).
  • Design areas where Troy Angrignon thinks manufacturers are excelling: Fitbit has good tracking for lower level users, Jawbone offers good customer service and good apps, and areas that still need work: understanding the customer, how they live and what they are going to use the tool for. (22:45).
  • Devices for lower activity level users: Fitbit, Jawbone and Body Media (23:47).
  • Devices for mid-level users: Fitbit Surge HR, Garmin Vivoactive, Garmin FR620 (27:14).
  • Devices for high-level users: Garmin 920XT, Fenix and Epix models (29:10).
  • Platform compatibility issues between manufacturers – users with several devices from different manufacturers can’t pool or cross correlate their data easily(29: 58).
  • Application issues with EEG devices: Muse, Emotive; collect data but few apps have been developed for converting the data into usable or actionable information. (30:40).
  • Meditation as a tool for improving mental and physical performance. Damien mentions using meditation in conjunction with the Muse (32:05).
  • Discussion of sleep tracking devices for different user/quantification levels: level 2 analysis reports how many hours in bed and of that how many hours spent sleeping vs. tossing and turning; level 3 reports deep vs. light sleep phases, records snoring, level 4 provides clinically verified data, level 5 provides raw sensitive data. (35:04).
  • Troy and Damien describe techniques they’ve each used to improve their sleep quality: cover bedroom window with blanket to darken the room, turn off all screens, programmable lights; devices to use: Basis, Jawbone, Fitbit Sealfit Unbeatable Mind, Lumen Trails. (39:48).
  • Price ranges of wearable devices (50:00).
  • Risks associated with EMF exposure from wearable devices. Damien mentions that most people aren’t aware of potential detrimental health effects of EMF’s. Topic is discussed in the book 4-Hour Body by Tim Ferris. (52:55).
  • Sleep coaching tool: Sleepio.com. Troy mentions this tool, which educates the user on the complexities of sleep and identifies the user’s particular sleep issues. (56:30).
  • Troy Angrignon’s prediction for the direction wearable device technology is going in the next 5-10 years: we are currently at an immature stage in being able to collect and analyze data. He hopes we can compress the maturation period of this technology and not have to wait 30 years until we can turn data into actionable intelligence (57:55).
  • The biomarkers Troy Angrignon tracks on a routine basis to monitor and improve his health, longevity and performance include sleep via Sleepio.com, heart rate variability with the Garmin Forerunner 920xt and recovery levels through RestWise.com.
  • Troy Angrignon’s one biggest recommendation on using body data to improve your health, longevity and performance is to decide on the one thing that would make the biggest difference to you and track it.

Thank Troy Angrignon on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Troy Angrignon

The Tracking

Biomarkers

  • Sleep-Related Biomarkers: Measure sleep in total time (hours and minutes) and percentage of time spent in different sleep phases:
    • REM (Rapid Eye Movement) sleep : Characterized by random eye movements and is physiologically distinct from non-REM phases of sleep. Troy mentions that the Basis watch measures the amount of REM sleep.
    • Deep Sleep: Characterized by slow, synchronized brain activity and is the most restful phase of sleep. Mentioned by Damien in relation to inability of the Basis watch to track properly.
    • Light Sleep: Also known as stage 1 sleep, a non-REM sleep stage that forms the transition from wakefulness into deeper stages of sleep. Mentioned by Troy in context of the Basis sleep tracking watch.

  • Heart Rate Variability (HRV): Mentioned by Troy as an indicator for over-training. HRV is a physiological phenomenon whereby the heart rate changes to accommodate physiological, mental or emotional stressors.
  • VO2 Max: Mentioned by Damien as a test available through fitness labs. Measures an athlete’s maximum oxygen consumption rate and is used to gauge aerobic fitness levels.

Lab Tests, Devices and Apps

  • Colored LED Lights: Damien mentions using these to help with sleep.
  • Apple Watch: Smart watch with fitness tracking capability.
  • Basis Watch: Smart watch with sleep tracking. Mentioned by Damien for its inability to distinguish sleep from sedentary activity.
  • Beddit: Sleep tracking device. Troy mentions that version 1 was offered in consumer or pro models, with the consumer model being cumbersome to operate.
  • Beddit Misfit: Under mattress sleep tracker.
  • Body Media Fit : Mentioned by Troy as having a loyal customer base. Strap-on style device worn on arm.
  • EEG (electroencephalogram) Devices : Measure brain wave activity, used to determine sleep cycles. Mentioned by Damien in relation to tracking sleep.
    • Emotiv: EEG monitor Troy mentions that he hasn’t tried yet.
    • Muse Headband: Contains an EEG device.

  • Fitbit Products
    • Fitbit Surge: Fitness watch that offers GPS tracking, heart rate monitor, all-day tracking, sleep tracking, and wireless syncing. Troy mentioned it in relation to its optical heart rate detector.
    • Fitbit Charge HR: Fitness watch with automatic monitoring.

  • Garmin Products
    • Garmin Fenix: Mentioned by Troy as a durable device, good for competitive and endurance athletes.
    • Garmin Forerunner 920xt: Mentioned by Troy as a durable device, good for competitive and endurance athletes.
    • Garmin Vivoactive: Good for running, cycling and swimming but not able to track transitions in triathlons
    • Garmin Epix: Similar to the 920XT and Fenix plus a larger screen with high-reolution color and apps.

  • Jawbone Up : A line of activity trackers. Mentioned by Troy as being problematic for its clip-on style and not being waterproof.
  • Lumen Trails: Tracker app Troy uses to simplify tracking for many things.
  • Sleep Tracking Devices
    • ResMed S-Plus: Sleep tracker with connections to Phillips Corp.
    • SleepRate: Sleep tracker mentioned by Troy as having a different scoring algorithm than Jawbone.
    • Sleepio: Sleep tracker mentioned by Troy in relation to its scoring algorithm.

  • Restwise: App Troy uses to track post-workout recovery.
  • Suunto: A Finnish manufacturer of measuring instruments that carries a range of sport watches. Troy mentioned their products as having excellent hardware but cumbersome software.

Other People, Books & Resources

People

  • Dr. Greg Welk: A Kinesiology Professor at Iowa State University where he oversees the Physical Activity and Health Promotion lab. Listen to Damien’s interview with Dr. Welk on the accuracy of fitness trackers in episode 18.
  • Dave Asprey: author of The Bulletproof Diet Mentioned by Troy in regards to brain training for increasing focus and blood flow to the pre-frontal cortex.
  • Ben Greenfield: Mentioned by Troy in relation to sleep improvement tips. Maintains a fitness website and blog.
  • Ray at DCRainmaker.com: Triathlete who maintains a website and blog. Mentioned by Troy for his extensive product reviews.
  • Dr. Kirk Parsley: Sleep clinician for Navy SEALs. Associated with performance program called Sealfit Unbeatable Mind.

Organizations

Books

  • The 4-Hour Body: The book by Tim Ferriss mentioned by Damien in relation to health effects of EMF’s.

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: Troy, thank you so much for joining us on the show.

[Troy Angrignon]: Hey Damien. Thanks, great to be here.

[Damien Blenkinsopp]: So, you have the absolute, most comprehensive review of wearable technologies, wearable devices I’ve ever seen. It looks like something from my consulting background years where I was paid big money to create those kinds of things.

So when I saw it I was like, yeah I definitely have to get this guy on the show. He’s put so much time and effort to looking at it from a user; what people actually need and the functionality out there. How did you get into this? Where did your interest in wearable devices start from?

[Troy Angrignon]: I’ve always been interested in them. I’ve always looked in the very early days at running watches, all the sport watches in the early days. The Suunto’s and the Garmins’s and things like that and even in the early incarnations, you could see some kind of cool things that were happening.

They would have interesting features in them. It would say, ‘you have to recover four hours after this workout’ and then say, ‘oh wow, that’s really cool. How are they figuring that out?’ So I got interested in some of the early sport watch stuff and really followed it through that. I’m a nerd and kind of a geek in general.

Anyway I like data. I’ve been involved in data based industries and loved doing sports. It really came from probably the sport watch side of things in the early days.

[Damien Blenkinsopp]: Great. So how long have you been doing this because the sport watch has been around for quite a while now?

[Troy Angrignon]: They have, right. Probably ten plus years and I really got into; I’d say what we know as this current generation of wearables or near-ables. You want to use that phrase.

Really about four years ago when I started looking at sleep issues; I was having sleep issues from working on a start-up and getting no sleep, and all those things. So I started looking at better sleep practices, a lot of stuff that you and I both went through in the bio-hacking space.

And looking at sleep practices as well as tools, so I started looking at a lot of tools and from there that was kind of the beginning. I think you were probably very aware of it at the same time. The sleep tools were happening and the activity trackers were starting to come out and things like that. That was probably 2011, 2010?

[Damien Blenkinsopp]: Right. Absolutely. What it is though, is sleeping activity is a big area? It’s interesting. Have you got a lot of data from over ten years reflected from all of these watches and things?

[Troy Angrignon]: No. Especially in the early days a lot of it, it’s hard to get the data off or it just comes off into space and you could look at it on some desktop application or something. So no, I think my largest, continuous data set is probably three years. I was just looking at it actually, all my workouts, probably for the last three years.

It’s spotty. There were sections where things didn’t track or I lost data or whatever else. Probably the last three years has been pretty rigorous.

[Damien Blenkinsopp]: I think you’re probably got pretty much on top of what’s been actionable and what’s been most useful for you over that time. How have you seen the curve of utility go up for you personally, because obviously you’ve been testing different devices and it’s been ten plus years?

In the beginning, was it useful or was it like trying to get some value out of this and getting a little bit but not so much? Like how to use scales on like one to ten, how has it changed over the last then plus years?

[Troy Angrignon]: Well I think two things have changed. There’s how have I changed. I own an approach to thinking about the data and I’ve kind of gone through my own levels of maturity in thinking about it. And then the technology, of course, is changing.

You and I have talked about this before where I kind of do think in that ‘x and y’ and I think that the market has evolved. We’ve gone from just sport watches to now, we’ve got fitness trackers, activity trackers and I can get into definitions of those things. Smart watches.

Some of the fashion companies; they’re with traditional fashion watches are now getting into smart watches. And so you’re getting this kind of bigger fragmentation and more features being developed. At the same time as what I want data has definitely changed and matured and mutated over time. So it has been definitely a change in both ways.

[Damien Blenkinsopp]: Great. Thanks. And who do you see is getting real value from the wearables tech on the market today? I mean you can take yourself as an example. What are you getting real value out of today and who else do you see getting real value out of these wearable tech today?

[Troy Angrignon]: That’s a tough question. I think a lot of different people of different skill sets can get value and it really comes down to what they are trying to do. So I think, maybe it will help set the stage probably for the rest of the call and give us a framework. Why don’t we talk through what we discussed the other day?

But I tend to think of user types as kind of a zero to five in a very gross, coarse way. So a zero would say, ‘I don’t care about data. I’m not going to use any of these tools. I’m just going to go run. I want to just feel the wind in my hair and get outside.’ Where a one would start to ask for some data, like I just want a watch that shows me the time. Like how long did I run? How far did I run? Maybe something basic.

A two would say, ‘well I want that but I want a little bit more data. Give me a few more fields.’ And a three really starts to say, ‘I want to know my time, my splits, my cadence, my running dynamics, my vertical oscillation. They start to get pretty technical in terms of what they’re looking for.

And the fours, they’re really looking for that. They want it to be trusted. They want to know that the data that they’re getting in those devices or applications truly is actually legitimate data. Where the threes are ok, just give me the number and I’ll kind of look at the numbers Is it going up or going down. I don’t really care if it’s super accurate.

And then the fives, you’re really talking Olympic athletes to that point. You’re talking people getting clinical, grave data. And so if you think about kind of the levels and you can apply those levels to the level of athlete too; zero probably doing nothing, one just starting, a two sort of semi-active, a three quite active, four pro-amateur level and five being a lead athlete.

And so if you think about those levels and then you think about what they do. Is this a wellness client who’s saying, ‘I just want to feel better, eat a little better, lose a little more’ or are they kind of a fitness type person that’s saying, ‘well I jog a bit, I run a bit, I cycle. I do a couple of things, I dance, I do yoga whenever. Or they’re really starting to get into the endurance in space.

So, I do run. I do marathons. I do long distance cycling. And then all the way up to what I call to the right on my charts where you’re beginning to know super competitive endurance and ultra-distance stuff. And ultimately you’re getting into like the outdoor, backcountry stuff where they’re like, ‘I’m going to go, put my watch on and go ten days into the back country.’

That’s a different animal. It’s a different kind of an athlete. So I tend to think of it kind of an ‘x by y’. And that’s a long back story to answer your question. But I think that people from, kind of the ones to the fives, on the y axis. And then everything from the sitting on the couch and just trying to get a little more active, all the way to the outdoor backcountry folks.

There are pockets of people in there who are getting a lot of value but I think it’s less about them and less about their specific technology and more about the process. So, are they clear on what they’re trying to figure out? Have they chosen the right tool? Does the tool give them the data and can they look at the data and have a feedback loop and say, ‘ok, I got what I needed. I’m going to improve my running speed or I’m going to back off and train less hard because I’m over-trained or whatever else.’

So, that’s a really fuzzy way of saying some people are getting useful stuff out of it and a lot of people are just looking at stuff and they don’t know why.

[Damien Blenkinsopp]: Right. And what we were talking about is a critical need the other day. You were talking about competitive athletes who want to shave off a few seconds off of their times or whatever.

This is critical needs and I guess these are the guys that would be using the fours and the fives that exist today. What kind of devices out there are there that provide that level of detail today, if there are any?

[Troy Angrignon]: Yeah, up in the competitive endurance space. I would look at, these are folks who are doing pretty aggressive, marathons, triathlons, cycling races, multi-sport, even obstacle course racing, which as you know is pretty popular these days, Spartan racing, those kinds of things.

And it’s less about those sports and more the level at which they compete in them. So we’re talking upper 50 percentile, upper 25 percentile folks. Now we are either looking at their times, very aggressive about their times. So once you get into those environments, your use case is pretty tough for a device manufacture.

You can throw a FitBit on these people. And then a lot of my friends bought Jawbones or Fitbits or whatever. What I would can an activity tracker, meaning something with an accelerometer in it and they last about a day because you get them wet, you cover them in mud, you get them in the ocean. Whatever happens, they short out.

So those kinds of users that are really competitive and endurance athletes, they’re hard on their toys. And they really need devices and apps, in fact they don’t even carry their phone with them cause they just trash them. So, you’re really looking at things like Garmin 920xt’s are a great example in the triathlon space or the Fenix, which is the new Garmin in the Fenix Backcountry watch.

Suunto has some excellent hardware, although their data is really hard to move around so I’m not a big fan of them for that reason. So yes, there are definitely tools that work in that space.

[Damien Blenkinsopp]: Great. And in the general where do you see most people using today? Is it in the level one? We were talking with Greg Welk who’s done ongoing studies on the accuracy of these devices and we got into this discussion of how they’re not accurate, most of them to varying degrees. They’re biased.

However, they’re roughly the same wrong every time. So you can check, the relative is difference to what you did yesterday. Consistently one direction wrong or the other so you will talk about the usefulness of at least I know had more activity or I was faster than yesterday at the very least. Is that how you look at that whole area right now? I mean it’s more of a relative difference you can use it for.

[Troy Angrignon]: Absolutely. And again, think of the ones to fives. Kind of drawing a picture in your head of kind of the ones to fives on the left side and then really the bottom of the chart, consumer wellness on the left and all the way through fitness, recreational endurance, competitive endurance and outdoor tactical on the right.

And so I think your question really gets to who uses these, let’s say activity trackers, like Jawbones, Fitbits, these little things that you can clip on. I don’t like clip on ones cause you just throw them in the wash and lose them and break them.

But let’s say the bands you can put on. And you nailed it; they’re not that accurate but if you’re a one you don’t really care. All you’re looking for is step data. And so, did I move a little bit more than I did yesterday? Is it consistently capturing the step data? Is it good enough?

And I have met so many people who say, ‘oh I’ve got my first one and I love it because I used to do 2000 steps and now I do 3000 steps.’ And does it matter that it was 3500 or 2500? No, it’s irrelevant. What they know is they a feedback loop which gives them some objective measure and it’s better than what they had before, which was nothing.

So I think that there’s still a lot of value there. There’s a really interesting company I was actually looking at it yesterday after you and I talked. Diva Metrics I think is the name and I think they’re in Montreal. I may have the city wrong, or Calgary.

And they’ve gone through a really rigorous analysis on how inaccurate all these tools are and making data correction tools. So they’ll say, ‘well this thing is 92% accurate so we’ll just take the data and just up it by the requisite 8% to reality.

[Damien Blenkinsopp]: That’s interesting.

[Troy Angrignon]: So, it’s pretty cool.

[Damien Blenkinsopp]: They can be selling that to the companies who design the devices.

[Troy Angrignon]: So I think there’s still a lot of value in just having some kind of indicator. Calories, I could go on a rant about calories for days. The shorter version is that I think calories in and calories out is a dead model. But a basic summary, whether it’s steps or calories, is it a number that’s higher or lower than it was yesterday.

That’s a great indicator for people that just didn’t have awareness of that before.

[Damien Blenkinsopp]: It’s definitely kind of how serious you are about doing what you’re doing. So if you take an example of sleep. That’s what we were talking about this last time and we’re both fans of sleep, obviously.

I was really interested in the Basis Watch when they were bringing the sleep tracking out because I wanted to understand my deep sleep versus other areas of sleep. And I really just wanted to know I was hitting my eight hours that I wanted and trying to push it up to nine for a while.

I was pretty disappointed because it was saying I was asleep a lot of the time and I wasn’t able to trust that data because if I was sitting around watching TV, or even working on my computer sometimes, it would be like yeah you were asleep in the middle of the day.

So I couldn’t actually use that for just an estimate of how long I was asleep and because I didn’t trust that, I didn’t trust how much it was saying I had in deep sleep either. I didn’t feel like I could do any of the experiments, like to increase your deep sleep because that’s one of the things that I was interested in doing.

I gave up on those experiments and trying to optimize that. By having these biases, it really limits the kinds of experiments and what you can do. If we’re just trying to get a little bit better, like say with the activity trackers. Its fine, we just want to make sure we’re moving. The Basis Watch I’m sure, loads of others, you can point out would be ok for that.

But if we want to actually go to the next stage and optimize it to another level, to a higher level, a more competitive level and get more out of that performance, whatever that angle is. If it’s sleep or running, it’s not quite there yet.

Or are there devices which you feel are there in certain areas, whether it’s sleep or running or areas where you can really optimize pretty well and move to the next level?

[Troy Angrignon]: There are and it’s interesting and I’ve really been wrestling with this a lot. I’ve looked at and broken everything out there or bought and given it away. I’ve tested pretty much everything I’ve ever written about.

You can definitely get more data. You just gave a great example with the Basis and it’s a bit my favorite whipping horse because it’s got some weirdness in the way they develop product. But essentially they try to give these really advance, what I would call QS level, quantified self-level for type of graphs.

A graph is pretty complex and you would expect a person in a pretty deep understanding of visualization and data analytics in order for them to use it. But yet a whole watch was really aimed at couch to 5k, people who are walking and maybe cycling.

In fact, that’s all it will even track, actually. It will self-identify activities. And then in the sleep arena, as you said it had things like deep sleep, REM sleep, light sleep and activity but everybody I know who has one said, ‘yes, they always tell me I’m sleeping when I’m sitting at the opera,’ which is probably true but that’s not relevant.

I don’t really want it showing that I’m sleeping at the opera. Or I’m watching TV or I’m sitting down to dinner. It was trying to do automatic sleep categorization. We’re running into really tough to build hardware and software that does auto-sensing and auto-identification of activity, whether that’s sleep or running or cycling or anything else.

You tease apart all of these issues, what it really comes down to is, as a vendor these guys have to get together and say, ‘well who really is our user and what level are they at? What use case are they using it for? Are they a triathlete and if they’re a triathlete, are they a one, two, three, four, or five?’

In my view, I know triathletes who don’t use watches. They literally just have a Timex. They don’t care about anything else. They don’t use complex sport watches. I would call them almost a QS-1, a quantified self-level one, but serious competitive triathlete.

You really have to get this intersection of who is the user. How much data do they want? Are we giving them enough data and is it accurate data? There’s this really complex landscape out there, which you and I talked about. This is why people are so confused right now.

[Damien Blenkinsopp]: Your charts are amazing. It’s amazing how many devices are there, already. And there is obviously a lot of money going into this space. What I guess is interesting is if you take the Basis as an example, again and I guess the Apple iWatch which is coming out.

Applications like that are trying to give people at home a very generic tracker, which is going to have a broad spectrum of things it’s tracking. But it sounds like you’re saying that just because the hardware isn’t there yet in terms of actually getting data from us, that the software can’t handle figuring out what we’re up to.

If you’re trying to track everything like are you asleep, are you moving, what are you up to, all of these kinds of things, yet the hardware isn’t accurate enough to be able to take that data and use some software to interpret it.

But if, like you said, we focus on a narrow use case, where the conditions we understand a lot more closely because it’s just one area of use rather than trying to track someone’s whole life. And that’s working and you can see that it’s possible that we can get there this time even though the hardware is not quite there yet. Is that kind of your viewpoint?

[Troy Angrignon]: Yes. I think it’s a reasonable summary, especially when we started with things like 3D accelerometers. They really don’t do much. They just give you rotation and space and G-Force, and that sort of stuff.

It’s pretty hard to extract really clean signal out of that and figure out what the heck is really going on. Is this person running or jogging or doing cycling. That was a big issue. There just wasn’t enough data or the sensors were even terrible and there weren’t enough of them.

Then we started to do things like, a great example I think that I was quite impressed by, is Fitbit Surge, their new heart rate based one. It has GPS for location, it has optical heart rate on the back, so it’s shining right into the skin, in the tissue just above the wrist and reading your heart rate which is pretty challenging to do.

They have the 3D accelerometer and they can use all of that combined so the GPS will be shut down. It will say, you’re not moving or it will actually just be shut off. It will say heart beat is low and there is no motion in the body and it’s late at night.

So it’s starting to get easier and easier for them to identify that you’re going to sleep and to pick that pattern out, or to just show that you’re active. I can see you’re active. Your arm is moving, your body is pumped up and I’ve got a lot of very heavy heart rate, sustain heavy heart rate. You’re probably doing something.

Now they don’t try to self-identify, which I think was the right move. You can mark it and tell it that you’re doing yoga or doing a workout. I think it’s all trending in the right direction.

[Damien Blenkinsopp]: So if you were would like to point out on the landscape right now what manufacturers are doing right and what needs work, in specific areas, where is your pet peeves and where are the areas where it’s doing a really good job?

[Troy Angrignon]: I think my biggest pet peeve across the board is just not understanding your customer. It goes back to what I said a few minutes ago. Know who your customer is. Know how they live and what the use cases are that they are going to put the tool through.

That really helps the vendor narrow down to what features does it have to have, how rugged does it have to be, how much battery life does it have to have. I have not been traditionally a fan of Fitbit. I know they are the 800 lb. gorilla here in North America. I think they had 67% of the market share in 2013 and I’m not sure that’s a ’14 number, but they have a broad spectrum of product.

[Damien Blenkinsopp]: So which devices do you see as being the most effective, the best buys right now, doing a really great job for users?

[Troy Angrignon]: Again, it depends on who you are, but I think there are some ones that are standing out. Moving left to right again and from ones to fives, lower left to upper right if you keep that chart pictured in your head that we talked about earlier.

The folks that want to just get a little more active than they were or they’re lucky to move a little more, track a little more and ones and twos in terms of tracking and they’re not really hard on their toys. Any of the new Fitbits (they’ve launched a whole new line) I think are doing a pretty good job.

They’re number one for a reason. I think what’s going to be interesting in that space is Jawbone. Jawbone I lost and or broke and destroyed a bunch of them and they were very good in Customer Service and kept sending me new ones.

I like their apps. They’ve got a good partner network. They’ve got a new one coming out; the Up 3 and they’re actually integrating some of the technology they bought from Body Media and I know that people who have Body Media’s, you can’t pry them off of their cold dead bodies.

It’s pretty interesting. They are rabidly loyal fans. That was the big one you strap on your arm basically. A lot of people are really attached to that and so they’ve taken some of that technology, like the bio impedance sensors and things and put it into the new Jawbone Up 3. I haven’t tested it but I have a pretty strong belief that they’re going to do a pretty good job at that low end of the activity tracker section. It will be interesting to see and that should be out March or April.

[Damien Blenkinsopp]: With those two devices, what kind of things do you think people could reasonably do? What kind of functionality are people thinking they just want to know they are doing more? How far do you think they can push those devices and get useful decision making out of them, using them to maximize something?

[Troy Angrignon]: You really can’t do a ton. They do basic activity tracking. They basically show you how active are you; you’re active parts of your day. They’ll give you calorie data and it’s totally inaccurate, so I wouldn’t use that. I would use the steps as just an indicator like you and I talked about. Am I doing more or am I doing less? That’s really what you want to look for, just for trend data day to day.

The Fitbit has sleep tracking. The low end of their stuff you still have to push a button or mark it. I think that’s a non-starter. That’s not sustainable because people forget. As you move up into their new ones like their Charge HR, which stands for heart rate and a Surge HR which has a screen and also does heart rate, you’re getting into more into the fitness tracker space.

Now you can track your day to day activities, see trending patterns. You can actually auto-sense your sleep or it will auto-sense your sleep. It’ doesn’t give you very deep sleep data. It just shows you are you restless or are you awake or are you asleep. It’s really three states essentially

If you’re really a nerd like you or I and you want to see deep sleep and light sleep and all that, it really doesn’t do that. Jawbone actually has always done that, although they’ve only done it through the 3D accelerometers. I’ve never really trusted that data.

With the inclusion of the new stuff, the new technology they bought from Body Media, I suspect they’re going to start to be able to pick up because they can sample the heart rate through the night and do things like figure out your morning resting heart rate which is a nice thing to know.

So I think that’s going to be an interesting entry in the higher end of that low end, if that makes sense, the activity trackers. And then as you get into the middle range, I’d say fitness folks who are doing a couple of sports, maybe they dance or running or the odd bit of cycling, but nothing ongoing, then the Fitbit Surge HR.

I sound like a Fitbit rep which is funny because I’ve never been a big fan. But I think they’re doing a good job and you can mark different sports. It’s pretty good actually. The accuracy is even surprisingly high when I cross reference it to some of the higher end tools I use.

Really to me, it’s kind of one of the only successful ones in that middle of the road fitness tracker space; Garmin is releasing something called a Vivoactive which will be squarely in that spot. It’s for running and cycling and swimming but this is a key point- not for triathlon because that’s a whole other use case where you need to connect those sports together in a block, like a swim and a transition and a bike and a transition and a run.

That’s a multi-sport thing which really you find at the high end. So I would say in the fitness tracker stuff in the middle, you’re looking at the Fitbit Surge HR, maybe the Garmin Vivoactive. I have not tested it. I’ve seen it and I’ve used it and I find the touch screen a bit finicky.

Maybe the Garmin FR620, which is their running watch, is pretty nice in that space; clear, bright screen, auto-upload on WI-FI and Bluetooth. So literally you do your run and then that’s it. It just synchronizes and it sends the data up which I think for these things to be sustainable, all of this stuff has to happen automatically.

You and I talked a lot about that. It’s like how much overhead can we take away. We shouldn’t be saying to the user, ‘you need to mark sleep, you need to do this, you need to do that.’ We’ve got enough on our plates. They don’t want to adopt a baby. It’s not a Tamagotchi watch.

I think that the watch can do, the better. And then at the high end, definitely these days I would really lean to the Garmin lineup. They release three new ones at CES, the Consumer Electronic Show, which I was quite impressed with because I think they’ve done a very good job of understanding the use case.

They’ve got a 920XT for the triathletes and multi-sport folks, a Phoenix which is that plus the backcountry stuff and then their Epix, which is all of that plus a great big screen with high-resolution color and apps on it.

I think the Fenix and the 920 are the winners out there because they’ve got the same thing; auto-upload on WI-FI and Bluetooth. And to me the big deal is data. Is it automatic, is it easy to use, is it automatic, does the data go somewhere and can you get the data to other places. Does that make sense?

[Damien Blenkinsopp]: Yes, absolutely. There are different platforms, like the Basis is a closed one, or not?

[Troy Angrignon]: It’s an island and so is Suunto. They’re off in space, Timex is the same thing. And anybody who’s an island, it doesn’t make any sense anymore because people have something like, I’m making this number up, but crazy numbers of 20 or 30 fitness apps on their phone and they want all that stuff to connect.

[Damien Blenkinsopp]: And it’s also a trust factor I think. Because with the Basis you can’t extract the information so where do these numbers come from. So I think there’s also that angle when you’re talking about people who are getting more involved in it.

They can’t take the data off of it. They’re wondering what the data is inside of it and how it’s calculated and things like that. I know that’s been a big frustration with Basis users. Another interesting model is the Muse, like the Muse Calm, they had that EEG device where basically you have an open API and they’re bringing this hardware to market and anyone can connect to it, develop aps on it, although no one seems to be doing that yet, so I’m wondering how that’s going to go.

[Troy Angrignon]: I talked to Muse and have not used the Muse. The Emotive is another one. And any of these EEG things essentially they are saying it’s something you put on your head. It’s this thing that looks like it’s from the future. It has all these touch points on your skull and it picks up your brain waves or brain wave patterns.

I think the big question I always have is, to do what. What’s the application and so I understand you have the hardware and I understand you have some kind of open API application programming interface, some way for me to get the data out, but ultimately what am I doing with it.

I tested another one. I picked up one from Dave Asprey’s Bullet Proof site which was a brain trainer, focus trainer which is ostensibly teaches you to move more blood flow in the pre-frontal cortex. I have it and I could actually do it. It’s actually pretty cool because you can put this little film on and you can fly over the mountains and you can actually control it with your brain, which is really cool for about ten minutes.

[Damien Blenkinsopp]: But it was, I was at this bullet proof live conference so I did it there and it’s a lot of fun but it’s a nice fast game. It’s not integrating with your life I guess. It’s something like meditation that you have to take time out for.

[Troy Angrignon]: which I’m a huge fan of. I think meditation, I do it every if not every day, every second day. I know a lot of people, especially athletes who are really, really find that critical piece of their training. But I don’t think that these tools are necessarily getting you there.

I think they’re kind of early attempts to say, ‘look at the pattern in your brain’ and you’re like, ‘great, what do I do with it’. I don’t know what to do with that information.

[Damien Blenkinsopp]: My personal experience from the Muse so far, I’m meditating every day and I’m using that. I’m playing around with different things and different types of meditation, for instance.

Dan [unclear 0:32:45:5] and so on, and I have managed to shift it. Basically you have an index . You don’t exactly know what that is so that’s a bit worrying to me because it’s their index that they’ve given you.

[Troy Angrignon]: Again, it’s another made up number

[Damien Blenkinsopp]: Rather than some standard that you can rely on more easily. So I think that’s another concern I have about a lot of these devices. Some of the manufacturers come up with an index which is 1 to 100.

It’s not based on any standard and you’re left wondering, I hope it’s doing what I want to because otherwise I’m spending of time meditating and hoping that I’m getting better but I might actually be getting worse.

I definitely want to dig more into what that data means and how it’s calculated. Now I’ve spent enough time on ‘I have to get around to looking at this’. So I think people have that concern at this stage too. And it’s kind of this transparency thing again. If you can just pull the data off and you can see exactly what it is then it would give you that comfort factor.

[Troy Angrignon]: Well, let’s step through that though, back to the beginning of the conversation. A level one person, in this case a quantified self, level one person, they only want that number because they don’t really know and don’t want to know the complexity underneath the numbers.

So I understand why the manufacturers do that, to look at the slave tools. They’ll give you a score. Your sleep score was 85%. Now Jawbone’s sleep score is not the same as Sleep Rates sleep score, or Sleepio’s sleep score. Those are all different sleep scores. And they have different algorithms underneath.

Some are transparent, some are not. But ultimately the user just wants to know, ‘hey it was 85 yesterday, its 90 today’. I’m trending up and that’s a good thing. And they’re good, that’s fine as long as that’s all they want then they’re already ok.

But I think you and I, we’re not ones. You’re definitely not a one. You’re a five.

[Damien Blenkinsopp]: Hey, you’re a five too.

[Troy Angrignon]: I’m a five, you’re a five.

[Damien Blenkinsopp]: Don’t stop for any fives around.

[Troy Angrignon]: So, we’re not that user and I think we need to be cognizant that a one doesn’t want the level of data that you and I want. And that’s ok because they’re just in a different place. And it doesn’t mean also that we’re a badass athlete and they’re not.

You can find world class athletes who are ones. Who are like just give me my Timex watch, I don’t want to know anything else. So I think that those are two separate dimensions. So to get to your point, yes, a lot of people are doing these roll up scores.
In my mind that’s a thing you deliver to the users who are ones and then if you’re delivering product to be also available to the twos, the quantified self, level twos, then you say, ‘hey, here’s your sleep score. It’s 85%.’ Underneath that means is, you were in bed eight hours but only six and a half of that you were sleeping and an hour and a half of that you were tossing and turning.

That’s kind of a level two analysis. And a level three analysis would be; well actually you had deep sleep, light sleep, here are the different phases. Here’s how many times you were interrupted and maybe here’s a recording of you snoring. Sleep rate does that, which is a little bit creepy.

And a level four would be that plus all of that is trusted, absolutely, clinically verified. And then a five would be the raw sensitive data. Put me in a lab and hook me up to 50 machines, which I’m sure you do.

[Damien Blenkinsopp]: I’m tempted. I haven’t done it as much as I’ve wanted to yet. I bet you’ve been doing it for a long time.

[Troy Angrignon]: No, I do actually show up to something with three or four devices on me. I was at a heart zone training session in this last week and I showed up with all of these devices on my arms and everyone was like, ‘why do you have so many watches’.

[Damien]: Because I don’t trust anyone of these.

[Troy Angrignon]: I’m cross referencing them all.

[Damien Blenkinsopp]: Which one do I trust today. Just out of interest, you were talking about labs, you’ve done VO2 Max or any of these kinds of measures. I know you can go to fitness labs and do those kinds of things.

[Troy Angrignon]: No surprise. I love to do more of that lab type testing. In fact, I’m actually doing one this week with a start-up that’s in stealth mode around heart zone training and threshold analysis. I would love to do more of that.

Most of mine has been with these consumer grade tools. Really just looking to see which one is the most accurate of the bunch because I am not at the level with my own training and with my own coaches where I need to be within, for heart rate threshold analysis, I don’t need to be within one beat. It’s not material useful for my training.

[Damien Blenkinsopp]: For most of my stuff I’m there. I’d say like the most critical thing I have is sleep. And I’d really love to know exactly how many hours I’m sleeping. And it’s more, for me its accountability. It’s just like if I get a little alarm and it’s like you only slept five hours the last few days, then I’m going to act on it. That’s the big thing and that will change my life, just that little thing there.

[Troy Angrignon]: I think it would change everybody’s life. I fell into this rabbit hole. You and I both came to this from having health issues. I was having sleep issues. That was my big thing at the time. I’m sure a lot of your listeners know your back story.

So I came into it from the sleep angle of going, ‘man, I’m not sleeping,’ and I’d like to prove that. I learned a lot from the bio hacking community and the bullet proof executive and Ben Greenfield and all of these guys.

And I was like, ‘ok, I need to make the room black and I need to go to bed early and turn off my screens at night’. All the stuff that we now know is good sleep discipline. There is another word.

[Damien Blenkinsopp]: Sleep discipline is a good word because all of things take a little bit of effort to do them, that’s all. Once you’ve got a routine and you’re doing them, then it’s great.

[Troy Angrignon]: Right, and so coming into it I think that everybody kind of vectors in on these things like what is your one thing that you’re working on. Actually, that’s a good thing to talk about here which is, what is your one thing? What’s the one thing you want to change the most?

Do you want to increase your time or do a race and just finish or do a race and be top ten? Or just sleep better? And that helps you pick the universe of possibilities of things you might use as a tracker, maybe you just pick the one thing that will help you get to that step and don’t try and boil the ocean.

[Damien Blenkinsopp]: So you’re saying don’t just try to attempt to track everything? When I got the Basis I wanted to have it all. I’m not picking on Basis here, it’s just that when I happened to jump on to it a couple of years back so I had the most experience of it. And it didn’t do that and the Jawbone or the Fitbit didn’t do it at the time. So what you’re saying is decide that one thing and that’s going to decide what device you get and you’re going to get that value out of it, if that’s the most important thing to you, whatever you want to change.

[Troy Angrignon]: Right. And I think that that’s a really good object lesson for all of us. I’ve been through all of these things so I ultimately I always come back and think about it. Now that I’ve tested it and I can talk to other people about it, that’s fine. But for me, what am I working on next and therefore what is the right tool for me, today or this week?

[Damien Blenkinsopp]: Well cool, let’s talk about some quick case scenarios then and the market and where it is today. What would you do? Let’s start with sleeping. If we’re just trying to improve our sleep or get some accountability behind it, which device would you choose right now, and you think it would do the job? Would you think it would do the job?

[Troy Angrignon]: Yes. So I wouldn’t even get a device. Actually I would just listen to Ben Greenfield’s podcast that he did, a long presentation, a bunch of Q&A that he did at Sealfit Unbeatable Mind, I think you and I talked about Sealfit. He was down there for a conference. He’s published the podcast and it’s an excellent podcast. I highly recommend it.

[Damien Blenkinsopp]: Cool, is this on sleep or is it Q&A?

[Troy Angrignon]: Well inside there he has this whole how to bio hack your whole life. He goes through 4000 things you can do and so many at the end rightfully said. ‘Look dude, my brain exploded. Where do I start?’ And he came to the same thing. He was like, ‘pick one thing. Pick one area that you would like to improve, one metric in that area and look for the right tool.’

To go back to your question, the right first device to fix your sleep is not a device. It’s reading up on the basics of sleep, understanding what good sleep discipline is, doing things like blacking out your room. Maybe the first device is a big hairy blanket you hang from your window. That’s probably the best device. The cheapest thing that you can buy that’s going to have the biggest impact.

[Damien Blenkinsopp]: You’re laughing about that but that’s exactly how I started. I just got a big furry blanket and I’m guessing you did too. I had come to visit my parents and I all of a sudden read this stuff. This is years ago and I grabbed a blanket and put it up and they were like, ‘what the hell are you doing?’ And they really didn’t like it because it’s just not done, I guess.

[Troy Angrignon]: Somewhere I read was like, ‘tinfoil doesn’t pass any light through’, so I completely tin foiled my window and the very next day the building manager came up and said, ‘you need to take that down, you look like a crazy person.’

[Damien Blenkinsopp]: Some of these things, if you go this route, is a pain to take down. Otherwise you just leave it up. You’re like, ‘well I’m not in that room during the day anyway.’ But other people aren’t so [unclear 0:41:56:3]

[Troy Angrignon]: Exactly. I think there’s a lot of work and we don’t need to go down that. This is more about devices. There are a lot of things you can do. I would say black out the room, put things like ‘F LUX F. LUX’ on your computer at night. It dims the screen. There’s a lot of stuff about not having blue light at night. This is all well documented at Ben Greenfield or Dave Aspreys Bulletproof podcast.

[Damien Blenkinsopp]: Well the one thing I have done, because I didn’t trust the Basis data, was I have this little tiny app which tracks all manor of things. It’s just like a little tracker app. It’s called Lumen Trails. There are probably plenty of others like that, but for some reason three years ago when I started tracking a lot of stuff, that was the one out there.

And it just allows you to put data in and it just allows me to press a button which says I’m going to sleep and then when I wake up, press it again and now I’m awake and then I know how long I slept. That’s really the most reliable measure I had and I’ve got huge chunks of data like months where I was doing that.

And I found that useful although it’s not automatic, it’s a pain. But at least it gave me some kind of register. Because I found out I really don’t know sometimes what time I, especially if was tired if I went to sleep, I won’t really remember at what time I went to sleep and what time I’m waking up unless I’ve actually gotten it written down somewhere.

[Troy Angrignon]: And I think you just nailed it. You’re a very quantified guy and it was still a pain and we need to get away from that stuff. This whole thing of you have to click a button, it doesn’t matter how small that motion is, we have too much going on to make the users do that.

I’m coming back to being a PR dude for Fitbit here, but I think the Charge HR does this as well but I know that the Fitbit Surge HR does this. It just automatically figures it out and unlike Basis, which would say I slept five blocks of 30 minutes, which is just insane.

The Fitbit Surge actually does a really good job of saying, you went to bed now and you got up then and it was eight hours and you were actually asleep for six and a half. It doesn’t give you any depth below that, so it’s kind of a quantified self, level two answer.

Eight hours with six and a half with real sleep inside there and there are no phases or anything else, but it’s automatic. I don’t have to think about it. I’m quite willing to make that trade off because I could get more data but then I would have to think about it and I don’t want to think about it. I have enough tools in my life.

[Damien Blenkinsopp]: And for 99% of people, that data is going to be actionable. That’s going to tell them what they need to know.

[Troy Angrignon]: Absolutely. Because you can look at it and see, ‘oh well, gee, I got four hours, four hours, four hours, four hours. And it actually displays your actual sleep time. So it’s been showing me things like three and a half hours. I’ll be in bed for five or six and it will say three and a half. What do you mean three and a half?!

It’s showing the actual time that I’m not moving and I’m really dead to the world. I have to laugh about that. I think finding a basic device like that is good, but something that’s automatic I think is also helpful.

If you have real sleep issues, sleep is a really critical issue and we are all as a population lacking in good quality sleep, I think this is worth investing time and energy and focus on, because it improves everything. There’s hormonal issues and weight loss and moods, just a million things. In my book it’s foundational so I think it’s the place everybody should start.

[Damien Blenkinsopp]: Sleep and meditation I think, are the two things that I want to get done every day. We are always thinking about these huge lists of task, but I’ve really tried to start putting these two things at the top. So if I don’t do anything else at least I’ve slept and I did my meditation.

[Troy Angrignon]: Yes, if more people would prioritize that. Down at Sealfit Unbeatable Mind there’s a really great fellow there, Dr. Kirk Parsley. He is a Sleep Clinician for Navy Seals and he said, ‘my biggest challenge is, a) they don’t sleep that much because they’re training all the time and b) I have a hard time in getting their heads around the fact that sleep is fundamental and foundational to everything they do. And that lesson is not just for them. That’s for all of us.

[Damien Blenkinsopp]: So you fixed your sleep. What did you find that the main things were that you’re doing and that worked for you just since that’s something that you worked on a lot?

[Troy Angrignon]: The big things were I had to make changes at work. I had a very great team that I was working with at the time and I said, ‘look these are all the things going on and we need to shift some stuff.’ There were work changes, darkening the room, putting timers on my phone that would alert me to say it’s 9 o’clock and start winding down.

One of the big things that I did, which has made a huge material difference, is as soon the Phillips Hue light
ing came out where you could change all the bulbs and control them from your phone. I put timers on them. Back to the whole ‘don’t have blue light at night thing’, I put timers on them and I basically set the entire house and the whole thing dims from normal lightening and deep submarine red lightening.

It feels like I’m in the Hunt for Red October movie. Feels like I’m in a submarine. But the whole house dims to basically 10% deep red by 9 o’clock. So really it’s fantastic and it sends this signal.

[Damien Blenkinsopp]: I bought some Amazon lights and I was doing that myself at one point but depending on my location it hasn’t been convenient. But have it set up at your homeand automatic, that’s really amazing. If it’s done automatically it’s going to happen.

[Troy Angrignon]: For a while I was doing it manually. I would turn certain lights off or I would do various things. Again, back to the overhead, I don’t want to think about this. I have enough going on in my life. We all do.

[Damien Blenkinsopp]: Well right because you say you were re-organizing your work. I would just be interested to know, you’re basically talking about stress loads here. For me I’ve been subscribing to the fact that if you have too many things in your head, we’re talking about adding things in terms of I’ve got to track this, I’ve got to track that.

That’s not going to be an easy way forward for us because it’s just too much. We already have too many items based in our heads. I don’t know if you did this for your work, but for my work I’ve been hiring a lot more people and systematizing a lot of stuff and basically knocking things off my table.

So just, even if I’m still working the 40, 50, 60 hours, at least I’m only working on four things. And I find that helps tremendously with sleep and just general stress levels. I don’t know if you’ve seen something similar.

[Troy Angrignon]: It does. I think you’ve nailed it and I think that this is all very self-reinforcing and everything is connected to everything. So your sleep supports your work and your work impacts your sleep. And this we could talk for days on this subject. So I think there are basic things that I did.

[Damien Blenkinsopp]: So it’s hard to actually see the quantitative impact in your sleep I guess. I don’t know if you were able to see that. Well you just feel better. You were able to see more hours slept or were there anything that you were able to see that and changed?

[Troy Angrignon]: No, absolutely. I went from two hours to near panic attack sleep to eight, nine hours of solid sleep and it took probably a year to make that change.

[Damien Blenkinsopp]: That’s something I didn’t have as serious as you. I was waking up at 4 o’clock in the morning and I there was nothing I could do about it. I would go to bed at 12 and I would wake up at 4 every day. I’d start working in the dark.

Luckily, I lived in Mexico at the time so I was looking out at the light, the sunrise on the beach and it was amazing. But my girlfriend wasn’t a huge fan of me waking her up at 4 o’clock in the morning when I left. So for me gradually the hours increased.

I think this is kind of funny; I was tracking it for a long time then I stopped tracking and I knew it was fixed because I wasn’t concerned about it anymore because now I’m sleeping seven or eight or nine hours consistently and it doesn’t feel like a problem for me anymore and so I haven’t tracked it for maybe six months.

[Troy Angrignon]: And that’s a really good point. You had an issue amongst all the other issues that you were working on and then when you got to a point where this isn’t really a problem anymore. I don’t need the extra overhead and headache of waking up, finding my phone, clicking this button, doing these things, tracking these numbers. You don’t care at that point. You’re not working on it anymore.

And that’s why it’s kind of like peeling the onion. Pick the one biggest thing, the one biggest boulder and pick one thing that you can do about it and start there.
[Damien Blenkinsopp]: And it’s not necessarily going to be the same thing that you’re going to be doing for the next year. Maybe you’ll work on it for three months, you’ll fix it and then you will say, what’s next. Hopefully you don’t have to buy a new device, depending on your budget.

Let’s talk quickly about budget, actually. I’m guessing the Garmin’s are some of the more expensive ones. I haven’t looked at the prices myself, but what do you think of the pricing at the moment? For the things I’m buying it’s relatively accessible, I think. They’re around $100 or $150, tops.

[Troy Angrignon]: There’s such a huge range. Before we jump to there, I’ll come right back. But before we leave the sleep subject, just so we can wrap up on the devices. There are a lot of devices ultimately after you get through figuring out what you want to do and fix, there are a bunch of devices as you know that will help you track sleep.

It could be as simple as a sleep cycle on your phone. I’m not a fan of that unless you put your phone on the Airplane Mode because you’ve got this EMF blasting a hundred meters of Wi-Fi right beside you.

[Damien Blenkinsopp]: Did you trust the data on that, because I used it for a little bit.

[Troy Angrignon]: No I didn’t really think the data was any good because it’s too hard to pick it up from the accelerometer on the phone and it’s sitting there beside you. It seems like a bit of a dorky way to do it. But again, if it’s better than it was yesterday, it’s consistently probably inaccurate, back to our beginning conversation.

[Damien Blenkinsopp]: I think that app is a couple of dollars, or is it free?

[Troy Angrignon]: Exactly, it’s a cheap way to get your toes in the water. And then going up a step from there, you could look at some of these low end, Fitbit or equivalent things that kind of clip on. Withings had one which was really dorky.

You’d have to find the sleeve and stick this thing in the sleeve and put the sleeve on and the sleeve would fall off. It was ridiculous. It was unsustainable. So I think anything that’s just really easy that you can put on and hopefully have to push one button and hopefully you don’t even have to push that button in the morning.

That’s a better case. The best case is you’re always wearing it and it just automatically knows you’ve gone to bed and it automatically knows you’ve gotten up. So, if and when you go to check the data, the data is already there and you didn’t think about it.

[Damien Blenkinsopp]: So after you looked at the Beddit and there’s a Phillips one as well. Or they’ve basically have got things placed on the mattress?

[Troy Angrignon]: The Beddit comes in multiple versions. The Beddit V1 came in two versions- consumer and pro, it was Bluetooth legacy, so it was a huge headache. So the process, very briefly was, go find your phone, turn on the phone, open it up, open the app, connect to the sensor, sit there and wait for it to connect to the sensor. Eventually it would connect and you would select the sensor.

Then you would open the app and you would go through these questions. I wanted to throw my phone out the window I was so stressed trying to go to bed every night. And I hated it and everybody I know who used it, stopped using it.

And Dave Asprey was always saying, ‘oh, I love my Beddit.’ And I couldn’t figure out why so I went and talked to Lasse Holstrum who is the founder and he said, ‘oh he’s got the pro version.’ Apparently they went to Bluetooth, BLE, Bluetooth Low Energy and cleaned that all up so it automatically connects to the sensor. So literally all you do is open the app, it auto-connects and you just say, ‘hey, I’m going to bed.’

[Damien Blenkinsopp]: So just to clarify, is that Bluetooth running all night?

[Troy Angrignon]: It is and that’s Bluetooth Low Energy and the transmitters are hanging off the edge of your bed, but there’s a great podcast that Ben Greenfield did about this one as well recently too. These things are not labeled or marked and for folks that really EMF wary, which I’m becoming more so these days, I’m not a huge fan of that frankly.

I haven’t used the Version 2, which is the one they did in partnership with Misfit. What I heard from the founder they were doing the right things for V2. Ultimately I tossed it in the box and got rid of it. I’ve tried the S-Plus by ResMed, which bought some of the IP from CO and it’s actually downstream from Phillips. I think it’s tied into Phillips Corp.

It’s this contact list that sits there at the edge of your bed and bounces these 10 G HZ signals off of your body and it uses echo location to try and figure out your chest respirations from your chest. I didn’t trust that data at all. They say the gut research data that says it’ as good as a 3D accelerometer, which is not saying much.

[Damien Blenkinsopp]: But what you said about it bouncing waves, so it’s bouncing waves of you all night?

[Troy Angrignon]: Yes. It’s basically just sitting there blasting EMF at you all night long, which seems like a bad idea.

[Damien Blenkinsopp]: That seems like a really bad [idea] especially for sleep. If you want to have good sleep, I’m not sure that’s the best idea.

[Troy Angrignon]: In my building I have 20 visible Wi-Fi access blasting out full-bore 100 meter, 2.4 G so I’m swamped in here anyway. So I wasn’t keen on it, sent that one back and then Withings go so slammed by people who hated their product that their CEO actually apologized for how terrible the product was so I don’t think there’s much there.

Then InFIT is one I saw at CES and it looks interesting. It’s a very heavy strip which sits underneath, not on top of top mattress but in between the top and the second mattress. It scans you through the bed. Again it’s doing some kind of signal through the bed.

This is a problem. Everything swarm you in EMF and pulls this data and broadcast from you and I think we’re going to be paying the price on that one at some point, but I’m not sure.

[Damien Blenkinsopp]: There don’t seem to be many manufacturers who are concerned about that though.

[Troy Angrignon]: They’re too busy in the hay day of wearables.

[Damien Blenkinsopp]: I guess we’re ahead of the curve thinking about EMF. Most people aren’t concerned about EMF. Most people you talk to don’t even realize there’s a problem. Although there’s some books which I appreciate like 4-Hour Body by Tim Ferriss.

He talks about the phone waves and keeping them away from your balls. But it’s little things like that. Ever since I read that, that’s a rule I’ve had. I’ve had my phones switched off for most of the time. We don’t know where it’s going.

That’s why there are all these devices out there and a lot of them have these and it’s the one thing that makes me resistant to play with all of the devices.

[Troy Angrignon]: Yes, because it’s an overload.

[Damien Blenkinsopp]: Yes. Maybe in ten years this is going to be something that I wish I hadn’t pursued so intensely.
[Troy Angrignon]: When you’re growing a third arm out of your forehead and you say how did that happen? I think to wrap this thing up on devices; there are a few different things that I would say, easy, lightweight, relatively inexpensive.

I would look at the Fitbits. It’s not deep data but its ok. I would look at the Jawbone Up24 or the Jawbone Up3, which is the new one coming out in month or two. And I think that those are reasonably good. I think the Jawbone actually does now and will have better sleep tracking with more data in it, if you’re more nerdy. That could be an interesting one.

That’s for now. Then actually I think the coolest thing I’ve seen in the sleep space and I’m actually using their program right now is a little thing called Sleepio., which is a sleep coaching tool. Sleepio.com and they’re in the UK.

And I can’t believe how well-done it is. Essentially you’ll get this little animated, British professor who walks you through the complexities of sleep and what your specific issues are. They’ve got incredibly deep, rich branching logic in behind this thing.

If you say my biggest goal is this and my biggest fear is that and my biggest issue is whatever, then that builds the curriculum from there and every week it pulls in your Fitbit or your Jawbone data and then it reviews it with you and says here’s what we learned. Here’s what we were working on. Here’s what you’re going to work on next week.

It walks you through it and ask you, ‘I will make a commitment to you that I will only give you advice based on these 30 years of scientific research and you need to commit that you will do your best to stick to this program because change is hard and changing sleep habits is hard.’ I thought that was a really interesting addition so it’s not a wearable device but it works with wearable devices.

[Damien Blenkinsopp]: That’s more intelligence side and definitely we need to see more of that. What do you think is going to happen over the next five or ten years because that seems like one of the endpoints where you have near artificial intelligence walking you through step by step and fixing your problems for you?

[Troy Angrignon]: I think that’s an early indicator of the direction that we’re going. The stuff that you and I have had to go through just to figure out a) figure out what we were asking and b) how to collect the data c) how to make sense of it or rationalize it or normalize it.

That was really hard for us because we started so early and d) what does it mean? When you look at it on charts and graphs, ‘well am I learning anything or not.’ How many thousands of hours have you spent looking at graphs thinking ‘I have no idea what that is.’

[Damien Blenkinsopp]: I have. You can Google a presentation of me showing people. It’s ridiculous.

[Troy Angrignon]: I actually had people call me on that. ‘That’s a pretty graph, what does it mean?’ It’s been a lot of work for us to figure that out and yet ultimately I have gotten to a point where I’ve been able to say, ‘I know what data means. I know what this is telling me. I know what these trends and patterns are. I can compare this to my goals and I can see I’m either moving towards or away from my goals.

That was a lot of work. That’s why I was so impressed with Sleepio, that they would come right out up front and say, ‘You’re not alone. A lot of people have these sleep problems. It’s also hard so get ready to dig in and do the work and we’re going to walk you through it.

It’s not artificial intelligence but it’s really well-done branching logic.

[Damien Blenkinsopp]: It’s pretty amazing it’s done that. As you said a lot of their hacks, hacks to fix sleep, hacks to improve different things. They’re just kind of still appearing and we’re just getting to the grips of the science and a lot of things.

This is why we have this show. We can focus on data or the data behind things so that we are acting and making decisions that are good versus we don’t know. It’s just opinion. We see a lot of opinion out there when it comes to fitness, health and all of these areas.

I think that’s part of the challenge with that. Before we can get there we need to accumulate a lot of data and people really need to know for sure that when you do this it equals this. But it sounds like they’ve got a really good job. Do you know where they got the actions, basically the things that they’re recommending from?

[Troy Angrignon]: No. I was going to dig into it and I thought actually that I would try a week or two and just walk through their process to see how that’s handled and I’m so impressed that now at this point I have to go back and dig into what their evidence is. What’s their ‘peer reviewing’ research.

[Damien Blenkinsopp]: Excellent. While I’m in London I might reach out to them Thanks for bringing it up.

[Troy Angrignon]: Actually I would definitely do it. They would be worth having on the show I think. And I think to answer your question, ‘where do we go?’ I had this really interesting conversation with a friend of mine, a colleague from my old industry which is Business Intelligence as well as some military intelligence analyst.

I said it seems like we’ve already seen this movie. We already know how to get from data to actionable intelligence, to smart guidance. To say given you’re trying to do ‘x’ the data says you should do ‘y’. And we already know what that data supply chain looks like.

Like how you get the data, clean the data, analyze the data, run it through some kind of mental model or framework and then that outputs this answer which says you should do ‘x’. Then you do ‘x’ and you run through the whole process again. And you say did that work or not. Where we are, we are just really immature.

We’re way back at step one where we’re collecting a huge pile of data and we’re providing some pretty charts and graphs. They’re not that useful and we’re providing a chart or graph, or five charts or graphs for one sensor.

What you really want is this nice, blended, normalized view of all of your data on one time base where you can just look at it and see, almost like those old biorhythm charts, if you remember those things. It’s like your mood is doing this and your sleep is doing that and you’re food intake is doing something else and your workload from your training is doing something else.

You can see the patterns and do eyeball correlation, like when I sleep really short my productivity really sucks the next day or my mood sucks the next day. We’re early in that process I think so we’re going to go through maturation.

I’m giving a talk on this IOT World, I think here in San Francisco soon. What I’m hoping is we can take those lessons from the other industries and instead of taking 30 years to get to the point where we can take data and turn it into actionable intelligence, maybe we can compress that to ten. I don’t know.

[Damien Blenkinsopp]: You’re absolutely right. It’s already being done so well. When I think about my corporate training, it was all analytics was being the big thing for a while. When I was in management consulting and strategy consulting, a big thing with that when you’re trying to roll it out was the KPI, the Key Performance Indicator.

It is one number which you’re trying to bundle a whole bunch of stuff into and then you had to balance the scorecards. You might have heard of those. Those are another nice way to look at data and make it more useful. So you’re right. It’s just about playing with all of these models that we already have. So much work and literally a decade has been spent on those things.

[Troy Angrignon]: I think we know that stuff. We just need to bring it across and import it from those other industries and hopefully we can do that and not take the same 30 years.

[Damien Blenkinsopp]: At some point. Where should someone look to learn more because you’ve got all of these great charts on your blog? So if someone wants to see the map of the whole wearables devices in 2015, those charts are awesome. Where do they go to get those?

[Troy Angrignon]: I don’t have a short URL for that. I’ll just give you the website and I’ll spell it out for everybody since it is a French complicated name. But its www.troyangrignon.com, that’s my full name, Troy Angrignon. There’s a Wearable section, Health and Fitness section, Market Map section and they are just different views into all of the different blog posts. I would say that’s probably the best place to go. Everything I write and all of my speaking that I do is always posted there as well.

[Damien Blenkinsopp]: We’ll put direct links to all of the charts and stuff and show notes as well as well so the people can find it.

[Troy Angrignon]: Oh yeah, that’s fine too, very good. That’s a great idea. Perfect.

[Damien Blenkinsopp]: I thought it was a French name.

[Troy Angrignon]: I can only swear in French.

[Damien Blenkinsopp]: Do you speak any French? So, besides yourself, are there other people you look to and you learn from in this whole wearable tech area, which are on top of it?

[Troy Angrignon]: Ray at DC Rainmaker. Anybody who has ever done any sports and used any sport device owes Ray a huge debt of gratitude. He has a site called dcrainmaker.com. You looked at my charts and we were laughing.

I said I felt like Russell Crow from Beautiful Minds sitting there in my garage connecting things with strings because everyone looks at this and asks is that in your brain? He’s even more extreme. He will do these reviews that are longer and better than any other review on the planet, but he will preface it by saying, ‘This is just a brief look. I will do my full review later.’

It just makes me laugh. And his real reviews are 30 pages deep of every screen and unboxing and it’s just insanely deep. So I have learned a ton from Ray. I owe him a huge debt of gratitude for getting me up to speed over the last couple of years. I would say he is the leader.

He knows so much about the industry. He gives great presentations at the ANT+ forum each year. You can often Google those and find those presentations. I get a kick out of them because he always starts with his first slide, ‘Why should you listen to me?’

And it says my site is now responsible for $900 million of purchasing decisions and he is not making it up. This isn’t even his day job. This is his side thing he does for fun. I would definitely point at him. The bio hacking stuff, you and I are already pretty big fans of folks like Ben Greenfield or Dave Asprey, lots of folks in there and their camp. Those are probably the biggest ones that I can think of.

[Damien Blenkinsopp]: Great. Thanks very much. Now for you; what are you focused on in terms of data metrics for your own life along routine basis? Maybe you’re doing a lot of projects at the moment but are there other things that you track on a routine basis and pay attention to?

[Troy Angrignon]: Aside from wearing four devices all of the time and cross referencing them, so the data I’m looking for is how good is the data. That’s a different thing. Personally, the things I track day to day are my sleep so I can go visit my little British Sleep Prof over at Sleepio and he can berate me for how little sleep I’m getting and my daily workouts. I throw a heart rate strap on and I put my Garmin 920xt on, which I love. I go do my workouts. I come back in and save it and it uploads and all of that stuff goes into Garmin.

[Damien Blenkinsopp]: Which actual markers do you look at? Do you scan them all or are there ones you pay attention to more? Do you look at HRV for instance?

[Troy Angrignon]: Yes. HRV, Heart rate variability, which we’re not going to go into here obviously, but it’s an indicator of how over-trained you are. I think my biggest ones are really sleep, activity level through my workouts and recovery level. The HRV and I use something called Rest Wise at Restwise.com.

I use Rest Wise, HRV, morning heart rate, muscle soreness and just my own intuition to assess how I am feeling. Am I over training? Do I need to back off or not? To me this has been a really big issue, which is ‘we can see the trees, we can’t see the forest’. Ultimately at the end of the day, I want to train as hard as I can; going up the curve towards some events I have planned.

But I also don’t want to over train and then incur risk of injury. I think we talked a lot about that in our one to one call. I think for me its sleep, recovery, nutrition, training load and stress load, which is an ambient awareness of it.

[Damien Blenkinsopp]: I guess with the sleep is what we were talking about. You just keep an eye on it and the number of hours you’ve slept.

[Troy Angrignon]: That’s a really interesting thing. I used to be very focused on deep and life and one of the pieces of education I got from Sleepio, is they’ve said, ‘we done this 30 years. We’ve realized that the phases inside don’t matter, which was a bit of a surprise to me, frankly.

What really matters is of the ‘x’ hours you spend in bed, what percentage of that time were you asleep. The phases inside that really aren’t material.’ Now I think that that’s a different case if you’re self-medicating yourself to sleep and you’re not getting the phases.

I’m just using Fitbit and Sleepio. It’s giving me a record and it’s giving me an efficiency score and that efficiency score is pretty low. It’s 65%. So I am spending 30-35% of my sleep rolling around.

[Damien Blenkinsopp]: I don’t remember my numbers. With the Basis mine were lower but I don’t know about these devices. That might be average for that device, right?

[Troy Angrignon]: It’s definitely nice having both the accelerometer and the heart rate in there to cross reference that data to get the slightly more accurate sleep analysis.

[Damien Blenkinsopp]: Thank you so much for your time today, Troy. Final Question; what would be your number one recommendation to someone who is trying to use some form of data to make their lives better, basically decisions on their body’s health performance and longevity?

[Troy Angrignon]: I think the number one is really just to know what you’re trying to do first. We talked about it in this call. What is the one thing that would make a real difference to you and what is the one goal you have set there? Is it your sleep or it doesn’t matter? Pick one.

Pick that one thing and do one thing in that arena and track one thing that’s material. That makes a difference. For sleep you want to just track number of hours and percent of time you’re in bed actually asleep. That’s huge. Have a goal and then track something that’s material that makes sense in relation to that goal.

I’ve seen too many people tracking way too much data that’s not material and that’s not useful and doesn’t lead to change. I had a conversation with somebody who literally tracked every meal for three years but didn’t lose a pound.

And they changed their diet and suddenly started shedding the weight because they got more information. For three weeks of not making a change, it should’ve been what I am doing isn’t working. I guess maybe that’s the second fall on point to make. Use the number and test the metric. If it’s not showing up try something new.

[Damien Blenkinsopp]: Absolutely. Keep it simple.

[Troy Angrignon]: And if the change you’re looking for is not happening, you’re probably not changing.

[Damien Blenkinsopp]: You have to give it a little bit of time, a week, two weeks, depending on what that is. And adjust for sure. Well Troy, thank you so much for your time. This has been a great discussion. We’ve pretty much looked at the whole landscape today. Thank you so much for your time.

[Troy Angrignon]: Damien, it’s been great.

Leave a Reply

Today’s episode is about practical tools that we can use to improve our biology and how we can track those results to make sure we are getting the right answers. This episode can serve as an important source of information about N=1 experiments and biohacking.

N=1 experiments involve a single subject and they are entirely capable of providing statistical inferences about the efficacy or side-effects of treatments specifically on that subject alone. The aim of this episode is to provide very practical tips that are really accessible to you. Some of the topics covered are the Bulletproof diet, intermittent fasting, and the impact of oxaloacetate supplements.

“So we could run the same experiment…and your results can be different from mine, but it doesn’t mean that either are wrong, it just means that we’re all individuals. Our results apply to ourselves and we [need to approach it in] a different way in terms of how we want to improve or optimize something.”
– Bob Troia

Bob Troia’s quest for self knowledge, betterment, and optimization inspired his own self-tracking, biohacking, and n=1 experiments. Some of Bob’s experiments have included glucose hacking and tracking, telomere analysis, bulletproof diet (cholesterol/bloodwork), and central nervous system (CNS) training. He has had the opportunity to give several Quantified Self talks on his glucose tracking experiments. 

Bob is also a successful tech entrepreneur, and is currently working on a new venture, HuMend, which is developing a solution to treat musculoskeletal injuries using 3D printing technology. Bob holds a Bachelor of Science degree from Pennsylvania State University in Agricultural and Biological Engineering.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Bob’s interest in quantified self and biohacking results from trying to uncover and understand what makes him tick and how to optimize and improve it. (Time 5:58)
  • N=1 experiments are implemented on one person. They are not scientifically applicable to the whole population. (Time 8:00)
  • One of Bob’s earliest n=1 experiments involved a paleo-like diet called the Bulletproof diet. (Time: 9:00)
  • There are a number of online services that can facilitate your bloodwork testing. (Time 12:55).
  • There is a big difference between traditional and functional medicine. The normal ranges for traditional medicine may not be applicable to individuals based on their unique genetic composition. Services such as InsideTracker and WellnessFX may give you a “range” for your results, but you may need a functional medical practitioner to further investigate the details. (Time 14:00).
  • Part of a low white blood cell count is not that your immune system isn’t kicking up; it’s that it’s being suppressed. (21:00).
  • An underactive thyroid is linked to elevated LDLs. Bob was introduced to some programs that support thyroid and adrenal functions, and that was a shortcut which led to improving numbers such as total cholesterol, LDL, and testosterone. (28:00)
  • Bob’s recommendation is to find a medical practitioner with more of a functional medicine background. (29:50)
  • Another of Bob’s recommendations is to find a medical practitioner who has an investigative mindset.(31:16)
  • Bob sees the philosophy of “Quantified Self” evolving into “Quantified Team.” (33:00)
  • Bob gets testing every three months. He is still investigating having more short-term testing, for instance on a monthly basis. (37:00)
  • The biomarkers Bob tracks on a routine basis range from basic panels, cholesterol markers, glucose, nutrients like calcium, magnesium, vitamin D, white blood cells, C-reactive protein, and an MDL test that can check for chronic infections. (38:00)
  • As part of a longevity strategy and to maintain optimal glucose levels, Bob recommends a supplement called oxaloacetate. (48:00)
  • Other recommendations include the Calm app and binaural beats (Holosync) as tools for meditation. (54:30).
  • Bob’s biggest recommendation is to prevent your data from becoming a hindrance. It is ultimately more about how you feel. People have the tendency to over think it, instead of just starting to do it.  (1:34:20)

Thank Bob Troia on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Bob Troia

  • quantifiedbob.com: Bob Troia’s personal self-tracking, biohacking, n=1 experiments, and Quantified Self tools and resources.
  • Bob on Twitter @QuantifiedBob

The Tracking

Biomarkers

  • Cortisol to DHEA Ratio: Cortisol is a stress hormone and DHEA is a precursor to testosterone and estrogen. Both are produced by the adrenal glands. Since they work in an opposing manner, they are more efficiently measured as a ratio. A normal ratio is approximately 5:1 to 6:1. An abnormal ratio indicates a problem with the adrenal glands.
  • hs-CRP (high sensitivity C-Reactive Protein): A marker of inflammation. The hs-CRP test accurately measures low levels of C-reactive protein to identify low but persistent levels of inflammation which is an indicator for cardiovascular disease (CVD), overtraining and other systemic inflammation issues. In a previous episode (episode 19), Dr. Garry Gordon notes hs-CRP may or may not be a sensitive enough marker of inflammation as it depends on the location and type of inflammation. Also, C-reactive protein is discussed previously in Episode 7 for tracking CVD risk.
  • Fasting glucose: Fasting glucose is one of the clinical markers for blood sugar regulation and can indicate a progression toward diabetes. In order to establish a baseline, Bob performed a fasting glucose measurement with eight hours of fasting before each morning.
  • HRV (Heart Rate Variability): HRV is one biomarker that is a good indicator for overall health and fitness. A high HRV shows that the parasympathetic response is dominant, and vice versa for a low HRV. A high HRV score – greater variability in the time gap between heart beats – is a good thing because it indicates a healthy, fit, well­-rested heart. Damien has found it beneficial to take his HRV readings every morning because a dip could be an indicator of additional stress load. We’ve covered HRV in many episodes (see here)
  • Telomere length: Telomeres are the protective DNA structures at the ends of chromosomes. Over time these protective structures shorten and degrade, as a result of the aging process in general for instance. By measuring telomere length, we’re able to identify how short they are against benchmarks, such as the societal norm, or sub-groups, for a typical age and gender, and use as a proxy for the aging process and how we are faring against it.
  • LDL (Low Density Lipoprotein): The traditional measure of ‘bad cholesterol’ that many doctors still use to evaluate cardiovascular risk, but for which research has now determined not to be the best predictor of cardiovascular risk. However, LDL is also associated with other risks can be a useful marker in general – such as an underactive thyroid as mentioned by Bob in this episode.

Lab Tests, Devices and Apps

  • InsideTracker: InsideTracker is a personalized health analytics company with a platform that tracks and analyzes key biochemical and physiological markers, and applies sophisticated algorithms and large scientific databases to determine personalized optimal zones for each marker.
  • WellnessFX: WellnessFX is a platform that visualizes your blood test results over time, as well as detailed descriptions of each biomarker for an easy interpretation of your overall health. WellnessFX also offers personalized consultations with licensed health practitioners for even more insight into your health.
  • 23andMe genetic testing: A service that provides a DNA kit for collecting samples and analyzing DNA.
  • MDL (Medical Diagnostics Laboratories) testing: A one vial test that can expose different pathogens. Bob referred to this test as one that extends more than the traditional panel and can indicate the presence of chronic diseases.
  • LabCorp: Laboratory Corporation of America provides lab testing and services, with expertise in esoteric testing, genomics, and clinical and anatomic pathology.
  • DirectLabs: DirectLabs offers blood chemistry tests directly to you online at extremely discounted prices with results available in as little as 24 hours for most tests.
  • GeneticGenie: Shows your free methylation and/or detoxification profile after sending a saliva sample to 23andMe genetic testing.
  • Promethease: Compares a person’s DNA data with entries in SNPedia, a public wiki on human genetics. Also can use data imported from 23andMe.
  • TeloMe: A company that offers saliva-based telomere length testing and analysis.

The Tools & Tactics

Diets and Nutrition

  • Intermittent Fasting: Involves consuming most of your calories during a very small window, typically 6 hours and fasting the remainder of the day.
  • Paleo Diet A diet that mimics the nutrition of early hunter-gatherers, and consists of all lean meats and fish, fresh fruits, and nonstarchy vegetables.
  • Bulletproof Diet: A diet that involves skipping breakfast, not counting calories, eating high levels of healthy saturated fat, working out and sleeping less, and adding smart supplements.
  • Holosync: A form of audio technology that is said to induce brain wave patterns such as those of deep meditation.

Supplements

  • Oxaloacetate: Oxaloacetate, the common name for the molecule 3-carboxy-3-oxopropanoic acid and synonymous with oxaloacetic acid (depending on acidity.  is an intermediate of the Kreb’s cycle and the stage immediately prior to the formation of  pyruvate (viapyruvate carboxylase) and immediately after the NAD+-consuming conversion from L-malate (via malate dehydrogenase). It is thought to help with glucose metabolism and reduce variability as well as promote longevity due to being an intermediate of the Kreb’s cycle of energy production.

Tech

  • Muse Calm: A consumer EEG device and app that is designed to help you meditate effectively. Damien refers to his use of this.

Other People, Books & Resources

People

  • Dave Asprey: Dave Asprey, Founder and CEO of bulletproof, was mentioned by the guest as someone whose talks on the principles and logic of the “bulletproof” diet attracted him to the paleo-like diet.
  • Jimmy Moore: Jimmy Moore, a previous guest, is an expert on measuring ketones and optimizing ketogenic diets. Moore also spoke about intermittent fasting during his episode.
  • William J. Walsh: Walsh was a previous guest (episode 2) who is an expert on brain-related disorders. He was mentioned in this episode as helping to do certain labs that help assess micronutrient deficiencies or differences that are out of functional ranges including vitamin B6.
  • Ray Kurzweil: An American author, computer scientist, inventor, and futurist. Author of the books on longevity and extending lifespan Fantastic Voyage: Live Long Enough to Live Forever and Transcend: Nine Steps to Living Well Forever. Ray is mentioned in this episode as one of the proponents of solving a problem before going to sleep.
  • Aubrey de Grey: Chief Science Officer for the SENS Research Foundation, a not-for-profit organization funding research into longevity around the world. Aubrey de Grey is featured in episode 14.
  • Tim Ferriss: An American author, entrepreneur, angel investor, and public speaker. The Four Hour Body, authored by Tim Ferriss, is one of the early books that helped Bob.

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp]: Hello Bob, thanks so much for coming on the show.

[Bob Troia]: Thanks for having me.

[Damien Blenkinsopp]: How did you get into all of this Quantified Self (QS), biohacking, n=1 experiments? Is this something you’ve been doing for a while? Give us a quick background on what led you to this.

[Bob Troia]: Sure. I’m very different to some of your past guests, in that I’m more like your typical listener. I’m not an expert in a certain field; I’m an entrepreneur who’s been working with emerging technology for about the last twenty years and I just naturally had this curious mind. Even back in the time I was a little kid, it was always about taking things apart and figuring out how things work or putting them back together in a different way.
For me, going back to my teenage years and into college, I was an athlete, so I was always tracking aspects of workouts and training and diet, trying to figure out what had an effect on certain performances and just general improvements, whether it’s trying to gain weight or strength or run faster.
As I got older, out of college and began joining the workforce in the real world, I never got too out of shape, in terms of putting on tons of weight or anything like that, but I definitely wanted to get back into a better shape and I experimented with different diets and training, and again, I was logging a lot of these meals, workouts, and just trying to understand those effects.
So really you went from tracking for performance to getting back to a certain state, and now as you get older, you’re really looking to do it from the standpoint of longevity and maintenance. Because, for example, I had a program I did fifteen years ago where I gained a bunch of muscle and put on some weight, but it was just from a lifestyle perspective, I couldn’t maintain it from playing other sports.
But from a QS perspective, I was always tracking everything, whether it was notebooks, spreadsheets, etc., and about maybe five years ago I found a group of folks—I’m in New York City—like-minded people who were starting a meet-up around Quantified Self. I had never really heard the term before, but when I got together with these folks and they were exchanging stories, I was like, “Oh, these are my people.” I didn’t realize there were other people doing things similar to me in terms of trying to really track and understand and then optimize areas of their life. And so, for me, it really opened the door to this and from the standpoint of, even though we were doing this ourselves, our own n=1 experiments and tracking, when you’re meeting with other people, you can share tips and advice and stories and you can really connect around that.
So you have Quantified Self and then you’ve got biohacking, and they’re very similar but they’re also different in ways. So biohacking, there are people who might be in that school of thought who aren’t necessarily Quantified Self people. They’re just looking to somehow manipulate or get an advantage or optimize a biological impact, whereas Quantified Self people might be tracking non-physical elements of their lives. I found those groups sort of overlap, and for me, it was through some of the conferences that were out there, meeting people—whether it’s the first Quantified Self conference or there’ve been several biohacking conferences.
My interest in this has purely been from really trying to uncover and understand what makes me tick and then figure out ways to optimize and improve it. I’m no smarter, faster, more intelligent than anyone out there, definitely not. I’m still dealing with a number of issues like lingering infections and health issues, but I think it’s trying to achieve that state of being optimal is just something we can all strive for, whether or not we can actually get to it.

[Damien Blenkinsopp]: Yeah, absolutely. And how old are you? Just to give a bit of context.

[Bob Troia]: I’m just going into my forties.

[Damien Blenkinsopp]: Ok, cool. That’s pretty much the same place as I am. That’s interesting. So, just to give you a background in terms of your education and your work because I think that may have an influence.
I came from a business background and a lot of finance, and then management consulting, which is a lot of analytics, so I was doing a lot of this stuff in my work. And just like you, it naturally filtered in to fitness and then it started evolving into longevity and also into health issues when I got some health issues. So I’m just wondering how that compares to your background and if you think it influenced it, maybe your studies or your career? Because some people at home may be thinking, “Well I don’t have a degree in maths,” or “I don’t have an education in consulting or analytics,” or anything, but I think anyone pretty much from any kind of background can get into this stuff and at Quantified Self meetings you see a big variety of different people.

[Bob Troia]: Yes, so my background: I went to a school of engineering, so I definitely have a technical background. I’ve been programming since I was nine or ten years old just writing my old programs. Back in those days, you had to kind of make your own games, they didn’t really exist. So I have a technical background, that helps me from the standpoint of I can figure out a way to solve something, but I don’t have a data analytics background by any means.
From a scientific background we talk about experiments, and there’s a debate about the experiments we’re doing and are they following traditional experimental design? How accurate is the data? And I think when we’re talking about our own experiments, you have to sort of say, “Well look, I’m trying to structure this and control it in a certain way but it’s for me, I’m not trying to release this in an academic paper.”

[Damien Blenkinsopp]: Let’s take a step back, n=1 experiments, I’m not sure if we’ve brought up the term before on the actual podcast, but basically, it’s an experiment just on one person. It doesn’t mean that it’s scientifically applicable to the whole population as in the experiments and studies that are typically done. They’re trying to extrapolate things to say they apply to more than one person and they can be used, but with an n=1 experiment, you’re just trying to see what works for you.
Is that how you’d sum it up or would you look at it a bit differently?

[Bob Troia]: Exactly. So we could run the same experiment, for example, and your results can be different from mine, but it doesn’t mean that either are wrong, it just means that we’re all individuals. Our results apply to ourselves and we go after a different way in terms of how we want to improve or optimize something.

[Damien Blenkinsopp]: So, the reason I contacted you is you’ve already done a lot of different, interesting experiments, basically, and you’ve put those up on your blog, so I wanted to talk about a few of those.
Where would you like to start? Which one was your first major experiment? Was it the diet or the blood glucose?

[Bob Troia]: Yes, my entry point into Quantified Self and biohacking was starting a blog to essentially just share the information I was collecting. I thought maybe it could help other people or inspire them, get feedback on what I was doing.
One of the early experiments I was running was around diet. I hate to use the word “diet” because I wasn’t trying to lose weight. Again, being an entrepreneur, a CEO of a company, and being very active, playing sports, and working out, I got to a point a couple of years ago where I just was basically exhausted; I was broken down. Even though physically I was in shape, I was being successful in my work, everything was great, I couldn’t figure out why I just wanted to curl up in a ball on the weekend and do nothing.
And so I was looking at my diet, what I thought was a healthy diet, meaning there was lots of protein through like chicken, and low-fat, and lots of pasta and carbohydrates and all that, and it was working for me, but as I delved into looking at different diets—and this was when the Paleo movement was taking off and people were looking at rethinking the traditional food pyramid and saying, really you need to incorporate more healthy saturated fats and quality proteins—and so, for me, that was the kind of beginnings of that experiment.
I actually posted about it before I’d even started. I was like, “I’m going to try this and I’m going to post about my first 30 days.” Because you’re not going to see huge changes, but I think even just seeing how you feel as a result of making a minor change, and if it didn’t work, I would just have stopped and done something else.

[Damien Blenkinsopp]: So you set a period of 30 days and you selected a diet. How did you go about choosing the diet? Was it just one you were drawn to or were you looking for something specific, very different from the diet you currently have? I don’t really like the word “diet” either; I think we should really call it nutrition, which is more about what it’s about. But that’s where it is; everyone says diet. How did you go about selecting a diet and the period of 30 days?

[Bob Troia]: In terms of the diet, I was researching, again, the Paleo movement and let’s call it nutritional plans related to the Paleo movement, and I happened to come across the Bulletproof diet—one that I think a lot of people are talking about these days—which is the sort of tweaked version of a Paleo diet.
I’d encountered Dave through various conferences and he himself was running a podcast, so he was talking a lot about the principles behind the diet and the logic behind certain choices and how you structure it all. For me, that’s what attracted me, it was sort of mapped out, there was a lot of information that he had put together and again, it’s similar to a Paleo diet, and I said, “Okay, well let’s look at it. How am I going to change what I’m eating in terms of incorporating protein and protein sources?”
So we’re talking about grass-fed, grass-finished beef and lamb; getting adequate seafood; cutting out sugars and pretty much all grains; no gluten; which interestingly, I realized through blood testing—I had an allergen test and it showed that apparently I was allergic to wheat and barley, not chronically in a bad way, but there was an allergic reaction that kind of went up there, and beer is something that’s my favorite thing in the world.
So just even having to start making changes about what I was eating, people thought I was punishing myself, but I was like, “No. I’m eating this big, great, awesome steak and I’m having butter on it and I’m eating tons of veggies and oils.” So the diet itself, that’s the nutritional side of it, and then there’s also exercise and how do you support that.
Going to the gym six days a week, working out for 2 hours a day, can also contribute to being exhausted. I know you’ve done podcasts on HRV and things like overtraining, that’s very common and so by changing a workout program as well, to something that’s more high-intensity but shorter, you can get a lot of the benefits out of it.

[Damien Blenkinsopp]: Did you do both of these things at the same time? And did you do some kind of control before? Did you take your blood markers before based on your initial diet, which was what you were talking about before, the kind of low-fat chicken, whole pastas? I guess I’d call it the typical body builder’s diet, it sounded a bit like it.

[Bob Troia]: Yeah, I had been getting regular bloodwork prior to doing this so I had some data, not like every month or three months, it was six or twelve months, but I had a good baseline.

[Damien Blenkinsopp]: Where did you get this data from? Where did you go to get your labs? How did you do that, did you do it through your doctor or some service?

[Bob Troia]: A little of everything. The older bloodwork was tied to past doctor visits, physicals; they weren’t as comprehensive but they had some of the basic markers in there. Before I started with the diet, I did a round of bloodwork. There are a number of online services that facilitate your blood testing. You can basically go online and buy this sort of package, then they will set up an appointment. Depending on what state you live in, some of it you can do from home, so you can mail it in; some you go to a lab and they draw it and send it to them.
I used a service called Inside Tracker early on, so that was, I think, for some of the before bloodwork.

[Damien Blenkinsopp]: So that’s very similar to Wellness FX, which is the other well-known one. I think those are the two major ones in the U.S. There’s just a new one in the U.K. that’s trying to follow the same example. But, basically, they’re self-service labs, which try to give you a bit of package of advice with it as well? But you don’t necessarily have to buy that package of advice.

[Bob Troia]: Yes, it will take your results, and when you go to look at them online, they’ll give you suggestions. For example, if a marker is out of optimal range, it will say, “You might want to consider eating more leafy greens,” or some dietary choices.

[Damien Blenkinsopp]: So what’s good about those services is they give you those ranges, which are a bit more functional generally than others. Compared to the standard—if you go to LabCorp or some of the standard things—the ranges they give are probably wider in most cases. Is that what you’ve experienced? I don’t know if Wellness FX try to keep it a little bit tighter.

[Bob Troia]: Yeah, and that’s the big difference between when you talk about traditional medicine and functional medicine. The reference ranges are typically built around our population, which is a generally unhealthy population. So you might be in the optimal range for the general population, but you’re not really… So something like a vitamin D level, you might be considered in range, but a functional doctor might say, “No, you want to be way higher than that.”
The reference range is to some degree—Inside Tracker, Wellness FX—if you’re switching to like a Paleo diet, you might see your total cholesterol number jump up and it will kind of go in the red, but a functional doctor will be like, “That’s not important. What we actually want to look at is your LDL cholesterol and, in particular, the particle size analysis of it.”

[Damien Blenkinsopp]: So this is where even when you do have a service like Wellness FX or Inside Tracker, where they’re trying to provide this online information and support for your understanding of the markers, it’s not necessarily going to give you the best responses. There are, basically, more complex situations like you’ve brought up, where you can have high cholesterol and it’s not an issue at all; it’s just based on the type of diet you’re having, but in other scenarios it might be a problem. I’m sure Inside Tracker is the same, like Wellness FX, is like, “Uh, your LDL is too high,” but in its own conditions, it’s not necessarily so. So this is where it becomes really helpful if you have a functional medicine practitioner working with you or someone who’s aware of this stuff.

[Bob Troia]: Exactly, and I also think—not to single out those services—any service that’s providing just a syloid [check 0:15:39] snapshot of your overall lifestyle health, they don’t have access to all the information. They can show your bloodwork, but they don’t have like for example your genetic information, in 23andMe or something, so maybe there’s an issue there that’s genetic versus tied to a diet. Or having access to other bloodwork is great, but I support it with other types of testing that maybe will be something that was picked up through a saliva or urine or a stool test. So when you have all the information together, and that’s what your doctor will be able to look at with you, versus a service that only has one silo of information.

[Damien Blenkinsopp]: So when you started this, was there anything out of range or something that you focused on from the beginning in your results before you even changed your diet? Or was everything kind of standard and normal?

[Bob Troia]: Well no. Maybe I didn’t go back to the earlier bloodwork and notice it too badly, but when I put it all and tried to look at it side-by-side, things like testosterone were way down, really low.

[Damien Blenkinsopp]: What kind of level were you at?

[Bob Troia]: The 400s.

[Damien Blenkinsopp]: So is that the bottom of the normal reference range?

[Bob Troia]: Yeah, even lower. I probably had it tested and it even dropped below that, but it was considered very low. I think some of the reference ranges I’ve seen, they want you over 600; it just depends on what service you’re using.
I was noticing that my white blood cell count was consistently low, really low. My doctor—I had in my lab results, it showed the white blood cell count and usually they bold something if it’s out of range, to notify you like, “Hey, this is out of range”; it was in red and it said something like, “Bring it to the doctor’s attention,”—he was like, “okay, I’ve never seen that before.” And so that was something that we can talk further about.

[Damien Blenkinsopp]: I had a very similar situation that came up. My white blood cells were basically depressed, but they weren’t crazy out of range; they weren’t acutely problematic. My experience was that traditional doctors didn’t know what to make of that and it was basically, “Well your immune system isn’t responding as well as it should for some reason,” which isn’t so defined. I don’t think, in traditional medicine, if it’s slightly out of range—I don’t know how much you were, if you were just under the reference range or something?

[Bob Troia]: No, it was pretty low. Basically, under 2.

[Damien Blenkinsopp]: Yeah, that is pretty low, pretty severe. It’s interesting because did you discover this stuff when you started testing? Or did you feel like, you said you were feeling exhausted, but it doesn’t sound like you felt like you were sick or anything like that?

[Bob Troia]: Yeah, that’s one of those things where I’m a person who’s never sick, I don’t miss work, I had to function at a certain level every day; essentially, what I was doing was I was getting through life almost with like a parking brake on. When you actually look at the information and see how it can change with time, so a lot of it, you sort of uncover it, but yeah, you might feel great.
I felt good until I was hitting those moments of just exhaustion. On a day-to-day level, I think otherwise—like emotionally and everything else—I felt fine. It was this exhaustion, which we can talk a bit later about, things like addressing thyroid and adrenal problems, which can really tie into that.
But just to get back to the story on the diet, so I did it for 30 days. I got my results and my total cholesterol went up about 100 points; my HDL, which is good cholesterol, went up, it was actually really high which is great; and triglycerides stayed in a pretty good range.
The doctor I was working with at the time kind of looked at it, we did some other testing—this doctor is actually someone who had some background working with people who are eating these sorts of diets and Paleo—but even there he was like, “Well, it’s a bit out of range but we’ll do some additional testing.” They thought the cause was purely that it was a fat malabsorption issue, meaning you’re eating all these saturated fats and your body needs to be able to process them and quit them out, if they stay in your body and float around, it will elevate your LDL.

[Damien Blenkinsopp]: So what was funny about that was when I started the Bulletproof diet—I’ve been following pretty much the Bulletproof diet, with some modifications here and there but mostly that, for about three years now—and I got exactly the same LDL number as you. Mine jumped to 232 and I went to see a traditional doctor to get my results in Bangkok and he was like, “You’ve got to stop eating saturated fat,” and that’s the traditional line on it.
So you had a doctor who understood a bit more about what those kinds of levels can mean. But it actually did freak me out a little bit when it went up to 232, I don’t know how you felt about it?

[Bob Troia]: I wasn’t too worried because I was expecting that to happen and then when we actually went in, this doctor knew to do a more detailed LDL test. There are different types of LDL in your body: there are these larger particles, which can float around your body, they’re not going to cause any issues; and the smaller LDL particles. When you hear about people having heart issues and just chronic heart disease and all that, it’s because these little particles are getting wedged inside of your veins and arteries. So when you look at the LDL particle size analysis, for me, it was completely the large fluffy ones, so it was actually not an issue.
But, when we looked at the white blood cell count, this doctor sent me to a phlebotomist, who’s a blood specialist, and we did a whole bunch of other blood tests. This was a renowned doctor and he looked at the results and saw it was low and started asking me questions about, have you been working around solvents and chemicals?
Part of a low white blood cell count is not that your immune system isn’t kicking up; it’s that it’s being suppressed. There could be something at play that’s keeping your immune system from activating, so when you think about it, well why was I never getting sick? Because being sick is an expression of your immune system kicking into action?

[Damien Blenkinsopp]: Yeah, this is interesting. I think this is something that a lot of people don’t understand. Let’s explain this a bit.

[Bob Troia]: I know people, it’s the wintertime, and they’re always sick, they’ve got a cold or the flu. I never got colds or the flu or anything, and I’ve always thought of it as being a sign of resilience. But really what it was doing is my body just isn’t mounting any response to anything.

[Damien Blenkinsopp]: So if your body’s not fighting, you don’t get any inflammation, you don’t get all the symptoms because there’s no war going on, basically, where there should be a war going on with you trying to beat the thing down.
I went through exactly the same thing, and I haven’t really been sick for a very long time also. But we’re talking about it being a negative, which most people think, “Wow, it’s great that you never get sick.” Do you get sick now? Have you started to get sick yet?

[Bob Troia]: No.

[Damien Blenkinsopp]: I mean, me neither, but I think it’s a good thing. I think it has something to do with all the stuff I’m doing to keep things at bay, although— maybe we could talk about it—I think you were taking reishi, we could talk about that a little later; maybe you’ve noticed some of the stuff I did.
So anyway, you went through this process and after the 30-day diet, was LDL the only thing that changed or was there a whole bunch of other stuff as well?

[Bob Troia]: Definitely there was a difference in testosterone level; it jumped up. There were other reference markers, things like C-reactive protein, which is an indicator of inflammation—I’ve always had it pretty low; that remained low. There wasn’t anything else that was too out of range, other than the white blood cell count after that and the cholesterol numbers changing. And there are a number of ratios. I had done some research and found you can do things like the HDL to total cholesterol ratio, or triglycerides to HDL, or HDL to LDL, and you’ll get a ratio. They’ve figured out certain ranges that if each ratio is below a certain amount, your risk for things like heart disease or other ways of being a predictor of those types of things can be diminished. In those cases, I was in the green for everything. So, even though my total cholesterol and LDL went up, my HDL had gone up so high and my triglycerides were low enough that the ratios were actually good ratios.

[Damien Blenkinsopp]: I think what you’re illustrating is that when someone goes and gets a bunch of these labs or something, sometimes if we find something out of range, if it’s an LDL or triglycerides or something like that, that’s kind of like the first step. Because after that that’s going to be like, “Okay, this is something to look into,” and then you look into more detail of that. So there are different types of LDL, as you were explaining earlier, or there are ratios of triglycerides, which are more important. So, often when we have something out of range, it’s really like a starting point versus a final point.

[Bob Troia]: And then to follow up on that testing, that doctor basically was saying that I had some fat malabsorption issues, so we did some follow-up tests, some stool tests basically, and it did show that there was a fat malabsorption issue happening.
Then we did some microbiology work on it, as well, which shows you your gut flora, certain bacteria that could be good bacteria or bad bacteria in your gut. It showed that, for example there’s a good species of bacteria you often see in probiotics, lactobacillus; I had like none, which basically allows for some other bad bacteria to maybe grow or thrive in your gut.
So you had to then start going back through time, and I’m like, “Well, I probably didn’t receive any probiotics back in the day.” Maybe ten years ago I had been bitten by a tick that I was getting treated for. I didn’t have chronic Lyme disease symptoms, but I spotted the bite mark and I went to a doctor right away and basically, he gave me a bunch of antibiotics to treat it. But those are the types of things that can just wipe out all your gut flora because antibiotics get rid of the good stuff and the bad stuff.

[Damien Blenkinsopp]: So, you decided after this 30-day test to continue with the same diet, the Bulletproof diet?

[Bob Troia]: Yeah, exactly. So I was like, “Okay, I like how I’m feeling, even just in 30 days. Let’s keep doing it.” Basically, I think it’s been a little over a year and a half, almost two years now since that first post when I was about to start it, so I’ve got a lot more history now, I’ve gone down that rabbit hole of looking at different issues and seeing what’s linked to what.
Because what they started uncovering was, we’re looking at things like cholesterol and elevated cholesterol and other things like might show up in bloodwork, but really there was combination of things happening, and it wasn’t diet related. Diet almost uncovered it; the diet didn’t cause it.
Related to some chronic infections that were lingering, as well as some thyroid/adrenal issues, so talking about things like energy and being exhausted, it wasn’t necessarily chronic fatigue but there are tests that can show your body’s response, and like I said, everything is connected to each other. So you kind of go down this path where you start with the bloodwork on the macro-level, and now you’re working your way towards like, “Okay, if we could fix this one thing, that’s going to help ten things.”

[Damien Blenkinsopp]: Yeah. So I’m sure all of the people at home are like, “Wow, that sounds like a lot of different stuff and it’s complicated, and how do you figure out that you have to look at all these things” if you want to either resolve health symptoms or improve your performance?
Just take a step back here, since you went on this journey—so it’s about one a half years ago, maybe a bit more—how do you feel in comparison to when you started?

[Bob Troia]: I feel great. I used that analogy earlier: you always think you feel okay or you have moments where maybe you didn’t feel great, but you still feel like generally, “I’m okay, I’m not getting sick.” And as you remedy some of these issues, you realize that you kind of had that parking brake on, you were getting by. If you were able to be achieving things at that level with those conditions, once you take that parking brake off you just feel even more amazing.

[Damien Blenkinsopp]: I’ve got a very similar story to tell. It’s like I didn’t realize my full potential, pretty much the whole of my life because there were some lingering issues all the way through. As you work through this stuff, you realize that your performance, your functionality, just your general well-being can be potentially at a much higher level than you’ve been used to and you’ve accepted this lower standard, and you don’t realize that you can really feel really great and really operate at a really high level if you get there.
I feel way, way better after—I was talking to you just before about—taking steps up; you fix one thing and it takes you a step up in terms of energy or whatever is lacking for you, and every time you fix one thing it takes you up that other step, and slowly you get more and more out of life and out of performance and everything.
So, in terms of the diet now—you’ve been doing it one and a half years—has that really worked for you? Has that changed other things? You were talking about testosterone; have there been any benefits that you’ve noticed or that have been recorded? And how often have you been tracking your progress with that?

[Bob Troia]: We fast-forward now let’s say a year and a half from when I started, again, we talked about the initial 30-days or so and seeing things like total cholesterol going up a hundred points or so and LDL. After the year and a half, I did a round of follow-up work and my numbers actually went down to levels that were lower than before I even started the diet. Things like total cholesterol and LDL; my HDL still was higher, and testosterone was almost double from before I started.

[Damien Blenkinsopp]: So these are all positive changes by the sounds of it.

[Bob Troia]: Exactly, and this was really due to introducing some program around thyroid and adrenal support because an underactive thyroid has been linked to elevated LDL. It’s almost like that’s a shortcut that I had to spend a year and a half trying to get to because we had to try out and figure out a bunch of different things.
My doctor was basically, “Okay, here’s what we’re going to do. We’re going to support your thyroid while we deal with these chronic infections because it’s putting too much stress on your body and we need to support your adrenals and thyroid,” and sure enough, those numbers went right up.

[Damien Blenkinsopp]: We were talking about this just before the show and how important it is: you found a doctor that could work with the things that you had uncovered. You got these tests that weren’t kind of right and you wanted to explore them and find how to fix them and work on them, probably in quite a bit of detail. You sound like a guy who is really interested in performance and stuff, and you were trying to optimize.
That isn’t normally what doctors are there for, and so most of them would be like, “Well, I don’t normally work on this stuff.” So how did you go about finding a doctor that had the same mindset as you and was going to work with you on the way you wanted to with this?

[Bob Troia]: Yeah, it was a long process. When I first got into the biohacking side of things and looking at getting some of those tests and data, I was working with my local primary care physician, just someone local, and I could do some of the testing but the person wasn’t necessarily experienced in digging into those numbers; they just knew reference ranges. Then I moved on to another doctor.
Through research I was trying to find people with more of a functional medicine background. I know you’ve done some interviews around functional medicine, but it’s basically going from treating the symptoms to treating the causes or identifying the causes. So I found someone that was local, and when I first started doing some of this bloodwork and some of this testing, he was good at identifying certain things, but I think there was a point where that was it, he couldn’t really dig deeper.
Then, just by talking with other people I know and introductions, I came across another doctor who within a 15-minute phone call was like, “Okay, I’ve seen this ten times before. We’re going to test for these things, I’m pretty sure that this is the issue at play,” and sure enough, more just because that person was so used to seeing that.
And what’s great, even with a functional doctor, is they don’t have to be in your town. My doctor is in Austin and I’m in New York. We set up Skype calls every month; we can do a lot of this stuff virtually. We still see each other a couple of times a year face-to-face, if we run into each other at a conference or something like that, but it’s been great.

[Damien Blenkinsopp]: Yeah, I’m the same. I work with several doctors on different issues based on their expertise, so it’s kind of bringing the point that you just referred to, is when they get something and they’re like, “Oh, that looks like something I’ve seen before.” If you have an initial discussion with a doctor and they can get that feeling for it, that’s really good.
The other thing I look for is someone who’s got this investigative mindset because—if you’ve got some just small issues and you’re not sure what they are and there’s no clear answer, or you’re trying to improve your performance or energy levels and you’re not sure what’s there—if there’s not a straight answer, you need someone who’s going to try to sift through the data, have a bit of an investigative approach to it, and maybe even go and check out some research or something.
So I’ve got a bunch of friends who’ve come across problems in their lives and they’ve eventually found a doctor who’s got a bit more of a detective, investigative mindset and will go and do homework and look around and look at different tests until they find an answer, which isn’t necessarily everyone’s mindset when they’re looking at this. I don’t know if you’ve come across that kind of mindset before with someone you’ve worked with?

[Bob Troia]: From the standpoint of having a different experience with different tests?

[Damien Blenkinsopp]: Yeah, just having “I don’t know what the answer is right now,” but let’s investigate and just keep working on it until we find some kind of answer. Because I think the reality is, the world of biology is really complex. A lot of the terms we’ve brought up today and a lot of the things you’ve been talking about, it can be really, really complex to uncover little things that are holding you back in different ways. So it’s a bit like a maze and a puzzle sometimes that you’ve got to solve.
If you just look at the straight tests sometimes, you’re not going to get any clear answer. We were talking earlier about stool tests and I’ve probably done about ten stool tests right now, and sometimes an answer comes out. So sometimes you need someone to look through and dig through the data and keep going for a while, rather than relying on something they’ve seen before.
Whereas you brought up the example where if you find someone who’s had direct experience with your specific problem, I find it’s a kind of specialized approach. If you look at the business world of consulting for instance, they have specialized consultants versus general consultants, and the general consultants are problem solvers, they go in there and investigate, they’re like detectives; whereas the specialized guys really know their stuff really well.
I kind of see the world of doctors as a bit similar. You can find the general guy who’s going to investigate, maybe he’s a functional medicine doctor and he’s just going to keep investigating and looking at stuff, and he’s going to figure it out by problem solving; whereas the guy who will really be specialized in one area will really know it really well and he’s seen 500 different patients, or perhaps they’re athletes, trying to achieve the same goal and helping them with that.

[Bob Troia]: Yeah, where I see everything with Quantified Self going ultimately, is this concept of a “quantified team.” You’ll have your doctor, and your doctor can look at data and give you some information; you’ll have someone who can analyze data, like we were talking earlier, we’re not all data scientists. We can collect this information and have it, but to do correlations and really in-depth analysis, most of us don’t know where to start with that.
Having almost a coach or an interpreter of that information can sit between you with your doctor, or if you’re an athlete or something you can articulate that with other coaches etc., and I do see this idea of almost like a team. Instead of it just being you and your doctor, you’re going to have a group of people that will all work together to be that sort of team, but I think they each bring a different skill set to the table.

[Damien Blenkinsopp]: Yeah, that’s a great way to put it, I hadn’t heard that before, but that really is a great way to put it and it will be interesting how that takes place. I guess I kind of already have some kind of team going, I don’t know about you, but I hadn’t thought about it like that. I guess that’s just the way it’s evolving naturally.
Okay, it sounds like you were just frustrated that you weren’t solving things and you kept on looking and meeting people, and it was more like networking that you managed to meet someone that was relevant to you.

[Bob Troia]: Yeah, in my case it was. For me, I also have a really strong personal interest in understanding how human physiology works. So I’m sitting there reading books, consuming information; I’m not a scientist, I’m not a doctor, but I like to be able to understand. If someone shows me the lab tests, the doctor is going to explain things to me but I want to understand it at a deeper level. That’s just my curious nature. I think a lot of folks probably don’t want to dig that deep, but that’s just an interest of mine.

[Damien Blenkinsopp]: I’m the same way. For me, I kind of see it as my responsibility and, depending on what you want to get out of your body and your life, I see it as a really good investment of time. The more you understand your biology…
When I think back to four years, five years ago, and I was already working on fitness stuff like you and optimizing it with numbers and stuff, but now I have so much control over my body, just all sorts of functions that I didn’t realize that you could control; I thought they were things that just happened. We were talking about energy dips; I have my own adrenal fatigue documented that I’m working with. But when you learn a few tricks and things, even if you do have adrenal fatigue and you’re working on recovering from that, you can actually avoid those periods of exhaustion—which I guess some of your exhaustion you talked about before was either thyroid or adrenal related?

[Bob Troia]: Yes. You were talking about a certain test you take; it’s like a saliva test that, over the course of 24 hours, you basically can plot a curve to show your cortisol and DHEA response. I had a similar situation where it was showing my cortisol levels were actually pretty close to what the reference should have been, it mapped pretty closely, but when you looked at the ratio of cortisol to DHEA, it was completely out of whack. It rings an alarm saying, “Okay, there’s something going on with adrenals here,” and supporting it.

[Damien Blenkinsopp]: I found that a really valuable test and I feel like everyone should do it, especially driven entrepreneurs, anyone who’s just working too hard, basically. Too many hours a week or too stressed, and I think that’s pretty much everyone these days. It seems like everyone is stressed that I talk to, they don’t sleep enough and they work too hard, and often they’re working the weekends or the evenings as well, or in the mornings, if they can fit it in.
So when you think about all of that, I think a lot of people could maybe check that test out and they might find that there’s something they can do there to improve their energy levels and so on.

[Bob Troia]: Yeah, and with regards to the diet, I was also incorporating intermittent fasting. Essentially consuming all of my meals in a six-hour window each day.

[Damien Blenkinsopp]: Just out of interest, we’ve talked a little bit about intermittent fasting with Jimmy Moore a little bit when we were talking about ketosis, but which hours of the day do you choose to eat at and why?

[Bob Troia]: My window for intermittent fasting is probably I’d say between 13:00 and 19:00 or noon and 18:00; it depends. You try to time it so that you start right after your workout, but the way I was doing it was you sort of cheat because in the morning if you do a sort of special coffee, which I’m sure you’ve talked about before, with butter and MCT oil, because you’re getting fats in your body, you’re getting the calories but you’re still in ketosis.
But with regards to intermittent fasting, if you had adrenal/thyroid issues, you should not be doing it. I’ve had to cut it down to a day where it was on a weekend or a day I wasn’t working out because it is stressful on the body, and for me it was like, why add the stress that you don’t need right now until you’ve fixed the other issues?

[Damien Blenkinsopp]: I think that’s an important thing because intermittent fasting has become a bit of a trend. It seems very much in fashion these days, but for some people it’s not right for, or at least not right to be doing every day. Like you could do it from time-to-time, but doing too much of it, like you said, depending on where you’re at, can be a bit problematic as can the type of training that you did.
I was just wondering, how often do you get your blood labs done now? I guess you started to do it more routinely when you started the diet and everything, but how often do you do them? And which markers are you keeping an eye on primarily?

[Bob Troia]: I would say in terms of ongoing testing, every three months. If I’m addressing something more short-term, I can test on a monthly basis, but I would say three months is my good window because if I’m addressing something, that’s usually enough time to get an update and see where my markers are at.
In terms of what I’m checking, so those can range from basic panels, where you’re doing like we talked about, cholesterol markers, glucose, nutrients like calcium, magnesium, vitamin D, all those sorts of micronutrients, then getting into things like white blood cells, [and] C-reactive protein; that’s more of a traditional panel.
When I’ve had to dig deeper, I would do these additional tests. One is called an MDL test, where they can check for chronic infections and stuff, but it’s all done through bloodwork, so you can dig a little deeper. The main issue is these tests cost money. You either need a good insurance plan or you have some way to get those costs down.

[Damien Blenkinsopp]: So is that what you recommend? For you, three months is about right cost-benefit for those sorts of labs?

[Bob Troia]: Yeah, and I think you could basically, there are these at-home services that we were trying to launch that you could draw it every day if you want. Maybe there is a case where you are trying to do a before and after of something, but to go to a lab and do a full panel, for the average person, I think even six months is fine. But if you’re trying to deal with any issues or you need an update, I think for me, three months is a pretty good window.
Also, some of the testings, so Wellness FX or Inside Tracker, they have certain panels and for even the most expensive panel of the highest n=1 they have, there’s a limit to what they can provide. So what I’ve found through my doctor was by him ordering some of the tests, we can do much more comprehensive panels.

[Damien Blenkinsopp]: Had you been using Inside Tracker for those basic blood markers most of the time? What have you been doing for the routine tests you do?

[Bob Troia]: The routines had been on and off with Inside Tracker. I don’t know if you talked about the weird laws that exist in this country about all these testing services?

[Damien Blenkinsopp]: The weird laws that exist everywhere.

[Bob Troia]: So for example, with Inside Tracker, I was using that for the basic panels and when I needed to do some additional things, they would send me to a LabCorp facility, which is like a big chain of laboratories—you go there and they can do it all. In New York State, they can’t do it.
So there are rules about what they can and can’t do. I couldn’t just go there and set up the appointment; my doctor, however, could arrange and say, “Go to this lab,” and he could actually negotiate lower prices for certain things. So you might see on your bill that this bloodwork cost 2500 dollars, but you’re going to pay 100 dollars or something out of pocket, and suddenly you hit your insurance thresholds.
My point is, it’s tough because I love the convenience of those types of services, and it’s just that I happen to live in a state where it’s really difficult.

[Damien Blenkinsopp]: So New York is a bit more difficult. As far as I know, I think there’s one other state. New York always comes up as a specific state where this self testing is more complicated. There are also a bunch of other services you can use, like DirectLabs and other self-service websites that basically you can hit up and order testing. In fact, I found most tests these days I can order.
But as you say, sometimes it’s worth either you working with a functional doctor or someone from your kind of team and he’ll be ordering them for you. There is a cost-benefit to that often, I think, versus ordering them directly. And of course, he’s going to be checking them and looking at them, and he’s got his experience looking at tons and tons of tests of these types and he’s also probably got a mountain of data in all of the tests he’s stacked up over time, which I found this kind of thing is really valuable as we’ve talked about before.
But it is changing and that’s one of the things we’re going to look at in this podcast. Things do change over time and all these new services start coming out more and more.
So in terms of intermittent fasting, that’s something you cut down to fit with your personal situation, where it kind of comes back to an n=1 experiment thing, where it’s really a personal thing and what suits you. How did you know to change that? Was it because of one of your tests? Or was it a feeling and then you looked at it?

[Bob Troia]: No, and in that case, actually, intermittent fasting worked great for me in terms of body composition and I was able to confine my meals into that window and still get everything I needed to eat. It was more just after talking with my doctor, we said, “Hey, let’s do everything we can to support your thyroid and adrenals. Let’s take as much stress as we can take off your body.” And so we decided to cut back the intermittent fasting just for the sake of let’s just remove a potential stressor.

[Damien Blenkinsopp]: It sounds like a great idea, so that’s some of the stuff I do as well, try to reduce all stress. So, that’s intermittent fasting. One of the other interesting things you’ve played about was blood glucose.

[Bob Troia]: Yeah, I was one of the early 23andMe customers, so I know that now if you sign up for them to get your genetic testing done, they don’t give you access to these research and tests that can say you’re more likely to develop this condition or have this response to this medication.

[Damien Blenkinsopp]: So, just to be clear on that because I bought in the early days like you, so I still have the health interface. I think the difference is just the interface they present to you; they don’t present the information summarized about your health, is that correct?

[Bob Troia]: Well I thought they ran into some FDA issues where they can only show people their ancestry information now.

[Damien Blenkinsopp]: I think it’s in terms of display but you can still download your whole…

[Bob Troia]: Yeah, you can download your raw data, but there’s no interpretation of it.

[Damien Blenkinsopp]: That’s right. Basically, we see a health panel because we got in early and they’d already shown it to us so they’re still allowed to show it to us, or I guess they promised us so they made some deal with the FDA that they’re allowed to keep showing us it. But they’re not changing it; it’s just what we saw from the start.
And then you guys, if you do download the data, then you can run it through some open source tools, but they’re not as nice and summarized, you have to do a lot more work with those if you want to get to some of your health issues.

[Bob Troia]: I’ve used Promethease, is one, and Genetic Genie.

[Damien Blenkinsopp]: Genetic Genie is a bit more simple actually, but Promethease is a lot of detail and a lot of work to get through it. Did you find it the same?

[Bob Troia]: Yeah. I thought the Genetic Genie was interesting though because it got more into a methylation analysis, which was for me kind of an interesting set of data that I wasn’t getting from anywhere else.

[Damien Blenkinsopp]: But you can get that from Promethease. You get everything basically from Promethease because it’s a bigger open source thing. The Genetic Genie guys are focused on a few different issues like detox and methylation, so they’re looking at specific panels. And there’s another website Ben Lynch mentioned, which looks at specific panels like that.
Anyway, so there are ways you can use this data from 23andMe and you can get different sets of health issues looked at by going to different sites basically, and putting your diet in there. So the data is still there if you want it; it just takes a bit more work than it used to.
In terms of the blood glucose, you found an issue that you wanted to look at?

[Bob Troia]: So going back to the blood glucose, my 23andMe data showed I had an elevated risk for Type 2 diabetes. It was about a 10% higher probability, meaning the average person has I think 26%, so it’s already a pretty high likelihood, and mine was 36%, and I know I have a few members in the family, like uncles and grandparents, that have developed it over the years. So I just got interested in looking at my glucose response and wanted to understand the effects on glucose and what affects me, and I’m going to take whatever proactive steps I can because I don’t want to develop it at any point in my life. So really this experiment just started as, let me just understand my blood sugar.
I went and bought a 12 dollar blood glucose meter, I ordered it off of Amazon, and you get the test strips and you prick your finger every morning. It’s a little meter that just says your blood sugar level. So I would do what’s called a fasting glucose measurement, that’s basically, I think you have eight hours of fasting before. Every morning, the first thing as soon as I wake up, I would just take a reading. I started establishing a baseline just to understand and get some basic levels.
I was reading up about different supplements and things people have been taking to better regulate glucose, both stabilizing it—so you have less swing of fasting glucose—but also overall, just bringing it down. My fasting glucose was around 85 mg per deciliter which is considered okay, but when you see these organizations like Life Extension Foundation, they actually want people down and closer to 75 – 78.

[Damien Blenkinsopp]: Jimmy Moore, when he was on, he was saying that his is pretty low, it’s around 80 and that’s where he keeps it. So when I looked at your data, what I found was interesting is that’s the blood test you got initially, 85 was it to start off with? And then when you started tracking it, what did you see? Because I was really surprised. I didn’t know that it worked like this when I saw your numbers.

[Bob Troia]: I did a 30-day baseline and in some days, I’d wake up and it could be 80 or so, and then there were other days where I would wake up and it could be about 105, there’s a bit of a swing.

[Damien Blenkinsopp]: Do you think that’s the accuracy of the device? Did you look into it? Because I didn’t expect big swings like that. When I’ve had my tests done in the past, which is just the three-month routine like you, I will have 85 and then maybe there were some times where it was 95, and I’d be like, “Oh, I don’t like that. I don’t like the fact that it’s up there.” But it seems from your data, that it’s actually swinging up and down every day. Is that normal or was that the device? Or is that just kind of how we are generally?

[Bob Troia]: I think in terms of the device, I did a bunch of research and listen, none of these are going to be completely accurate. I think the one I chose was probably within 5% accuracy. Because when you think about it, who are the people who are using these devices? They’re people who have diabetes, typically, so their glucose is so high that whether it shows them that they’re at 160 mg per deciliter or 150, they’re still too high. So the lower ranges that we’re talking about, you know, 5% is still okay, but some of these meters can be 10% or more.
And to your point, yeah I think that if you’re not controlling it consistently each time in terms of I take it almost the same time in the morning and I’m taking the sample from the same location, I’m not squeezing my finger too hard because if you squeeze the blood out of a little prick you give your finger, that can affect it. So I took a baseline and then I started supplementing.
I came across this supplement called oxaloacetate and it’s all natural, it’s part of the Krebs cycle, which is a whole cycle of conversion going into vitamin C, and it’s found in a lot of plants. It’s concentrated into a pill form so you take one every morning. I took one every morning, and over the course of the next 30 days I kept doing those fasting glucose readings, and I actually saw, “Wow, it actually reduced that swing that we’re just talking about. It condensed and the overall trend went down.” So it actually stabilized and lowered, which is really cool.

[Damien Blenkinsopp]: So why do you find this cool? Because I guess we’ve got to take a little step back. We talked about blood regulation with Jimmy Moore, but what kind of benefits were you looking for from this, yourself? Is it because of your genetic profile that you were basically managing your risk as you saw it? Is that what you feel the benefit is for you?

[Bob Troia]: I think long-term, it’s part of a longevity strategy. I can say very easily that today my glucose was in what’s already considered a good range, but it wasn’t optimal. I was trying to understand not just how could I bring it down into an optimal range but also what things affected it. Because once you’ve collected all this data, you can then look at other aspects of your life and go, “What affects these values?”
So for example, plotting your values on a chart over time is one thing, but if I average out what does Monday look like versus Friday, there’s a difference. Monday’s the beginning of the work week, more stressful; Friday’s end of the week; Saturday’s the weekend. For me, I could see it just very visually, there were these trends. I also noticed that if I exercise—I play a lot of soccer—and if I have a soccer match—I usually play in the evenings—the next day, no matter what, even if I went out with the team and had drinks or did whatever, my value the next day goes way lower. I only uncovered that by taking other data from other areas of my life or looking at my calendar and going, “Huh, that’s pretty interesting.”

[Damien Blenkinsopp]: Well you said you’ve got this detective mindset. How did you go about that? Was it you were looking for ideas?

[Bob Troia]: Yeah, because you have the data—now you have this repository of these values—and now you’re trying to figure out ways to correlate it with other areas of your life. For example, I was looking at exercise. I decided to look at my calendar and I superimposed dates that I had to travel cross country, like fly, and guess what? During those windows of time, I was taking measurements throughout the entire process, it definitely spiked. So travel for me is stressful, it actually took a few days to get back to those pre-existing baselines.

[Damien Blenkinsopp]: Wow, because that’s a big deal. And travel is something we say is stressful but it’s not often we hear some data on it. This proves that travel is stressful for you. But that sounds like a pretty clear case for you. An n=1 experiment you could probably say that you are going to be stressed next time and you can kind of prepare for it.

[Bob Troia]: And then with the experiment, I then stopped taking that supplement for example and just kept taking markers for another 30 days and I tried to replicate it, and when I replicated it—the beauty of these n=1 experiments are you often fail or maybe you set up to prove a theory and you fail but you learn something different so it’s not a failure per se—it didn’t work.
What I realized was it was a combination of things. It was last winter, we had gotten a bunch of snow in New York so our soccer season had basically gotten cancelled because we play outdoors all year round and the field is covered in ice and snow and so they were like no games. So that exercise that I was getting, I wasn’t getting. Also I had changed my commute from going into an office and having to walk to the subway and walk to the office, to working from home for a period of time.
So I actually then looked at my step data, not that I ever bothered tracking steps or looking at my step data for a health related reason, but I did notice that my activity was actually decreasing. So what does that say? The low hanging takeaway there is: if I exercise my glucose will go down, which is probably a “No, duh,” kind of thing but for me, it just showed the direct benefit, a short-term and a long-term trend.

[Damien Blenkinsopp]: You’re just making me think of something, and we’ve kind of touched on this before in podcasts, but when you were shown that direct benefit, it makes it clearer for you and it makes you more motivated to act upon it. Now you feel like you’ve got this extra additional motivation—tell me if this isn’t you, just me projecting—but I feel when I understand something a lot clearer, when I’ve seen the data, then it’s a lot easier for me to keep up that habit because I understand it to a clearer point of view.

[Bob Troia]: Absolutely. I think part of the folks like us who are doing all of this, I guess we’re like these A-type personalities and we’re trying to not only understand all this but we want to reduce this to the most simple terms, like what’s the one thing I can do to get to the same result? It’s not about creating more headaches, you’re trying to optimize and gain more time in your life, not take up more trying to do all this tracking.

[Damien Blenkinsopp]: Exactly, yeah let’s talk about it because it probably sounds like a lot of work. Do you feel like it’s a lot of work? Could you talk a little bit about how much time it takes to get the labs or track things or analyze it?

[Bob Troia]: I would say what takes the most time is probably the analysis, just sitting down with the data, because like you said, you have to have this sort of detective mindset often times because you have information until it makes itself clear to you in some way or you want to test out a theory. Most of the things I’ve done are almost in retrospect, where I collected information already and then I’m trying to figure something out versus I’m constructing an experiment and these are the variables. I’m pretty bad at that; I’m almost better at the reverse—here are the results; let’s figure out what created that result and go backwards.
From a time perspective, I think even collecting information, so going for a lab test and getting your blood drawn takes a few minutes; it’s not that big of a deal. For most of my data, I’ll wear a device on my wrist that’s collecting a lot of passive biometric information all day. I think the goal is to not create a lot of burdensome things on yourself.
I know there are a lot of people who track all the meals they eat, like they use MyFitnessPal or something, and they know a lot about the meals and track their calories, and I’ll do that every once in a while for a few days, just as a gut check. I’m not going to do it every day, it takes too much time. For me, it’s a headache. I eat consistently so I’m not too worried about it. Once I do a gut check or a sanity check, I know its okay.
But I think that’s the problem, I think a lot of people feel like this becomes so burdensome and takes up so much time, I think you have to pick your battles. There are certain things that you want to do every day and if it takes you a minute to do it, that’s great. Other things are being done passively, so you’re collecting that data and it’s just a matter of finding the time to sit down and analyze it.

[Damien Blenkinsopp]: There are very few things I do. I saw you noted on your blog, I think, you’re interested in meditation and you were looking at doing some—I don’t know if you’ve done any yet.
I’ve been using Calm for a few months now, I got it in September or something, and so I try to do that every day. I’ve, over time, been able to improve my scores with this EEG device, basically it’s a consumer EEG device and it’s got an app which shows you when you’re in one state versus another. I found it useful because I want to meditate anyway, but going back to what you were saying, I want to make sure I’m spending my time productively, and for me, the extra effort of tracking it has a huge impact in terms of improving my meditation.
Meditation is different for different people, but for me, I’ve been experimenting with binaural beats, which I think you mentioned too, the Holosync one, and I found that’s working for me. But I like to know stuff is working for me before I commit to it and I put that extra energy in it, so I did a few experiments and it seems to be working for me so I’m sticking with it. I’m just trying to give people a mindset in terms of time like you were saying.
But if something doesn’t seem to be working, you just kind of drop it, and then the stuff that does work, you’ll keep it because it’s beneficial. So some of this just kind of works out itself: you’ll keep the stuff that is beneficial, so it’s worth the time. Like I take my HRV readings every morning because when I see a dip, I know there’s some kind of problem coming or I should chill out for a day if I don’t want to get really tired or something.
The things that are beneficial I think you find that they stick and you make the time for them automatically, and the things that aren’t, you just kind of work them out of your routine. Is that similar to the way you found it? Or how have you gone about it?

[Bob Troia]: Exactly the same. I think there are certain tasks you can do that take up very little time. Like I had a little routine in the morning, when I wake up I’d do a handful of things or before I go to sleep, but then there are other things I’ve done where whether it was a piece of technology or I was trying to understand myself better, but once I did the analysis or once I gathered data, I have a box full of devices, you throw it out and you’re like, “Great, that was useful.” I think people get hung up on the gear a lot of time, and I think often you can figure out solutions that don’t require the technology per se. You could take a spreadsheet and something like little body fat calipers can give you a body fat measure and you don’t need a 200 dollar scale to do that.

[Damien Blenkinsopp]: That’s right and there’s all this excitement around the devices and everything at the moment; all the companies are investing in it. Of course because that’s what the market is, but so far, there aren’t any crazy, awesome devices yet; there are a few interesting ones here and there and it’s a thing in progress.
I’ve done some of the similar ones to you, I had the Basis watch. I wore it for a year, it broke and then I didn’t buy a new one because, honestly, I didn’t do that much with the data. It would be kind of nice to know my activity levels just to check that I’m keeping up and it’s a nice convenient way just to know that. Do you still use your Basis watch?

[Bob Troia]: Yeah, I have it on right now, and for me I was looking for something that gathered the metrics, and I felt it had the most robust set of data, even though they didn’t give you the data. We can talk a bit about it—I figured out a way to get to the data and I wrote a script. Given my technology background, I was able to write some code. I put it up on an open source website that people can use to download their Basis data.

[Damien Blenkinsopp]: Yeah thank you for that. I think that’s how I first found you, actually, because I was looking trying to get my data and I found your website, and I was like, “Oh, thank God someone’s solved this.”

[Bob Troia]: For something like that, that’s just passively collecting so I might not look at some of those numbers for a few months. Like right now, I’m actually about to go over all of my sleep data from 2014 and I’m going to do an analysis on looking at trends—how is my sleep by day of week or different sleep stages. I’m going to factor in when I look at things that happened in my life and did it affect my sleep. I don’t know what the answers are going to be, I’m not going into it with any preconceptions so that’s almost for me it’s going to be more like developing more self-awareness. I might be like, “Well look, I have this many sleep cycles but I don’t remember my dreams. What’s going on there? Why am I not remembering dreams?”

[Damien Blenkinsopp]: Has that been happening to you lately? Because I’ve had that a year and I’ve only just recently come across information that’s been helping me to figure it out.

[Bob Troia]: I have no problems sleeping. I’m actually a solid sleeper—I get eight hours a night—I have friends who are jealous of me, but does it mean I have quality sleep? I think it’s good, but for me, with dreaming, it could just be as simple as I started keeping a notebook next to the bed. As soon as I wake up in the morning I would try to think, and it was really hard for like the first week. And then maybe after a week, in the morning I’ll remember some minor detail of one dream, but then in the afternoon, other things will start coming back to me. So you have to almost train yourself.

[Damien Blenkinsopp]: So in your case, it was trainable? You could basically get your dreams back and it was a focus on dreams?

[Bob Troia]: I almost think it has a little bit of intent when you go to sleep of putting yourself in that mindset of you want to dream and then waking up and just being able to recall that information; it’s almost like an attention thing. It’s no different than you’re talking and I’m tuning you out.

[Damien Blenkinsopp]: That’s interesting. So the information I came across was a little bit different. It was through Tess actually. We had this guy called William J. Walsh—I don’t know if you’ve come across him before—on the podcast on episode 2. He does these labs that help you to assess basically micronutrient deficiencies or differences that are out of his functional ranges, and mine came up out of range. One of the things that it shows is an imbalance of B6, and when you have an imbalance of B6 then you tend to stop dreaming. So I think once I’ve rectified mine, it might kind of fix itself. But it’s interesting; I might try the experiment myself with the intent thing to see if that helps as well.

[Bob Troia]: Yeah, let me know how it works. Again, it’s something that I’ve started probably since the beginning of this year. I’ve just been more aware of trying to develop, but I think there will be value in it regardless, and it’s not something that really takes any money or time. You just need a pen and a notebook.

[Damien Blenkinsopp]: I’ve always loved that idea of trying to think of a problem you need to solve before going to sleep. I think Ray Kurzweil does this and he’s one of the guys who says he always does that. Just solving things in your dreams is a great way to do stuff efficiently that you wanted to do.
Coming back down to the practicalities; you’ve been doing this for quite a while now, what are the biggest time wasters you’ve found in the experimentation process about learning about stuff that works for you and what doesn’t, basically, and collecting data? Have you found that there are things that you were doing that are time wasters and you decided not to do them anymore? Or what have you learned about n=1 experiments? What do you do today that might be different to when you started out?

[Bob Troia]: Obviously on the testing side of things, I wish someone had given me the shortcuts and said, “Do this, this, and this.” I have a lot of people come to me asking, “Just give me a list of five things I need to do.” It’s often not that easy because we are all different, so it’s not like it’s a clear linear path; it’s very branched.
For me, it would have been if someone early on could have identified some of the issues, it would have saved me a lot of trial and error just trying to uncover. That was probably why I started doing a lot of it myself in terms of trying to understand it better.
Time wasters, this is more just from the standpoint of looking at your data, everybody wants this hub: “Upload all your data and we’ll be the place for you to access all your information.” The problem is, for most people, like we said earlier, we’re not data scientists; we don’t know how to run correlations, we don’t understand all that. And so, you’re uploading your data to these places but then what? It’s just there.
Or I look at it from the standpoint of, if it can’t collect all of my data it’s useless to me. Take Wellness FX, they might be like “Okay, you can manually input all of your blood lab tests in here,” but maybe I’ve got some additional fields or something in it that it doesn’t support. Well now it’s not my complete record, so now I’m like, this isn’t really valid for me. I feel like I’ve wasted some time going through the process of getting data and massaging it and uploading it to certain places to try to have this hub. So I’ve had to do a lot on my own, make my own little ways of gathering it.

[Damien Blenkinsopp]: Do you use Excel?

[Bob Troia]: Yeah, and I’ve got things imported into databases so I can run correlations against it.

[Damien Blenkinsopp]: But I guess for the people at home, they should stick with even a Google Docs spreadsheet, anyone can use that; it’s very similar to Excel. I have a huge monstrous Excel, which is scary. A database would probably be a better way to do it if I could get my head round that.

[Bob Troia]: Spreadsheets are a perfect way to get certain data. Pretty much anything you collect you can import into an Excel doc or a Google Doc and then chart it and do whatever you need to do with it.
But in terms of time wasters—well it’s not so much time but it’s almost like a money waster I’d call it—there are a couple of things. There’s the shelf-life of a lot of this technology and tools. You buy this new cool gadget or whatever, and it’s like planned obsolescence. You know in a year it’s going to be outdated or someone’s going to come out with something new, or you just wanted to be the first one to have this shiny object.
I got a device that analyzes your posture throughout the day, and it was fun, I did it, it kind of showed me some insight on understanding that better, but at some point I’m like, “I’m done. I’ve used it. I’m done with it. I’m not going to wear this every day.” It happened with the Zeo sleep tracking, they were an EEG-based sleep monitor. The problem with their business was more from a consumer issue, where people were buying the product because they had sleep problems and the device said, “Yes, you have a sleep problem,” but it didn’t really give them a solution so people were like, “Well, thanks.” There’s that level of things and then I’ve also been burned a number of times on these crowd-funding campaigns with companies, and it’s not so much it’s their fault that they were doing anything shady…

[Damien Blenkinsopp]: It’s the nature of it. It’s like a pre-startup situation.

[Bob Troia]: Yeah, and so my policy now is literally I’ll just wait for the thing to come out because you know what, you’re still going to get it if it’s out.

[Damien Blenkinsopp]: So just to outline what you’re talking about; what are the issues that come up when you’re buying those things?

[Bob Troia]: I think there are a number of issues. Like you said, they’re startups typically, so if they’re developing a product, they probably have no experience building a piece of hardware, so they don’t realize all the issues that can happen along that process from manufacturing to distribution, so when they say we’re going to ship in March and it’s January, they probably mean March the following year. Nothing ships on time.
I’ve also had issues where there was a blood testing service that was coming out that was doing blood spot tests, so you have these little index cards and you can put a drop of blood on it and you can send them in at any time you want. I bought the top of the line pack because it gave me three years of blood tests and they started letting us send in our samples and they were collecting them, so I wasn’t doing other bloodwork because I was sending them monthly samples. And then they got into trouble with the FDA, who were basically “You cannot operate,” and so the company has just been in limbo.
There was another company—did you ever talk about telomeres?

[Damien Blenkinsopp]: Actually, I did want to talk to you about that. We touched on it with—do you know Aubrey de Grey? We talked about it a little bit. It hasn’t been published on my podcast, but by the time this comes out it will have been, so it’s kind of time travelling here. He’s been on and we talked about that, and he was pretty pessimistic about the use of this, but I’d love to hear your experience with the practical experience of that because I was wanting to get mine tested, and I think I still will just to see where they’re at compared to the norm.

[Bob Troia]: So a telomere is basically if you look at your DNA strands—just to give an analogy, it’s the one I’ve always been given—if you think of a pair of shoelaces and at the end of your shoelaces there’s a little plastic tip. Think of your DNA strands as having those little plastic tips but as you get older, they’ll fray and eventually fall apart and then your strands will shorten. So it’s kind of a sign or a marker of aging, because at some point your cells can only divide so many times and then they just die.

[Damien Blenkinsopp]: It’s the idea of this countdown. You know those little countdown timers that start at a hundred or something and then it chips away one each time, and when it gets to a certain level you don’t have any life. It’s like losing lives on a videogame.

[Bob Troia]: Exactly, you see the health wearing down. But in this case, this company was providing a service where you basically spit into a tube, you mail it in, and through your saliva they do a telomere analysis.

[Damien Blenkinsopp]: Which company was that?

[Bob Troia]: They were called TeloMe.

[Damien Blenkinsopp]: You say TeloMe; are they not here anymore? Or are they still here?

[Bob Troia]: They’re here—well I’ll get to that part—but basically, there’s a parent company that was more clinical, they would do testing more for labs and all that, and this was a consumer initiative they were doing. So the idea was you would spit in this test-tube, mail it in, and then you get a report and it shows you the analysis of certain telomeres that they’ve identified and it says where you sit in a reference range. So I got my results, the problem is, they can only compare me to other people who have used their service.

[Damien Blenkinsopp]: And who has used this service?

[Bob Troia]: That’s the thing. So I wrote them back, they sent me my results and I was like, “Uh, these don’t look too good. So you’ve got me compared to my age range, well how many people have you had so far that are my age range?” And they were like, “I think five or six.” I’m like, “Great. So you’re giving me results on a small sample size.”

[Damien Blenkinsopp]: Are the markers they’re using—this is something I’m always interested in—that have a lot of research behind them? So you can at least go and look at the studies, or they should be giving you the information of those studies, “In the studies this is shown to be good in healthy populations and bad in people with cancer,” or whatever, some kind of data on it.

[Bob Troia]: Well again, this was a case where I crowd-funded this initiative, which got me like a three-test pack. The idea was that I was going to do an experiment. I was going to send in my sample, do some things, wait a few months, and send in another sample to see if I was able to change the expression, or the markers of aging. When I went back to do it, I found out that the company no longer existed. Well the parent company still exists, they can’t operate in the U.S. though, [and] they got shut down by the FDA. So I was like, “Give me my money back,” and they don’t respond to you. They’re in Europe doing their thing but they won’t acknowledge or give you any information about the testing service.

[Damien Blenkinsopp]: I guess it’s not even the cutting edge, it’s a bit of the bleeding edge of all of these labs. Because the FDA is still figuring out what it’s going to do with stuff and what it’s going to allow, and as you’ve pointed out, already three companies have been told they’re not allowed to do stuff at least for the moment until they figure more things out.
There’s a lot of that going on and so I find sometimes a test will be available and then it’s not available and then it’s available again. That’s happened to me on several occasions, where a place I’ve got a test initially isn’t available there anymore and I have to go somewhere else to get it. It’s kind of like the bleeding edge right now, and if you’re going to get into the more specialized stuff, like telomeres or stuff like that, it’s going to take some navigation, I guess, and expect some of these problems.

[Bob Troia]: Like I said, I don’t necessarily fault the companies all the time because they’ve run into some regulation or things like that, but I guess from my standpoint it’s like you are gambling. Funding these initiatives, they may come out some day, but it’s often not going to be what they were positioning themselves as, whether they pivoted or did something different.

[Damien Blenkinsopp]: We should look at crowdfunding as a bit of a gamble because it’s a pre-startup, it may not come out. And the thing I’ve had it there’s often a huge delay. I think I’ve bought a couple of things and it just took about six months to a year longer than I thought. I got Biomine Basis when they first went to crowdfunding. I don’t know if Basis was crowdfunding or if it was just pre-orders, anyway, it was a pre-order and it took about a year and a half to get it. It was a long time but I got it eventually, and maybe it wasn’t exactly what I wanted.
I think now the way I look at it is it really is the bleeding edge and if you want to play around with some of this stuff, I guess at the moment you’ve just got to consider that’s going to happen a lot. You’ve got to do more due diligence.
We were talking about the markers and the lab tests, the surprise you had with the telomeres, and I think that’s a pretty key thing because you could be getting useless data as well.

[Bob Troia]: Absolutely, and they wouldn’t have told me that unless I asked them, and I think with regards to crowdfunding, I’ve met a lot of great people in the space of QS and biohacking, and if it’s a company that I think is working on something cool and I’m happy to support them. But when there’s something where it’s a new technology or a new service, and it’s almost like do you want to be the first, but does it mean being the first today? You make that payment or crowdfunding donation and then you’re like, “Alright well I’ll see you in a year and a half.” I’d rather just be like I’ll wait a year and a half and then I’ll pay 20 dollars more for it.

[Damien Blenkinsopp]: That’s what I’m doing now. Every time I catch myself going to click on a crowdfund, I’m like, “Look, why don’t you just wait. You can buy it in a year when it’s actually there.” That’s kind of the way I’m looking at it these days, I think it’s from us tried and tested people. I don’t know if everyone’s going to start feeling in that way soon.
There was one called the Omega I was pretty excited about, I don’t know if you saw that one. I don’t think it’s come out yet still because it tracks a few more things.

[Bob Troia]: There was also one called Angel Sensor, which basically is creating a wearable, like a wrist-worn, almost like a Basis, but the entire platform is open source. So it has a bunch of sensors and then you can build your own apps. You can just grab the raw data, and so I was like, “Wow, this is cool,” so I crowdfunded it, and apparently, they were sending out some updates a few months ago about it but I think it’s one of those things were they’re like, “Oh we will be coming out in March,” and then they’re like “We will be coming out in July.” So I think it’s ongoing to come out at some point, but I crowdfunded that over a year ago, maybe a year and a half ago.

[Damien Blenkinsopp]: I guess the other way we could look at it is, this area is going to grow and we’re helping it. If we contribute to crowdfunders, we’re helping it happen faster. Eventually these wrinkles and bleeding edge is going to start calming down as bigger companies get more involved and the environment gets better for these devices as the market grows and so on, and we’re kind of helping to fund for the startup if we’re contributing to these crowdfund campaigns and so on.

[Bob Troia]: Absolutely, and even from a technology standpoint, like you said, it’s moving along so fast. This is what we call planned obsolescence. You buy something now that you already know in a year it’s going to be smaller and better and faster, so you just want to have access to it.
The analogy I use, I’m a musician, so people have home studios and they’re into music and musical equipment, and they can go down this same kind of rabbit hole where they’re buying more gear, more expensive things, they’re like, “If I get that microphone, I’m going to sound so much better,” and I see that happening with biohacking. I see this new gadget comes out or a new tool and they think it’s going to make them better in a certain way. But ultimately, it’s up to them and their behavior that’s going to affect it. So I think sometimes we get too caught up in just the bright lights and shiny things. I think there’s always a simpler way to do it.

[Damien Blenkinsopp]: And even the lab tests, there’s like tons and tons of lab tests you can get down and they can be really specific and complicated, and sometimes it just takes the most basic ones to figure stuff out. And lab tests can start really racking up if you get into specialty tests; you can be paying thousands of dollars just for one lab, so you have to be careful. That’s what I’ve learnt over time as well, I’ve spent a fortune in specialist labs and sometimes I was tracking them too frequently and things like this. We were talking about the cost-benefit earlier; I had to really learn how to spend my money wisely when it comes to those things.
So in terms of other people that you would recommend to talk about practicalities, is there anyone else you’ve come across like you that’s done a lot of this stuff in real life? Or other people that you’ve learnt a lot from in this area who you think would be great people to talk to?

[Bob Troia]: I’ve come across and met so many awesome people over the last few years. Are you talking more about people that have some sort of public presence?

[Damien Blenkinsopp]: Yeah, someone other people could connect with them and find their stuff.

[Bob Troia]: The first place to look would be just going to the Quantified Self website, quantifiedself.com and they tend to show meet-ups from all around the world and they film them, and so you’ll see lots of great talks. Those will typically then link out to that person like they have a blog or a website or something where you can get more information on it.
When I got started in all this, I think some of the early folks that I was reading, folks like Tim Ferriss, Four Hour Body was a big thing for me to kind of start peeling back the layers of the onion.

[Damien Blenkinsopp]: Tim Ferriss is a good guy to follow. He still talks about different stuff he’s doing here and there.

[Bob Troia]: I know he’s got a podcast that deals with a lot of other things, but I was talking more around when I started reading that book, and a lot of people that are out there doing podcasts, they’re branching out into other areas. If you’re talking just on the biohacking/QS side, there’s one guy who basically does nothing but talk about HRV. He’s done all sorts of n=1 experiments around understanding himself through how is HRV affected based on other parts of his life.

[Damien Blenkinsopp]: That sounds cool. Do you know his name? Or we’ll put it in the show notes afterwards.

[Bob Troia]: Yeah, quantlafont.com. I’d have to look up the spelling of that. There’s another guy, [unclear 1:13:16] in New York, he’s got a blog called Measured Me. He’s blogged on and off over the past few years and the thing you’ll see is that different people tend to focus on certain areas, so I think he’s more into tracking mood and understanding emotions and those types of things versus other people that might be getting more into the biohacking, getting into data from the physiology standpoint of things.
In terms of others, are you looking for specific names of blogs?

[Damien Blenkinsopp]: Whatever comes to mind. If those are the ones you’ve come across or if you have other examples that might be useful to the audience basically, if they’re interested to learn more about this kind of stuff.

[Bob Troia]: I think a great resource for understanding this more is quantifiedself.com. They have forums as a community and a Facebook group. I know Bulletproof Executives, so if you go to bulletproofexec.com.

[Damien Blenkinsopp]: So he’s been talking about his diet and his coffee today for example.

[Bob Troia]: Yeah, but there’s a really, really active forum there that’s all broken up by anything you could think of. If you want to talk about any little sub-topic of biohacking, there’s going to be some conversations in there because the community itself is aggregated there. So beyond coffee, you can get some really great conversations there. And those are like the main places. I think look for meetups in your city or nearby; connect with other people that are like-minded. That for me has been the greatest. When you meet people face-to-face, you build those relationships.

[Damien Blenkinsopp]: And there’s a conference, you mentioned you’ve been to a few conferences. So you went to Quantified Self and did you go to the Bulletproof one?

[Bob Troia]: Yeah. Quantified Self tend to do two conferences a year. They do one usually in the Bay Area—I think there’s one this May—and they’ll do one in the fall in Europe, usually in Amsterdam, so that happens twice a year. And then the Bulletproof biohacking conference just happened a few months ago in L.A. I’ve been to the first one was a couple of years ago where there was a group of maybe 30 or 40 people, it was really small, and this year it was probably like 400 or 500 people. To me, it’s not that more people are into it. I think everyone’s always been into this stuff, I think they’re just finding each other.

[Damien Blenkinsopp]: Yeah it does seem like that and when you were talking about the forum on the bulletproofexec site, there is a lot. I was looking at it a couple of days ago and there are some really heavy post threads, with 10,000 posts or threads. There’s a lot of information in there now; it’s been going for a few years so like you said, there’s a lot of information and you can connect with a lot of different people there as well. But I found, like you, that conferences I can interact more with people face-to-face. It’s a great way to meet people into this stuff as well.
So you did mention your routines, I wanted to ask you if you have some kind of daily routine about tracking metrics, like first thing in the morning or in the evening? Or is there anything you do every day which you find useful in terms of tracking data or doing any of this stuff?

[Bob Troia]: I would say on a daily basis the trick is to allow as much of it to be passive as possible, so things like having some devices collecting biometric data or having something in my home that can measure my indoor environment passively, just those types of things are happening so I can always go back. Even just your smartphone is tracking my position so I can actually map out where I’ve travelled throughout the day. I’m just collecting that data, whether or not I use it.
But in terms of the morning routine, today for example, I woke up, and the first thing I’m doing is part of my thyroid program is I have to check my morning temperature every morning, so I have a thermometer right next to my bed. So as soon as I wake up I pop in the thermometer. I actually was using an old-school, non-mercury thermometer, it was like a glass one, but now I’ve moved to this Kinsa, which hooks to your smartphone and it takes it really fast so instead of having that thermometer in your mouth for five minutes, you can just do it in thirty seconds.
I do that, I get my temperature done; it’s already in my phone, I don’t have to write it down anywhere.

[Damien Blenkinsopp]: Wow, that’s a nice little hack, I didn’t know you could do that.

[Bob Troia]: It’s pretty cool. And then if I’m doing something like we talked about HRV, so while I’m lying in bed, I have a dresser next to my bed and have my Polar chest strap and my phone’s already there, I put on the chest strap and do a three-minute reading. We talked about HRV, you want to see where you are in relation to your baseline.

[Damien Blenkinsopp]: Do you do the standing or the lying down?

[Bob Troia]: Lying down. When I wake up in the morning I try not to even shift. If I’m under the blankets or over the blankets, I don’t change it, I don’t’ want to affect it. And then I’ll get out of bed and I’ll weigh myself because I have scales in the bathroom. Again, I have one of those wireless scales so automatically the data is uploaded and you don’t have to think about it.
Then if I’m doing any glucose related tracking like I’m in a window where I was like, “Okay, this is the month I’m going to track again,” I’ll take a quick reading right then. And then throughout the day, I guess depending on my schedule, in terms of what I would track, if I had blocked out time on a given day to work on any kind of mind-training, so it could be things like space repetition or dual n-back, there are pieces of software that help improve short-term memory or recall, I’ll use tools and do that for maybe 30 minutes. The trick is just finding the time to do that.

[Damien Blenkinsopp]: So me personally, I’ve gone through phases of n-back and also the luminosity; right now for instance, I don’t do either. Have you done these in phases like you’ll do for them for a while and then other times you’re not doing them? Or is it just a constant ongoing thing that you’re doing?

[Bob Troia]: I would say more with the dual n-back. Space repitition it comes down to what I’m studying with it. One of the things I’m actually working on right now, it’s more of a long-term experiment, [and] I’m trying to get better at playing poker. I’m trying to come up with ways of memorization techniques and try to become better at it. I’ve been going through a lot of exercises and reading these books and doing these tests. Take away any of the actual active playing cards, you have to build your working memory up.

[Damien Blenkinsopp]: That’s pretty cool. I’ve actually been looking at that stuff recently myself and starting to work on it. Like minds.

[Bob Troia]: For example, if you go to the gym or you’re working out, you might just be tracking your heart rate. My workout itself, it’s still for me either a notebook and a pen just writing down what am I doing today, or I type it into my phone.

[Damien Blenkinsopp]: So are you still doing the Body By Science? We had Doug McGuff on a while back and I saw you were doing that as well. Are you still doing that or are you doing something a bit different now?

[Bob Troia]: So I started off doing the Body By Science type of workouts, and then through that and through meeting folks in the biohacking space, I got connected with these folks that are doing a different type of training that’s built off what’s called isoextremes, which is essentially mostly body weight-type exercises where you’re pulling into a position. So the idea would be you have to do a wall sit where you basically go against a wall and you get down to a squat and you’ve got to hold yourself there for five minutes. But what you’re really doing though is you’re trying to pull yourself down not hold yourself up, and so there are a whole bunch of workouts around that. It’s more neurological training.

[Damien Blenkinsopp]: It sounds like you’re really intensely holding the muscles. It’s really intense effort.

[Bob Troia]: We could have a whole other conversation about that stuff because it also involves an electronic modality that you basically hook up these electrodes that are in very specific positions in certain polarities that allow your muscles to lengthen while you’re doing these exercises. Basically what you’re doing is you’re training your muscles but you’re also training your nervous system. Over time, it has a lot of impacts, everything from reaction time and speed, not just the physical benefits.

[Damien Blenkinsopp]: I find all of that stuff awesome.

[Bob Troia]: To me, that’s more like the bleeding edge stuff because I actually go to the gym with this stuff and people look at me. I always have someone coming up to me like, “What is that?” I have to explain it and eventually you start seeing the same people there so then they leave you alone, but you always get these funny looks.

[Damien Blenkinsopp]: One time I was in Bangkok and I was doing this specific exercise, and I actually came from the Body By Science guys, which was a very slow pull-up of one minute—I don’t know if you saw that before. Anyway, I was doing this one minute pull-up and this guy came up to me at the start and he starts asking me, “What are you doing?” I was in the middle of my exercise and it takes a lot of effort because it’s really intense, and he wouldn’t leave me alone, he was like, “Tell me what you’re doing,” literally for the whole minute. Afterwards I was like, “Man, seriously I’m exercising. I know it looks kind of different but…” So it does look different, and it does get people asking what the hell are you doing, you’re looking a bit strange in the gym.

[Bob Troia]: Yeah, I was doing an exercise where I was doing, imagine doing a curl, like you have a curl bar, and let’s assume you’re at the top position, you have to slowly lower it from the top position down all the way to the bottom but you have to do it over the course of five minutes. So people are looking at you like, “What the heck?”

[Damien Blenkinsopp]: Yeah, exactly, and it’s so hard. That’s very similar to what I was talking about. It’s really, really hard in terms of mental. That’s what I love about those things, like you were talking about the neuromuscular part, it’s really charging your mental capacity and you learn to push yourself way beyond where you start from and it’s just a mental game at first I find, and so they’ve looked into benefits of concentration and things like that once you learn to push yourself further than you thought you could go.
This has been such a great practical chat. I think this is the most practical chat we’ve ever had in terms of real life stuff and people doing it every day, so it’s great to hear about your routine. Also, just because that’s really useful to people like how could I implement this in my daily life.
If you were to give someone one recommendation that you think would be useful to them in their use of data to make better decisions about their bodies, health, performance, longevity; what would that one thing be?

[Bob Troia]: The biggest recommendation, I would say, don’t let it become a hindrance, meaning I think it’s ultimately how you feel. Its one thing to say I have a goal and I’m trying to achieve something, how do I get there. But if you’re going the opposite way and trying to understand your current state and what got you to that current state, I think as we talked about, figure out is there a way to do it without it becoming a burden. It’s like say even exercise; there’s no such thing as bad exercise, technically, as long as you don’t hurt yourself. So I think people can over think it, instead of just starting to do it.
I think if you’re just looking to improve your health or longevity, those are very different things, so I could give you a tip that’s diet-based where I would say, “Cut out sugar,” or something, but I think, for me, it’s more like the mental state you’re in to do it. These are people that have already made the decision they want to do this so start off and don’t let it become a hindrance; don’t try to do 20 things at once.
That’s a big answer but I was talking more like I think there’s a lot of information out there; I think you have to assess where you’re at and what your goal is. I think health is a very general thing, everybody wants that longevity, but there might be some people who are looking for a performance-based performance versus other people who are more focused on longevity.

[Damien Blenkinsopp]: So I guess what you’re saying is try and focus on what’s really important to you to start with to keep it simpler.

[Bob Troia]: Yeah I think people might even be coming at this not from the standpoint of “Something’s wrong with me and I need to fix it.” There might be people who are just “I like where I’m at and I want to be better.” And I think that mental state, I think you’re still striving to become better but I think you’re just coming at it from a different angle.

[Damien Blenkinsopp]: And the beauty of this is I think it’s really like this long slope. When you think of it as black and white, unhealthy healthy, but it’s really not; it’s this long slope and I think all of us can do better. You can push yourself up further to be better and you can be quite good like you’re saying.

[Bob Troia]: And I think people they’ll see something that doesn’t look quite in line, and instead of freaking out or stressing themselves out, if they feel okay I think ultimately that’s the gut check you always have to take: How do you feel? It could be physical, it could be mental, maybe your stress is due to things like your job or relationships or friendships, so the things that are outside of that, and so actually your biohack itself might be “Improve your relationships.”

[Damien Blenkinsopp]: Yeah, exactly. Great point. Okay Bob, so where would we find you? Where’s your blog? And is there anywhere else you’re hanging out online where we can find you and learn what you’re up to?

[Bob Troia]: Yeah, I detail all these happenings on my blog, at quantifiedbob.com. I have a Facebook page, a Twitter account, all under Quantified Bob, Google + as well, if you’re into that.

[Damien Blenkinsopp]: Where are you most active? Would it be the Twitter?

[Bob Troia]: Yeah, Twitter is the most active. And if you ever want to connect to my real life persona, myself, it’s just bobtroia.com. I tend to keep more of this stuff on the other account just to separate. That way, there are people who care about this that don’t care about my business stuff. But it’s very clear that I’m the same person but I just split my conversations up.

[Damien Blenkinsopp]: That’s cool. It seems like you’re a pretty diverse person—fitness, music, entrepreneur, tech—all this stuff going on.
Bob, it’s been great to have you on the show with all this practical information. It’s great for the audience at home. Thank you so much for making the time for it.

[Bob Troia]: Great, thanks so much for having me.

Leave a Reply

Recently, transcranial direct current stimulation (tDCS) or the non-invasive targeting of weak direct current (DC) to specific brain regions has received media attention. Among the scientific research community, tDCS has been a subject of great interest owing to its usage ease, relative inexpensiveness, and encouraging research results on a range of functions. Studies have seen tDCS accelerate learning, reduce symptoms of dementia, and improve attention in those with Attention Deficit Disorder (ADD). Understandably, a coinciding rise in the DIY community has also prompted an increase in consumer devices available for home use in hopes of mimicking tDCS’s potential neuroenhancement abilities.

This episode’s tracking will look at how to use different types of brain scans to understand the impact tDCS is having on the brain. In circumstances such as these, where the long term consequences are not known or understood, the tracking becomes even more important.

“What tDCS appears to do is to essentially turn the amplifier up, or the volume up, just a little bit on the brain areas that are receiving stimulation from the outside world. [Thus] you get a slightly larger reaction in the brain to stimuli that are coming in through endogenous pathways as a result of this exogenous tDCS stimulation.”

– Dr. Michael Weisend

Dr. Michael Weisend is a neuroscience pioneer in the research and broad range application of tDCS. He is an expert in the neurophysiological mechanisms of learning, cognition, and memory and has developed and advanced non-invasive brain stimulation strategies under neuroimaging guidance to enhance memory and other aspects of human performance. He has worked with the U.S. Air Force, Defense Advanced Research Projects Agency (DARPA), and the National Institute for Health (NIH).

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • In order to stimulate the brain to enhance performance, areas of the brain being stimulated should be matched to the places in the brain that are active (4:11).
  • Through image subtraction, the essential difference between two brain states (tired vs. rested, inattentive vs. attentive, novice vs. expert) can be identified. Once identified, the goal is to target stimulation in order to aid in the transition from an undesirable brain state to a desirable state (5:54).
  • Dr. Michael Weisend’s lab has mainly focused on learning. It will shortly start work with subjects with lingering symptoms from traumatic brain injuries (6:28).
  • In the near future, tDCS will have an impact in depression (7:10).
  • tDCS is inexpensive and could be a wearable for many (8:40).
  • Because of advances in neuroimaging, current is able to be placed into critical brain structures for specific tasks (9:50).
  • tDCS employs direct current (DC), which turns on and stays on at a steady rate; while machines found in physical therapy use alternating current (AC), which alternates current up and down (13:42).
  • DC current, instead of directly causing an activity, is thought to “turn the amplifier up, or the volume up” on the areas in the brain that receive stimulation from the outside world (15:32).
  • Using DC in tDCS allows for less variables to be involved (18:35).
  • There are various theories on what different brain wave frequencies mean, and different frequencies are thought to do different things. For instance, sleep and waking have different wave activities at various cyclic points across a spectrum (19:55).
  • Research has looked at a subject’s ability to find a target. Similar to the game Where’s Waldo, a subject looking for a specific individual would have to go through hours of imagery in order to complete the search, while simultaneously balancing essential components critical to the search. By studying multiple variables in conjunction with tDCS, Dr. Michael Weisend is able to see if, for a variable amount of time, subjects would make fewer errors (22:00).
  • In the case of traumatic brain injury, the damage is subtle and hard to find via conventional scanning. A more specialized test, the diffusion tensor imaging MRI, can often reveal damage to the network (24:15).
  • There are three places where to target stimulation: (1)where you sense (2)where you process and (3)where you act (27:45).
  • When the brain is stimulated, it is more reactive to natural environmental stimuli. In theory, when the brain is in a more reactive state, there will be a greater number of active cells. This allows for additional opportunities for neuroplasticity to take place. In other words, because more cells are firing and more cells are wiring, a more rapid acquisition of information, able to be measured by changes in behavior, take place (29:30).
  • MEG measures the magnetic energy produced by the brain, while EEG measures the electrical energy (33:00).
  • Carefully using tDCS, Dr. Michael Weisend has doubled the rate of learning in a Where’s Waldo type task (39:00).
  • Dr. Michael Weisend is biased for two reasons against the consumer devices: (1) devices currently out there do not take care of the electrode-skin interface; and (2) devices for home use have not been tested for safety or effectiveness (43:10).
  • There is an active debate in the neuroscience community as to whether electrical brain stimulation is more like caffeine or more like a cigarette. There currently are no imaging studies looking at the effects of long term stimulation with tDCS (45:07).
  • Could tDCS enhance performance? It could reduce the perceived effort. With the current level of understanding, however one might decrease performance instead (46:20).
  • In the future, Dr. Michael Weisend sees combined therapies, or closed loop therapies, leading the field (52:39).
  • White matter changes have been seen with tDCS; however, no grey matter changes have been observed (54:20).
  • Dr. Michael Weisend uses the original Polar Loop to track steps on a routine basis to monitor and improve his health, longevity and performance. He also looks at the actigraphy for information about sleep, and downloads the information to analyze if he is reaching his goals.
  • Dr. Michael Weisend’s biggest recommendation on using body data to improve your health, longevity and performance is to meditate a few minutes every morning. He recommends to think through your body, and mindfully self-check.

Dr. Michael Weisend

The Tracking

Biomarkers

  • Magnetic Fields: are assessed by magnetoencephalography (MEG). Neural activity in the brain results in measurable currents and magnetic fields. Magnetic fields produced by the brain are measured in the unit Telsa (T).
  • Electrical Activity: is assessed by electroencephalogram (EEG). When enough concurrent electrical activity is generated by neurons firing, simple periodic waveforms are distinguishable. Rhythms generated by electrical activity are measured by their frequency and amplitude. Frequency is expressed in the unit Hertz (Hz) while amplitude is recorded in microvolts (μV).

Brain Imaging Devices

  • Diffusion Tensor Imaging: a magnetic resonance imaging technique that captures how water travels along neurons in the brain. This test reveals damage to the neuronal network in traumatic brain injuries, which other scans may miss.
  • Electroencephalography (EEG): a method to record the electrical activity of the brain resulting from current flows within the neurons of the brain.
  • Functional MRI (fMRI): is a functional neuroimaging technique using magnetic resonance imaging (MRI) to measure spatial localization of brain activity through detection in associated changes in blood flow. Dr. Michael Weisend only sometimes uses fMRI, because it is an indirect measurement of brain activity.
  • Magnetoencephalography (MEG): is a functional neuroimaging technique to map brain activity using magnetic signals. Dr. Michael Weisend prefers to use MEG compared to other techniques because magnetic fields are less distorted by tissue or bone and the MEG allows measurement of neurons turning on and off hundreds of times a second, thus allows ongoing measurement of activity.
  • Functional MRI (fMRI): is a functional neuroimaging technique using magnetic resonance imaging (MRI) to measure spatial localization of brain activity through detection in associated changes in blood flow. Dr. Michael Weisend only sometimes uses fMRI, because it is an indirect measurement of brain activity.
  • Structural MRI (MRI): provides a picture of the brain. The MRI signal generated is dependent on characteristics of different tissue types within the brain. For instance, gray matter has certain cellular properties different from white matter and these differences are visualized by contrasts expressed in a MRI image.

Consumer Devices

  • Muse Headband: a consumer EEG device, used by Damien, to track different frequencies of brain waves.
  • Thync: Dr. Michael Weisend looks forward to this company’s consumer electrical brain stimulation device. He hopes their “safety record is as stellar as they hope it will be”.

Terms

  • Alpha Wave: the alpha rhythm is the most prominent EEG wave pattern of a brain that is awake but relaxed. When moving from lighter to deeper stages of sleep (prior to REM sleep) the pattern of alpha waves diminishes.
  • Alternating Current (AC): current that alternates with time in voltage.
  • Beta Wave: occurs at the highest frequency (Hz). These patterns are found when the brain is alert. Paradoxically, these rhythms also occur during REM (Rapid Eye Movement) sleep.
  • Closed-loop system: a system capable of diagnosing electrophysiological abnormalities and treating them promptly.
  • Delta Wave: are low-frequency (only 1-4 Hz) that increase during sleep. When moving from lighter to deeper stages of sleep (prior to REM sleep) the pattern of delta waves increases.
  • Direct Current (DC): flow of electric charge (current) in a constant direction.
  • Gamma Wave: a wave pattern with activities in sensory processing.
  • Grey Matter: areas of the brain containing unmyelinated neurons and other cells.
  • Neuroplasticity: the ability of the brain’s neuron network and synapses to change.
  • Sine wave: associated with an AC current. Dr. Michael Weisend describes it as “just a fancy word for something that goes up and down equally around zero amps, or zero volts”.
  • White Matter: areas of the brain containing myelin coated axons.

The Tools & Tactics

  • Transcranial Direct Current Stimulation (tDCS): is a non-invasive targeting of weak direct current (DC) to specific brain regions. This low-intensity electrical current is passed at a constant rate from electrodes applied to the head. This type of brain stimulation induces currents able to regulate neuronal activity. The effects of tDCS can be modified by the size and polarity of electrodes used, intensity of current, and the period of stimulation.
  • Transcranial Alternating Current Stimulation (tACS): is non-invasive targeting of alternating current (AC). Dr. Weisend explains, this is different from DC, because waves or rhythms are entrained into the brain. For example, if stimulated with 10 Hz, the stimulation will have a frequency of going up and down 10 times per second. Once to the brain, this frequency will produce a sympathetic rhythm at 10 hertz, but may also enhanced in amplitude. Thus, with tACS, determining the appropriate frequency of AC for the task is an additional variable.

Other People, Books & Resources

People

  • Luigi Galvani: is credited for the discovery of bioelectricity.
  • Roi Cohen Kadosh Ph.D.: has studied tDCS to enhance mathematical ability and found data indicating that brain stimulation may enhance one type of math, while decreasing an individual’s ability to perform another type of math.
  • Andrew McKinley Ph.D.: is a colleague of Dr. Michael Weisend, who has demonstrated that giving sleep-deprived individuals brain stimulation can have the same benefit as a cup of coffee.

Books

  • The Organization of Behavior: originally published in 1949, Donald Hebb first wrote the old (but still true) adage “cells that fire together, wire together” in this book.

Resources

  • DIYtDCS website: a blog, described by Dr. Michael Weinstein, that stays up-to-date on literature and has conducted interviews with the top scientists in the tDCS field.

Other

  • ElectRX Program: a DARPA program aimed at identifying and studying biomarkers to monitor body and organ function. It will also look at what equipment is needed to monitor, and then interact with the system electrically to change its function.
  • Nootropics: are a wide variety of both pharmaceutical and non-pharmaceutical enhancers to improve one’s cognitive abilities. There is little known about their long term effects.
  • Pavlov’s dogs: initially, a bell and food were presented together. After a few times, the bell alone would cause salivation. Thus, Pavlov’s dogs learned to salivate to the sound of a bell in anticipation of food.

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: Michael, thank you so much for making time for the show.

[Dr. Michael Weisend]: Oh, you’re welcome. No problem. How can I help?

[Damien Blenkinsopp]: You can help with clarifying a lot of crazy stuff.

So, to define what you’ve been doing, it sounds like you’ve worked with a lot of different neuroimaging technologies in order to find out how to apply tDCS technologies to accelerate learning. Is that a fair summary of what you’ve been up to?

[Dr. Michael Weisend]: Yeah. When I do work on the brain stimulation stuff, I always assume at the outset that I’m dumb, not that I’m smart. And so the way that you need to approach stimulating the brain in order to enhance performance is to match the places in the brain that are active with the places in the brain that are being stimulated in order to maximize the effect.

So we have used magnetoencephalography, that measures the magnetic fields that your brain generates when it becomes active. We have used EEG, which measures the electrical part of brain activity. And then we’ve also used structural and functional MRI. Structural MRI gives us a picture of the brain, and functional MRI gives us a picture of the brain that includes the places where you are using oxygen in order to support brain activity.

[Damien Blenkinsopp]: Great. Your goal is to see which parts of the brain are active, and trying to stimulate the same parts to kind of emphasize activity in those areas. Is that correct?

[Dr. Michael Weisend]: That’s correct. So what we do is we examine the brain in two conditions. So, in the first condition, you want something that is not optimal. So it could be tired, it could be inattentive, it could be a novice.

And then we measure the brain in second conditions. So you could measure it when somebody is performing at expert level after a bunch of training, or you could perform the neuroimaging after a good night’s sleep, or you could image when somebody’s paying very good attention.

Then you take those two images and you subtract them. Once you subtract them, you have the essential difference between the two brain states. And for us, that is where we have targeted our brain stimulation. Is to find the difference between brain states, and try to target stimulation in order to aid in the transition from an undesirable brain state, to one that is more desirable.

[Damien Blenkinsopp]: Great. To give the audience a broad idea of what this could be applied to, I saw a TEDx presentation where you outlined, I think it was five different applications you saw as viable. I understand that not all of them have been attempted yet, potentially. But what were those, and which ones have you actually already attempted to, or done some work on, and it’s been effective?

[Dr. Michael Weisend]: So, we have mainly focused on learning in my lab. We’ve also done some work with vigilance, and we’re about to start work with subjects who have traumatic brain injuries and lingering symptoms from those.

In the TEDx talk, I was trying to make things very understandable to the general population because, as a neuro nerd, we kind of talk in code sometimes, stuff that’s not understandable to everybody. Not because they’re less smart, it’s just that we have different vocabularies because we walk in different shoes every day.

One of the places where I think that tDCS will have an impact in the very near future is in depression. So there’s some very good work out of the National Institute of Health in Washington D.C., and out of several labs in Sao Paulo, Brazil, who say that you can alleviate the effects of depression by stimulating the cortex between your ear and your eye, kind of on the top of your head. We call it dorsal lateral pre-frontal cortex.

[Damien Blenkinsopp]: And it’s been pretty effective. So, some of the other areas you noted down, just for example, which you already kind of mentioned, was being tired, being stressed. Which of course is a huge thing these days, because who isn’t stressed, and we hear a lot about the health impacts of that.

So that’s an interesting thing. Slow; being slow, being forgetful, and you’ve mentioned sad and depression. And then even treatment of certain brain disorders, or diseases potentially.

[Dr. Michael Weisend]: Yes.

[Damien Blenkinsopp]: So this is kind of looking at the future, and you’re TEDX presentation was aimed at the layman. I thought you did a great job, it was very understandable, even by me. So, yeah. I think you achieved that objective, and I encourage the listeners to go and check that out, before, potentially, you listen to this. It might be a good intro to get started with .

I thought what we’d now is take a little step back and talk about tDCS. What is tDCS? Where did it come from, how long has it been around? What’s kind of the basis for using this versus some other potentially similar technologies? Why are you focused on this one?

[Dr. Michael Weisend]: I can tell you why we’re mainly focused on it, and that’s because it’s inexpensive and it’s very light, and it could be put into a wearable for just about anybody.

So, where did it come from? Well, Luigi Galvani, back in the 1700s, used to shuffle around on the carpet and generate static electricity, and then touch the nerves that were attached to frog muscle in order to demonstrate that electricity caused the muscles to move. And there’s even some stories, some anecdotes, from the ancient Greeks and Romans, where electrical fish, electric eels, were touched to people’s heads in order to get rid of headaches.

So, we’re not talking about something new here. This has been around, it was used in the 1800s to try to cure paralysis. Some very good work was done on this in the 1960s that we rely on still today.

But there’s been a dramatic increase in the number of locations. I think primarily due to the fact that we have now abilities, based on neuroimaging, to look into the brain and actually do a really good job of trying to place current into critical brain structures for specific tasks, instead of kind of taking a guess at where those critical pieces of brain might be and placing electrodes in locations on the head that are based on lesions in literature.

So, the lesions in literature approach will get you so far, right? So, the lesions in literature approach more or less is the idea that if you take a piece of brain out, and a function stops so, for example, speech stops, or being able to move your hand stops then there’s this kind of fallacious idea that that function resides in that spot. And so people have turned that on its head and said, well if function resides in that spot, and we put electricity into that spot, we should change the function of moment, or speech, or what have you.

But there’s a problem with that, and if you want to think about this in a kind of a colloquial way, let’s talk about where right turn is in a car. Right? Is it in the driver’s brain? Is it in the driver’s hands? Is it in the steering wheel, is it in the steering linkage, is it in the front wheels? Right, where exactly is it?

And so, in that case, that’s a lot like the brain. Because in order for you to speak, there has to be a whole bunch of ares working together. And in order for you to move your hand, there’s a whole bunch of areas that are working together. Function does not reside in one single spot in the brain. Behavior is supported by a network of areas that work together.

[Damien Blenkinsopp]: That’s very interesting. So are you talking there about the connections between, say, the hand and the brain. And these days we also hear about the gut brain access, and the relationship between the gut and the brain.

Of course, you’re focused on specific areas of the brain, but do you think one day that we would be looking at stimulating other parts in tandem? I understand that you’re not stimulating the hand and the brain at the same time in your work, you’re focusing on the brain. So, could you sort of extrapolate a little, that idea?

[Dr. Michael Weisend]: Exactly what you are talking about now, where you stimulate in the periphery in order to influence the central nervous system or influence the connection between the brain and the central nervous system is right now the topic of a DARP request for grant proposals.

So it’s of the Electrx, E-L-E-C-T-R-X, program, or electrixs program, and they’re looking for a couple of things. One, what are the biomarkers that you might monitor in order to know that something’s amiss in a system. And two, what are the pieces of equipment or the gizmos that you might use to monitor, and then interact with the system electrically in order to change function.

[Damien Blenkinsopp]: I just thought of an analogy for people at home, because they’ve probably seen some of the info commercials on TV. You know the old electricity stimulated ab belts people would wear to get abs, Six Pack Abs machines. I’m not sure if they every worked, but is that exactly the same technology?

[Dr. Michael Weisend]: It’s not the same exact technology. So tDCS is something that turns on and stays on at a steady rate. So if we say two milliamps, it comes on slowly, comes up to two milliamps, stays at two milliamps for a period of time, and then ramps back down to zero. The ab machines or, if you go to PT they can do this too, it is physical therapy they can stimulate your muscles in order to make them move, to break up spams and stuff like this.

And those machines work on an AC current. Or, an AC current is one that alternates up and down. It’s like the electricity that comes out of your wall socket, but at a very low, low, low level. Right? You wouldn’t want to try this by sticking wires into a wall socket, you’d kill yourself. And that AC current can ramp up quickly and ramp down quickly, and it’s that ramp up quickly and ramp down quickly that causes the contraction of the muscles.

[Damien Blenkinsopp]: So do muscles work rather than an on off basis, they work on an AC because it goes negative, positive.

[Dr. Michael Weisend]: Yeah. What you’re essentially doing there is you’re causing, the AC current causes the release of neurotransmitters at the neuromuscular junction. So at the place where the nerves come into the muscle, there’s a gap between the end of the nerve and the beginning of the muscle, and there’s a substance that travels across that gap to cause the muscle to contract.

It’s called acetylcholine. It’s what’s called a neurotransmitter. And so the electricity, the AC current simply causes that acetylcholine to be released, and the muscle to contract based on the same mechanism that it would if impulses came down the nerve.

[Damien Blenkinsopp]: Great, great. Thank you for the clarification. Now coming back to the brain.

So we’re using tDCS, which is a direct current. And roughly how much time do you typically apply it for, or does it really vary according to what you’re doing? And what is the reasoning for a direct versus an AC? It’s a constant stimulation versus intermittent stimulation of the brain. What’s the reasoning behind that?

[Dr. Michael Weisend]: There are people who use AC currents on the brain. Those also cause changes in behavior. We use DC current in this case, because the way we think tDCS works is that instead of directly causing activity in the brain, what tDCS appears to do is to essentially turn the amplifier up, or the volume up, just a little bit on the brain areas that are receiving stimulation from the outside world.

So, when I think about this, I think about two terms, right. One is endogenous stimulation, which means from a natural pathway inside, and exogenous stimulation, which is from outside and maybe not through a natural pathway. So, if you take tDCS, it is an exogenous type of stimulation where you put it on the head. A whole bunch of electricity goes through the scalp, and a little tiny bit of it gets through the skull, and into the brain.

And that little tiny bit causes the neurons, we think, to be slightly more reactive when there are stimuli coming in through endogenous pathways, like the eyes and the ears, and smell, and etc, etc. Touch, right. So, in that case, you get a slightly larger reaction in the brain to stimuli that are coming in through endogenous pathways as a result of this exogenous tDCS stimulation.

With an AC current, you’re doing something different. So the AC current, essentially, if you put in a sine wave a sine wave is just a fancy word for something that goes up and down equally around zero amps, or zero volts then what you do is you’ve entrained rhythms in the brain.

So if the stimulation is at 10 hertz, it means the stimulation is going up and down 10 times per second, then you will, in the brain, get a sympathetic rhythm at 10 hertz, which is either enhanced in amplitude or generated de novo from whole [unclear, caw 17:33]. And so in that way, you have to with TACS, which is the alternating current, you have to know first that you’re getting electricity into the right areas, but then you also have to know that 10 hertz is important for your task. Or 12 hertz, or 40 hertz, or whatever you’re going to put in.

So, again, we go back to this place where I assume I’m dumb, and what I do is I put in the simplest thing I can think of and in this case it was DC current that would enhance a reaction to naturally incurring stimuli in the environment, without the baggage of having to know now not only where to put it, but also what frequency is important for the task. So it just starts getting more and more complicated as you start adding in things like, oscillations, random noise. There’s a variety of things you can add in.

[Damien Blenkinsopp]: Basically, it makes more sense to focus on tDCS because there’s less variables involved at this stage. And it sounds like we’re still on the cutting edge, and to introduce more variables is just going to make the task that much more difficult to actually use effectively, or to make research start paying off, in terms of coming up with answers. Is that the theory?

[Dr. Michael Weisend]: Yeah, that’s it exactly. I prefer to keep it as simple as possible, and try to work out the simple stuff before we, walk before you can run.

[Damien Blenkinsopp]: Exactly. Great, great. I think people have also heard of different frequencies of waves in the brain. I own a Muse, this device EEG consumer device you’ve probably heard of. And that tracks some of the different frequencies, alpha, beta, delta. Delta waves in the brain. So we’re just talking about some frequencies.

Are they related, because it sounds like when you wear these EEG devices that it’s tracking the whole brain, right? It’s like we’re having the same frequency of waves for our whole brain. But it sounded like, when you were just talking about this, that we can have different waves and different areas on the brain, and it’s actually a bit more complex. So what is the kind of model that exists today?

[Dr. Michael Weisend]: Different frequencies are thought to do different things, and it’s most clearly seen in sleep. So, in waking, you have beta activity, alpha activity, gamma activity, all across the spectrum. But when you go into sleep, you go through periods where you drop out lots and lots of the other frequencies, and you get delta, which is one to four hertz. And then when you dream, when most people dream, you come back up and your brain almost looks awake again. And then you drop into this delta.

So, what do the difference frequencies mean? Well there’s all kinds of theories out there, but I would say one that I think has really kind of held water for a while is that the oscillations are the way that different pieces of brain talk to one another.

Okay, so if you are engaging this network that we talked about before, like left turn in a car, you have to have oscillations that are complimentary in pieces of that network that are talking to one another. And it might not be that they’re the exact same frequency, but it’s important that they happen together.

So you might see alpha, or beta activity in the occipital lobe when you’re looking through an image, and that might elicit gamma activity in the frontal lobe, or one of the temporal lobes. But they are temporally related, and they are related by what’s called phase, where when the cycle of one is going up the cycles of the others are in a specific relationship to that. They can also be going up, or it could be driving that phase down.

[Damien Blenkinsopp]: Okay. It sounds pretty complex.

[Dr. Michael Weisend]: Oh, it’s the most sophisticated math in neuroscience right now, is trying to figure this out.

[Damien Blenkinsopp]: Okay, right. So, again, focusing on just stimulation versus non-stimulation, versus all of the different frequencies. You used a variety of neuroimaging technologies to try and target which areas were effective for which tasks. Which tasks have you been looking at? Like which kind of case studies, where have you worked on, to give people an idea of what kind of applications in learning you’ve been looking at?

[Dr. Michael Weisend]: We have done a lot of work for the US Air Force, and the US Air Force has images to look through for targets of interest that you might want to track, you might want to forget about. Whatever that’s going on on that day.

So, in order to think about, what is that game really about, it’s really like Where’s Waldo. Right? So let’s say that you are looking for a specific individual. If you’re looking for a specific individual, you’ve got to go through hours, and hours, and hours of imagery in order to complete that search. So, the things that are critical to completing that search are vigilance, knowing what the target looks like, knowing what the target looks like when it might be disguised.

So, we’ve looked at all that kinds of stuff to see if we can get people to, essentially, play the Where’s Waldo game for a variable period of time, and in that period of time make fewer errors, in terms of either losing the target or mis-identifying a target, or kind of falling off the wagon in terms of attention. All of those things are what we’ve looked at primarily.

We’re working now with people who have traumatic brain injury, and in this case we’re looking at veterans who have traumatic brain injury. In those veterans with traumatic brain injury they report lingering symptoms in terms of memory, attention. And that’s why we think we can have an effect, is because we can, in a healthy person, we can have the effect on memory and attention.

And so we’re now going to try to push that stuff out to people who really need it. To get back to a space where they can function in society as a healthy person, instead of trying to enhance the abilities of already healthy people.

[Damien Blenkinsopp]: So when you’re talking about injuries, is it structural damage, or is this post-traumatic stress disorder, or is it a kind of variety of different symptoms reports of which aren’t necessarily structural? So there’s not like bits of the brain actually missing or atrophied, or is there a range of different conditions?

[Dr. Michael Weisend]: So it’s a range of different conditions. It’s almost always the case that somebody who has lingering symptoms after traumatic brain injury has at least damage that is subtle. It might not be visible on conventional CT scanning, CAT scanning, or conventional MRI, but if you do some highly detailed and highly specialized scans, it is often noticeable. And one of those techniques in MRI is called diffusion tensor imaging.

The brain is connected, one end to the other and side to side, by fluid filled tubes called axons. And those axons carry electricity from one piece of the brain to the other in this network, like we talked about for right turning a car. So, you can imagine that your car wouldn’t turn very well if you pulled part of the linkage apart that moves the front wheel. So you can turn the wheel all you want, but the front wheels might not respond.

So in people with traumatic brain injury who have lingering symptoms, a specialized test called diffusion tensor imaging can often reveal that damage to the network, which is not obvious in more conventional, easily done, turn-key or canned scans that you would get at your local hospital.

[Damien Blenkinsopp]: Let’s talk about the different ways you’re quantifying changes here. Just to give people [an idea].

Are we talking about functional versus structural? Is the important thing you see as the functional aspect? Because the structural technologies I think most people are used to are the CT scan, the MRI, magnetic resonance imaging, which basically gives you a map of the structure of the brain.

If you add a bit of contrast, it will come up with some of the white matter, which is still basically the structure of the brain. It doesn’t necessarily say which bits are active versus which bits are non active. And in technological language, they say functional in terms of trying to understand how the brain’s actually working, whether it’s active or non-active.

So is most of the work you’re doing looking at understanding whether it’s active or non-active, or are you also looking at the structural changes? Because another thing that comes into this is plasticity, and neuroplasticity, which has over the last ten years has become something. There’s a few books about this, and it’s been quite hopeful in terms of saying, if we do get structural damage then we have this ability to regrow, redevelop, and overtime we can develop our brains. And so it kind of gives us this optimistic look of the brain that we can kind of adapt and grow it the way we want to.

I guess the other question behind this is also when you’re stimulating it, are you actually affecting neuroplasticity, and trying to emphasize an area of the brain to actually grow structurally? So that’s a lot of questions all wrapped up into one. I don’t know if you can remember all of them.

[Dr. Michael Weisend]: There were some tricky questions in there. But let’s start by the difference between structure and function.

So, structure is looking at your TV, or computer monitor. There’s a nice space there, and the reason that light appears in the specific places it does is because of the way it’s wired internally. But without function, the picture is black. Right? You don’t have a picture.

When we look at function what we’re doing is we’re looking at the places. Not only locations, which are defined anatomically, but by when those little pixels in the brain, the areas in the brain that are analogous to the pixels, turn on and off as a result of either being stimulated, or sensing information in the environment, processing that information, and then acting upon that information.

So, those are the three places where we can actually target stimulation. Where you sense, where you process, and where you act. You might think, and it is the case, that if we were going to try to influence behavior, we could pick one of those things to look at.

So you might try to say, let’s make people more sensitive to differences in light and dark. Maybe that will help them play Where’s Waldo. Or what’s more critical is pressing a button fast. So, then you might look at the place where people act. Or you might say, what’s most important is how you interpret the information. And so then you might target stimulation to look at where it is being processed in the brain.

So now if we move on to one of the next questions, which, I’m sorry, I forgot. So we were talking about…

[Damien Blenkinsopp]: I threw in plasticity in there as well.

[Dr. Michael Weisend]: Neuroplasticity is a fancy term for something that is very simple. And that is a change in the brain that sticks. No more complicated than that. And we call changes in the brain that stick, we call that learning. So neuroplasticity is a way that the brain captures information and holds it to change behavior.

[Damien Blenkinsopp]: Okay.

[Dr. Michael Weisend]: With neuroplasticity, how does that work? So let’s think about how that works first. So there’s an old adage, and as far as we know it’s still true, but it was first written about in 1949 in a book by Donald Hebb. He said this in very fancy terms, but what it boils down to is cells that fire together, wire together. Okay?

So if you think about Pavlov’s dog. Pavlov’s dog learned to salivate to the sound of a bell in anticipation of food being given to it. So how does that work? Well it only works, actually, if the bell and the food are presented together.

So once you have the bell and the food presented together a few times, then what you have is the bell starts to cause salivation just like the food caused salivation. And it’s when those two things are presented together the brain changes its wiring to connect them, so that you can now change behavior.

So what the heck does tDCS have to do with any of this, right? So now think about what we talked about before, where we said when you stimulate the brain you make it more reactive to the natural environmental stimuli. So, when it’s more reactive you have a greater number, at least in theory, a greater number of cells that are active. And you have additional opportunities for this plasticity to take place, because more cells firing, more cells wiring, and a more rapid acquisition of information that you can measure by changing behavior.

[Damien Blenkinsopp]: So it’s basically when the brain’s operating, you’re encouraging one area to take the lead versus another.

[Dr. Michael Weisend]: Yeah, I think that’s a good way to summarize it.

[Damien Blenkinsopp]: Alright.

[Dr. Michael Weisend]: All that fancy crap, why is it there.

[Damien Blenkinsopp]: We made it. Okay. Well thanks for all these clarifications, it’s great. So what technologies have you played around with, and which do you think are the best for what you’re trying to achieve here?

The one that I saw mentioned one time was the functional MRI. Another one was the MEG, which is something I hadn’t heard of before, actually. EEG, I saw as well, which I feel like was an older technology and not as accurate, but I don’t know. That could be just like branding and marketing, and it’s got into my head, and it’s firing the neurons in that kind of area, so I feel that way.

So when you’re looking at these technologies, which do you feel are the most useful for your work at the moment, and is that going to develop soon into different ways? Are you going to be using different, more accurate technologies which is going to be able to further this kind of work?

[Dr. Michael Weisend]: So I prefer magnetoencephalography to the other techniques for a couple of reasons. So, magnetoencephalography measures the magnetic energy that your brain generates. When you think about electrical activity, electrical activity is always accompanied by magnetism.

You can use your right hand to visualize this. If you point with your thumb at something, and imagine there’s an electric current running along your thumb on your right hand, then there’s always a magnetic field that wraps around any current that would travel in the direction if your thumb. There’s always a magnetic field that wraps around it in the direction that your fingers naturally curl on your right hand.

So, with EEG, what we’re measuring is that electrical current that’s running along your thumb. With MEG, what we’re measuring is that magnetic field that is wrapping around your thumb. So, why would we do that the technology’s way more expensive and way more difficult to maintain?

The reason we do that is because your scalp and skull are transparent to magnetic fields, but your scalp and skull are opaque, or mostly opaque, to electrical energy. Okay? So anything you see with EEG, is kind of blurry and smeared out. But the things you see with MEG are a very clear reflection of what’s going on in the brain.

But it comes with a cost. Everything, there’s no free lunch, everything comes with a cost. So, MEG has a lot more information, and as long as you take the time to figure that out then you can learn additional things about the brain.

But, in some cases it’s too much information. It’s one piece of brain talking on top of another piece of brain, on top of another piece of brain. And it’s very difficult to sort out.

So EEG gives you kind of an oversimplified picture, MEG gives you an overly detailed picture, and there’s no Goldilocks area there, where this one’s just right. You lay down your bets and you go with one of the other.

I err on the side, again, that I’m dumb. And so I want the maximum information I can get to try to learn the most. And so that’s why I prefer MEG.

[Damien Blenkinsopp]: Great. And, as you said, it’s a lot more expensive. And it’s newer.

[Dr. Michael Weisend]: Yeah.

[Damien Blenkinsopp]: You haven’t mentioned fMRI. I’m guessing that you’re not using that so much. And fMRI is very different, right? It’s about blood flow, and blood oxygenation levels. That obviously is a very different approach to tracking function.

So do you say that is relevant, because obviously in the press these days functional MRIs are the big thing in terms of behaviors, and pretty much all the brain studies that are reported these days contain these fMRIs. So how do you look at that, and why don’t you use those? It seems like you don’t use those.

[Dr. Michael Weisend]: Yeah, functional MRI I use a little bit, not a lot. But I’ll tell you, I have a couple of issues with MEG, oh, no sorry, with fMRI. One is it’s not a direct measure of neural activity, it’s an indirect measure of neural activity.

Having said that, it also has very good spatial localization of an activity. Now superior to MEG or EEG. If what you’re about is all spatial, then you can’t get better than fMRI.

What I argue is that not only is the spatial location of stuff important, we also get the on. and the off, and the frequency, and all that stuff with MEG and EEG. So I just feel there’s more information there, and I prefer them for that reason.

[Damien Blenkinsopp]: So basically, blood flow moves slower than electricity activation. So you’re looking at the thing that’s moving the fastest, and as you’re saying, it’s the first measure, rather than a secondary proxy.

[Dr. Michael Weisend]: Yeah.

[Damien Blenkinsopp]: Great.

[Dr. Michael Weisend]: Neurons can turn on and off hundreds of times a second. And so, MEG and EEG can both measure that, but [with] fMRI the maximum time resolution is on the order of seconds.

So, if you use the analogy of the ocean, if you take a picture and you see the waves coming in, that’s MEG, EEG. If you took a film and then averaged it all together so that there were no waves, right, all you got was the general level of the water. That’s fMRI.

[Damien Blenkinsopp]: So all of these technologies we’re talking about, EEG is used in the consumer world today, but the fMRI and MEG aren’t because they’re just damn expensive. So they’re not used for diagnostics as yet.

In terms of that, how applicable are they? Because we do this research with them. Is the research you find directly applicable to everyone? So if you analyze someone in the military, you analyze his brain. And we were just talking about plasticity, and when they talk about plasticity they often talk about how sometimes different areas of the brain can be doing the same thing.

So I was wondering, do you feel like everyone’s brain is this kind of a standard you can rely on? If you establish a pattern by analyzing 10 people in the military, can you now say that if you want to work on that same activity, that same task, and improve the learning, could you now apply that pattern you’ve established to anyone in the world? Or are there limitations to how broad this can be applied?

[Dr. Michael Weisend]: Well this can depend on your task, right? So if you’re interested in where is the piece of brain that moves the finger? That’s pretty standard across different people. If you are interested in languages, like reading languages, well that’s pretty uniform in the Western hemisphere, but in the Eastern hemisphere, where characters are more prevalent, then it’s a little less like Western hemisphere style.

If you are now interested in what makes this person more reactive to, more anxious than the next person, now we’re talking about each individual person learning about each individual person. So, it really kind of depends on your question what level of detail you need to go into, and the analysis.

For us, we’ve tried to focus on things that are on the level of language, where we can get good generalization across people of similar cultural background.

[Damien Blenkinsopp]: Great. Well, let’s talk about some of the specific results you’ve seen, because we’ve talked a lot about all the modalities.

Now what’s the kind of rewards you’ve seen for this activity? What kind of improvements have you seen compared to controls? What benefits do you basically see in this technology that you’ve actually kind of proven and carried out case studies and research, and you got the data behind them?

[Dr. Michael Weisend]: So we’ve replicated several times that we can, by careful placement of tDCS and implementation in a specific task, we can double the rate of learning in a Where’s Waldo type task.

Another thing; a very good colleague of mine, who works at the Air Force Base, Andrew McKinley, has recently demonstrated that you can give people who are sleep deprived the exact same benefit as a cup of coffee by doing brain stimulation. One of the interesting things about that is that and I alluded to this in my TEDx talk you don’t have all the effects on the liver and the kidneys and the lungs and the brain, with brain stimulation that you might have by taking a drug to influence being tired.

So, when you drink a cup of coffee and you are benefiting from the wakefulness as provided by the caffeine, there’s as much caffeine in your elbow as there is in your brain. And what we do with tDCS, really, is take the elbow out of the equation, and direct the stimulation at the organ that is most responsible for behavior.

[Damien Blenkinsopp]: That’s great, because I mean, caffeine is a great example there. I myself am a bit tired I’m jet-lagged from travel so I’ve had a couple of coffees today. And I also have documented adrenal fatigue, so it’s not the best idea for me.

But for me, if it was proven that I could use a tDCS unit at the moment while I’m fixing my adrenals, it probably would be a pretty wise idea, because then I could quit coffee and use tDCS when I had to get some work done.

[Dr. Michael Weisend]: Right.

[Damien Blenkinsopp]: And so, if used, is it applicable for people at home? Can they have a look at the research and use a home tDCS unit and actually apply that today? Or have we got still a little way to go in terms of, let’s just take that specific application right there.

[Dr. Michael Weisend]: Well I would say tDCS at present is a very nice, kind of cute, kind of interesting, laboratory trick that under specific controlled conditions, we can demonstrate it has an effect. If we select out lots of variants in the studies.

So, for example, if somebody hasn’t eaten normally, we reschedule them. Or if somebody had a big night out last night, and they’re a little hungover, we reschedule them. If somebody says they have some either brain disease or are taking some drug that might influence the brain, we don’t allow them into the study. So when we do our studies, we try to operate in as pure a space as possible.

And I don’t think there is a single example yet of the application of tDCS or any other brain stimulation technology in a population that takes all comers, regardless of the issues that they bring through the door, whether it be, you know, addiction, or ADHD, or tiredness, or a hangover. I don’t think there’s a single study that takes all comers and still demonstrates a good effect.

That’s important for the DIY market and consumer market because it has to have its effect when anybody comes through the door. If you buy one and it doesn’t have an effect, you’re going to be upset. That’s a hurdle that has to be jumped before we’re ready for the consumer market, I think.

[Damien Blenkinsopp]: There’s a DIY tDCS movement that started up just recently, right? I actually heard you talk on one of their podcasts. Versus, before that, there’s basically a few companies selling units.

What is the difference between those? Is DIY more about constructing your own units and kind of figuring out the positioning, versus in the units that were bought before that were basically set up for the consumer market, and so they’ve been pre-established by some companies and with a better research backing?

[Dr. Michael Weisend]: Yeah, there are a couple of companies through which you can buy tDCS units now. There’s not a single company who has a validated device for their technology, that doesn’t exist. I mean, these are literally people I’m biased here, so you take into account that I’m biased.

And I’m biased for two reasons. First reason; the devices that are out there don’t take care of the electrode-skin interface. I have the scars on my arm to prove that you can do this in a dumb way and hurt yourself.

So, I look at my forearm now and I can count, as we were trying to generate good technique with electrodes, I can count six scars on my wrist where I burned myself very badly. The electrode-skin interface is critical to take care of, or you’re going to scar yourself up. And that’s not good.

The second reason I’m biased against DIY home use is that the devices that are available have not been run through any studies, for safety or effectiveness. And so I really worry that because we don’t have documented safety, effectiveness, and feasibility that what is really going to happen is there’s going to be a bunch of people who fail to get their desired effect, burn themselves, and it affects the ability of other people who are being careful to move forward to get this technology into the hands of consumers, patients, and other interested parties that might be able to benefit from this.

[Damien Blenkinsopp]: Great. So to kind of go with that, what kind of advice would you give to someone who’s interested in playing around with this? Is there any safe way to do this now? Because we’re talking about safety here. So safety concerns. And I guess most people are going to be a little bit wary of applying electricity to their brains.

Beyond skin burns we’ve talked about skin burns could there be potential other damage? Say you stimulated the wrong areas? Or, maybe some of these units enable you to turn the charge up higher, and is that something that could cause some kind of brain interruption? I’m not going to say damage here, it’s a big word, but could it cause some kind of issue for you?

[Dr. Michael Weisend]: I believe that’s possible. So I just came from a conference in New York last week, and there’s an active debate in the community whether electrical brain stimulation is more like caffeine, where, “Nah, let it go, let’s see what happens.” Or, more like a cigarette, where, you let it go, you see what happens, and you discover down the road that you might not have done something correctly, or you might have hurt some people.

What is it? Is it more like caffeine, is it more like a cigarette? There’s not a single study right now, not one, that has done imaging long term stimulation with tDCS, and then brain imaging again to find out if the technique ultimately does cause changes in the brain that might be deleterious. We just don’t know. So, we’ve got to be careful about that.

What I would say to the DIY community is that long term study doesn’t exist. The other thing I would say to the DIY community is the exact same thing I said to people I met in Los Angeles a while back, with people for the Olympic Team. Pole Vaulting team, in particular.

And they were asking if we could use tDCS to enhance performance, because, little did I know, but I guess pole vaulting is one of the most cognitively demanding sports in track and field. Where you have to put a giant sequence of things that are done perfectly together in order to get a good pole vault.

[Damien Blenkinsopp]: Well I’m guessing also, in terms of neuromuscular activation, tDCS could be helping increase your strength, basically, by enhancing neuromuscular activation. Is that part of that too?

[Dr. Michael Weisend]: Well it reduces your perceived effort. That helps with things like fatigue. But what I said to them was, what do you want to ingrain in your brain? Is it the case that if you have a bad pole vault, you want that to stick? My guess is no. But if you have a good pole vault, you want that to stick.

So, I worry that right now, given our level of understanding, if you just put it on somebody’s head and they go pole vaulting, what if you make bad technique stick? And be hard to get over? You might actually hurt your Olympics team, or your Olympic athletes. You might decrease their performance instead of increase it. And so, I was pretty dubious about that, and I said I don’t think we’re ready to do this with you guys. I’m sorry.

[Damien Blenkinsopp]: That’s a great example, and it sounds like it connects with the argument that’s currently going on in neurofeedback at the same time.

[Dr. Michael Weisend]: Yes.

[Damien Blenkinsopp]: Because they’re asking, okay so we’re not sure of where we’re going. So there’s different neurofeedback technologies. There’s some that just try to enhance what you have, kind of like help your brain to know what it’s doing, and then there are others which are kind of pointing in a direction. And people are a bit nervous about the one’s pointing in a direction.

Which I guess what you’re saying is I don’t know which direction in most of these applications we should be pointing the brain. You know, should we be activating this more? We’re making an educated guess with the MEG and the other technologies right now.

How confident do you feel in those applications, or are you feeling this is going to be a research, and potentially a medical use, where people are actually going to get big benefits? It’s not just going to go from healthy to a performance increase, but it’s, you know, “I’ve got some health issue, I’ve got some brain issue, and maybe I can get back to normal.”

So that’s generally where technologies start, because it’s in a more extreme, desperate situation, and there’s a bigger upside to using technology. It’s like, am I going to be a little bit non-functional for the rest of my life, or am I potentially going to get back to normal functioning? So could you highlight what your opinion on that is?

[Dr. Michael Weisend]: However you decide to alter your brain, there’s no free lunch. Right?

So there’s very good data out of Roi Cohen Kadosh’s lab at Oxford that if you apply tDCS to enhance mathematical ability in one field, or in one type of math, you decrease your ability to do a different kind of math. And that is potentially an issue, in the case that how would you best apply this for your specific application?

Well in the DIY market, you don’t even have this choice. What you’ve got is one electrode configuration, one type of electrode, one recommended spot on your head. You don’t even have the freedom to apply this to your specific situation that you would like to change. So I’m worried that what’s out there now, especially for the DIY market, is gimmicky and quirky, and maybe dangerous.

I mean, there’s very little in the way of harm. The side effects are very low with tDCS, but I worry that there’s always somebody that’s going to pushing that limit, and pushing that limit, and having limited options. Maybe turning the current twice as high, using it twice as often. Soon you’re going to have somebody who hurts themselves, and then we all feel bad about that. Nobody feels good about that.

[Damien Blenkinsopp]: Right. Great, thanks. Alright, so tips for someone who is going to do this at home anyway, [despite] listening to this interview, which I’m sure there’s people out there, because I see a lot of talk about tDCS, and one of my buddies has been playing around with it.

So, if they were going to track something that might help them to know it’s actually improving, versus worsening what they’re up to, are there any biomarkers or anything like that you would advise they watch so that they can tell if it’s probably a positive versus a negative? Or is it kind of very difficult because it’s quite task specific, so you kind of need to look at whatever the task is, and try to measure somehow that you’re getting better or worse at it?

[Dr. Michael Weisend]: So, I would say there’s two things that we know we’re fairly close to clinical application on. One is depression. So you might want to have somebody monitor their mood, and do mood ratings every day to find out if when they use tDCS does it alter their mood. And I would say the other thing that you might have somebody do is to monitor their perceived effort.

So let’s say that you go to the gym, and you get home and you feel awful, and you get old and fat like I am. You go to the gym, and you’re tired and sore, and don’t feel so good the next day. So, does your willingness to return to the gym, does that change when you use tDCS? Or your willingness to engage in a task that’s difficult for you? Does that change?

Pay attention to that kind of stuff. I hope that if you are going to go ahead and use this against my recommendations I do not recommend this at all you do it very carefully. Take care of your electrode-skin interface, and monitor something that we know for a fact has, well we know that in a carefully selected population we can have a meaningful effect.

[Damien Blenkinsopp]: Thank you. That struck me as very meaningful measures, which could hopefully avoid them going backwards for a long time if it actually does turn out negative, and hopefully give them some positive feedback.

In terms of this whole area, where do you see it going in the next five or ten years? Or where would you hope it goes?

[Dr. Michael Weisend]: I hope a couple of things. So, first I hope that companies like, there’s a company called Thync that is going to come out with a consumer device for electrical brain stimulation here within the next couple of months. And so, I hope that Think’s safety record is as stellar as they hope it will be.

I also think that you’re going to have combined therapies, or closed loop therapies, that are going to lead the field. So, let’s say that somebody is sitting there at their computer, and when we monitor their eye movement what we notice is that their eyes are not paying attention to [the] task. And so we could turn on tDCS in order to help them stay engaged with tasks when we notice that they’re deviating from a task.

I think those are applications that might come. So especially I hope that the safety’s good, because I know people are going to push it out there whether we like it or not, and I hope that people start thinking about ways to put the stimulation in a closed loop to help people when they need help, and turn it off when people are doing fine.

[Damien Blenkinsopp]: Great, thanks. What’s the most exciting thing you think, in terms of opportunities? So you looked at the downsides there, and hoping that the downsides I can see, you’re like, “Oh, I hope this doesn’t cause a mess.”

So, what would be the upsides over the next five or ten years for you? If you were to get involved in research, or if some of your projects were to work well and maybe develop over the next ten years, what would be the exciting opportunities for you?

[Dr. Michael Weisend]: I would say that the traumatic brain injury work really has me quite excited. So in traumatic brain injury, there really is no good therapy. There is a whole lot of, try it a different way, take this drug to deal with problem A, take a different drug to deal with problem B, take a third drug to deal with problem C. And hope that those drugs interact in a way that’s friendly and works.

Something else like multiple sclerosis. I mean, [there’s] really no good treatment. I keep hoping that one of these brain stimulation technologies is really going to enter that space and make a difference for people right now that really have no, no good treatment available.

[Damien Blenkinsopp]: Have you seen structural change influenced by tDCS? So, like if you stimulated an area for a while if it had atrophied at all, would you potentially see some de-atrophying, or growing back, or anything like that?

[Dr. Michael Weisend]: We’ve seen white matter changes with tDCS. So, white mater changes are the wires that connect different pieces of the brain, and it looks to strengthen them.

[Damien Blenkinsopp]: So white matter is myelin?

[Dr. Michael Weisend]: White matter is axons that are coated with myelin. So it’s the part of the neuron that’s coated with myelin. And so, it looks like the myelin coating is getting stronger.

Now, this is not yet verified by a lot of studies, but I had a conversation with a researcher from Harvard last Sunday night. They have seen similar things to what’s going on in our lab in Dayton, Ohio. So we’re actively working together to see if we can understand better how we might be affecting myelin and white matter using tDCS.

[Damien Blenkinsopp]: Right. But there’s no grey matter changes?

[Dr. Michael Weisend]: Not that we’ve seen.

[Damien Blenkinsopp]: Okay, great.

[Dr. Michael Weisend]: Not that we’ve seen.

[Damien Blenkinsopp]: So, in terms of someone at home learning more about the types of tDCS, and potentially some of the other things you’ve been talking about today, where would you direct them to? Or what would be good sources of information where they could learn more, and get more into depth? Especially if they’re going to potentially use this, [or are] thinking about using this. Is there anywhere you would direct them to learn more?

[Dr. Michael Weisend]: Well, if it’s a DIY person, there’s a website called DIYtDCS, and it has a whole bunch of audio interviews and blogs by a guy who really does keep up, pretty amazingly, with the literature. I can’t keep up with the literature, but this guy does a great job.

So, there’s a great deal of information there, there are some good interviews by a lot of real top flight scientists. So that’s a good reference, and I would pay attention to the idea that every single person who is on there who’s a top flight scientist worries that this is going to hurt somebody at this point, and that we need to be very careful.

[Damien Blenkinsopp]: I mean, it sounds a little bit comparable to nootropics. There’s a wide variety of nootropics out there today, and we don’t know the long term effects of them. For many of them, sometimes it’s even anecdotal. Some people say they work, and some people say they don’t.

Would you compare it to nootropics? I don’t know how much you know about nootropics, but it’s another approach to stimulating and changing. Another approach [through] chemistry rather than stimulation. But would you say it’s as risky, or potentially the same?

[Dr. Michael Weisend]: Well I would say nootropics is not a new idea, right? I would say caffeine is nootropic. So, is it the same, is it difference? I would say people are often pushing the limits of their capability, and would like to be able to go that one more step.

And so, in that sense, I think, the nootropics and the brain stimulation stuff are really partially the same desire of individuals to better themselves, and to be able to push that one more step. And so, I’m all about that. I just think that we need to approach it in a reasoned and careful way.

[Damien Blenkinsopp]: Great, great, thanks. Rounding off into, I’d love to get to know a little bit more about. You know, you’ve obviously taken a very vigorous approach to this area. How about yourself? Are there any data metrics that you track for your own body on a routine basis, to gain insights or improve health, longevity, performance, or any other concerns?

[Dr. Michael Weisend]: Yeah I wear a band on my wrist all the time that tells me about my steps, and it also does actigraphy that gives you some insight into sleep. And I look at it every day, and I download the information. It looks like I’m reaching about half my goal all the time instead of the goal I should be shooting for.

[Damien Blenkinsopp]: I see you smiling there, so it sounds like you’re happy that your meeting those goals.

[Dr. Michael Weisend]: Yeah, well I mean, it’s better than zero. And it also, it kind of helps you think about being more healthy. It kind of prompts you.

So my wife and I are very much, the little town we live in has restaurants that are about a mile and a half away, a grocery store that’s about a mile and a half away. And we often walk to the restaurant or walk to the grocery store. And I’m not sure we would have done that if I didn’t have this little thing on my wrist bugging me all the time saying, hey, get out of your chair and go do something.

So, I use that kind of thing. I mean, we all use devices that help us regulate our activity. I mean one very simple example is an alarm clock. It aids in your sleep-wake cycle. Another thing that people often use is a meal at a scheduled time. It helps them to set the tempo of their day, or to set the day up so they are meeting expectations. So, there’s all kinds of these little things that we use, that we monitor, that we impose upon ourselves in order to help us get to where we want to be.

[Damien Blenkinsopp]: Great. Can I ask which tracker are you using on your wrist there?

[Dr. Michael Weisend]: Yeah, I use the original Polar Loop. That’s what I typically use. And I use it just because I thought it had the best cosmetic appearance. That was the whole… It was the least obtrusive, least clunky looking…

[Damien Blenkinsopp]: That’s true. A lot of them do look a bit clunky. I guess that’s where Apple’s trying to come into the market, to de-clunkatize it.

[Dr. Michael Weisend]: Well, Apple’s had a history of doing that well when they lead. I’m not sure they have a great history of doing that when they follow. So, we’ll see how that all works out.

[Damien Blenkinsopp]: In terms of tDCS, actually, have you used tDCS yourself? Is it something you have applied to yourself, or are you basically, ìI’m not going to use this technology, it’s far too dangerous.

[Dr. Michael Weisend]: I’ve put it on my head for demos, and I’ve put it on my head to test paradigms. I will not do anything to a subject that I wouldn’t do myself.

[Damien Blenkinsopp]: It sounds like you’ve done a lot then.

[Dr. Michael Weisend]: I’ve probably had it on my head 50, 60 times, for sure.

I do not use it if I need to focus to get something done. And I do not use it if I wake up in the morning and I’m super tired, and I think I need a boost. I don’t think we’re quite there yet, but I’m not afraid of it at all. I put it on my head, stimulated in multiple different ways, to try to basically reassure myself that I wasn’t going to do something stupid to some other human being.

[Damien Blenkinsopp]: That’s a great attitude. Now I’m guessing you’ve got the unit that has good electrodes that aren’t going to burn you now.

[Dr. Michael Weisend]: We’ve developed some electrodes that have never caused a burn.

As a matter of fact, electrodes cause such a little bit of skin reaction that not too long ago we did a demonstration on a film crew that came from New York, from a place called Vocative. And when we took the electrodes off, the skin was a little bit red. And I said to one of my graduate students, take this gel and test it, I think the gel is going bad. And in fact it was.

[Damien Blenkinsopp]: Is that something you could license? Is that a technology that you need to license to other companies?

[Dr. Michael Weisend]: Well we’ve applied for a patent for that stuff, and I am actually in active discussions to do some of that kind of stuff.

[Damien Blenkinsopp]: Okay, last question here. What would be your number one recommendation to someone trying to use some form of data to make better decisions about their body’s health, performance, and longevity?

[Dr. Michael Weisend]: I would say I think about this all the time and I actually regularly do this is when I get up in the morning, have a standard routine, and just kind of meditate for a minutes. Or think through your body, top to bottom, how am I feeling today? What are the things that I could do better if I wanted to feel a little differently?

So it’s almost like a self-check, right? Like you’re doing a system test. Don’t get up at the last minute, run out the door, find out ten minutes into your drive that you have a headache, or your guts don’t feel right today. But get up, have a nice standard breakfast, and just kind of think through from the top of your head to the tip of your toes about how you’re feeling today, and what would be the thing that you might do today to make yourself feel better tomorrow.

[Damien Blenkinsopp]: That’s great. So is that actually a semi-meditative practice, or are you just being quiet, and just trying to be internally focused and trying to see what’s up. Being self-aware kind of thing? Or is it focusing on your breathing, using one of the techniques. Or is it just kind of your own mindfulness, trying to be aware of your body?

[Dr. Michael Weisend]: I think it’s very much mindfulness. So, just yesterday I went out and chopped wood for three hours. So this morning I get up and I’m a little sore. And I think to myself, where am I sore, why am I sore. And it turns out, for god knows what reason, my hands are the things that are really the sorest, from gripping the stupid ax handle while it was wet.

And so, when I think about this, what I think about is now, well, I should stretch my hands, I should be careful to make sure that I’m not repeating that same kind of motion today, if I can avoid it. Just, making sure that you think it through what’s the step you are going to take to make it better, and then actually carry it out.

[Damien Blenkinsopp]: Great. Thank you Michael. I actually start my day with something similar, or at least I try to. I don’t succeed every day, I don’t know if you’re better at that than me. But some phases when I’m more stable. When I’m traveling a lot, it really tends to suffer. Now I’m just kind of getting back into it, and it really makes a difference for me too, just a similar practice to yours.

[Dr. Michael Weisend]: Yeah.

[Damien Blenkinsopp]: So, I can vouch for that from personal experience also. Thank you for the wealth of information. Also, all the tips on safety, being practical about this, and just you’re depth of information today. It’ been super insightful. Thank you very much.

[Dr. Michael Weisend]: Oh, no problem. Glad to help.

Leave a Reply

Is Heart Rate Variability the best biomarker of the time to track our longevity? In this episode we look at why HRV may be the best way to track how well you are aging and the bets being placed on it in Silicon Valley to drive innovation in anti-aging and longevity research.

Previously we’ve looked at using HRV for training and recovery, stress management, and tracking hormesis. If you are new to biohacking, HRV is an easy economical way to start tracking. All one needs is a heart rate strap and phone app.

The activity around HRV in Silicon Valley originates from The Palo Alto Longevity Prize – a one million dollar life science competition to “hack the code” that regulates our health and lifespan. The prize is using HRV as a proxy measurement for longevity, so teams will compete against each other to find tools and tactics to increase the HRV metric – and thereby potential longevity.

“Whenever you want to nurture innovation, you need to have metrics… The reason HRV was chosen was… one, we have decades worth of heart rate variability data…. there is good cohort data, population level data, that suggests that declining HRV is also due to a chronologic age…. [and] unlike most biomarkers in health, HRV can be measured continuously, contextually. You can measure it for 24 hours.”

– Dr. Joon Yun

Today’s interview is with the man behind the Palo Alto Longevity Prize, Dr. Joon Yun. Dr. Yun is managing partner and president of Palo Alto Investors,LLC, which oversees 1.8 billion dollars in assets invested in healthcare. Dr. Joon Yun is board certified in Radiology, was clinically trained at Stanford and received his M. D. from Duke Medical School. He has published numerous scientific articles, and has a column in Forbes magazine. Recently, he agreed to sponsor the Palo Alto Longevity Prize by donating 1 million dollars to this life-science competition.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • By the mid 40’s there are both subjective (able to be felt) examples and objective (not felt) examples of homeostatic capacity loss. (3:46).
  • Prior to middle life, the body’s homeostatic capacity is able to return to baseline (5:00).
  • Aging can be thought of as a decline in the body’s ability to get back to homeostasis due to an erosion of homeostatic capacity (5:27).
  • The healthcare system is centered on returning homeostasis and not homeostatic capacity (5:41).
  • The goal of the Palo Alto Prize is target and nurture ways to improve and restore homeostatic capacity, instead of restoring homeostasis (6:10).
  • There is some overlap in hormesis and homeostatic capacity (9:20).
  • Challenges to the body can increase homeostatic capacity (9:53).
  • The final perimeters of the Palo Alto Prize were announced at the end of 2014 (10:29).
  • Millions of people succumb to aging or aging-related issues. Thus, the sooner we start, the more people can benefit (11:19).
  • This is the first prize Dr. Joon Yun has sponsored (12:09).
  • Despite the innumerable traits of homeostatic capacity happening on the physiological level, there are existing biomarkers that represent proxies of homeostatic capacity (12:51).
  • Practical reason for why HRV was chosen as a biomarker include: (1) ability to be measured continuously (this is a unique feature compared to other health biomarkers); (2) ability to be measured contextually; and (3) ability to be measured non-invasively. Globally, there are numerous devices available to help measure HRV, thus providing an opportunity for a range of teams to apply for the prize (15:34).
  • Orthostatic hypotension was another biomarker considered (16:50).
  • Too rapid heart rate response or insufficient heart rate response during cardiac stress testing may indicate dysfunction in certain areas (18:05).
  • The data from orthostatic hypotension, cardiac stress testing, and heart rate decline after exercise are strong relative to other areas of homeostatic capacity assessment (19:05).
  • The goal of the project is to gather more data and develop more biomarkers of homeostatic capacity (19:14).
  • The definition (or standard) of HRV to be used in awarding the Palo Alto Prize will be determined by a team of experts (19:45).
  • Dr. Joon Yun does not track biomarkers on a routine basis (20:51).
  • Dr. Joon Yun’s single most important recommendation is exercise to improve your health, longevity and performance (23:37).

Thank Dr. Joon Yun on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Dr. Joon Yun

The Tracking

Biomarkers

  • Heart Rate Variability (HRV): measurement of how one’s heart rate varies over time. Dr. Joon Yun describes HRV as a proxy for autonomic capacity, which itself is a surrogate of overall homeostatic capacity. Additionally, HRV can be taken continuously and non-invasively. Please check out other episodes for details on how to track HRV and optimum ranges.
  • Orthostatic Hypotension: measures the ability of the body to recalibrate blood pressure when moving from a lying to sitting position or a sitting to standing position. In aging, it has been associatively observed that the body’s ability to adapt to rapid changes in blood pressure deteriorates. Therefore, this is one way to infer homeostatic capacity and is another biomarker considered for the prize.
  • Heart Rate Recovery: measures autonomic capacity by looking at heart rate behavior after exercise. Looking at this decline over a certain time period gives insight into the function of the heart when compared with a normal curve.
  • RMSSD (Root Mean Square of the Successive Differences): the industry standard for measuring and calculating HRV. Discussed in more details in Episode 1 & Episode 6.
  • lnRMSSDx20 (RMSSD with natural log and multiple of 20 applied): applications have begun using this measure. This is RMSSD scaled to an index of 100 for easier use. Discussed in more details in Episode 1 & Episode 6.

Terms

  • Homeostatic capacity: a network of traits in our bodies to achieve homeostasis. It is the body’s ability to “self-tune” or, in response to stressors, its capability to self-stabilize. This capacity or trait is inborn: when we are young, the feeling of health feels like “nothing”. Once it begins to decline in midlife, we become aware of it. For instance, we notice an inability to tolerate hot or cold weather or that the recovery from a late night takes longer that it use to. There are also changes not necessarily felt, such as homeostatic capacity returning elevated blood pressure to base levels.

Lab Tests, Devices and Apps

  • Cardiac Stress Test: this test is an assessment of the body’s response to an exercise heart rate challenge. Dr. Joon Yun describes this as a test, common in standard practice, that can be viewed as a “homeostatic capacity test”.

Other People, Books & Resources

People

  • Edward J. Calabrese Ph.D.: Dr. Joon Yun first heard about the idea of hormesis from him.
  • Aubrey de Grey: a link to Aubrey de Grey’s published work. He was also mentioned in this episode by Dr. Joon Yun in reference to the Methuselah prize. We talked to Aubrey de Grey about his framework to increase longevity in Episode 14.

Organizations

  • Methuselah Mouse Prize (MPrize): started in 2003, this prize was designed to accelerate the development of life extension therapies. In 2009, the MPrize for both longevity and rejuvenation were awarded. Currently, $1.4 million is available for awarding to researchers who can top previous winners’ performances.

Full Interview Transcript

Transcript - Click Here to Read
[Damien Blenkinsopp]: Yeah, it’s great to have you here.

So, you’re involved in this big project called the Palo Alto Longevity Prize. Could you give us a run down. What is the vision behind that, and why have you put this together now?

[Dr. Joon Yun]: The vision of the Palo Alto Prize is to nurture innovation that improves the homeostatic capacity as a gateway into promoting healthy longevity, and health span.

[Damien Blenkinsopp]: Right, so, I think a lot of people aren’t exactly sure what homeostatic capacity is. So how would you describe that, and why is it particularly this homeostatic capacity that you’re linking to longevity?

[Dr. Joon Yun]: Most people are familiar with the word homeostasis. So think of homeostatic capacity as a network of traits in our body that enable us to achieve homeostasis.

Now homeostatic capacity is something that’s endowed by nature. It’s been shaped by evolution. And you can think about it as robustness, resilience, coping mechanism, dynamic range, anti-fragility. These are all kind of similar concepts. But the basic notion is that we have an incredible set of traits that enables our bodies to self tune.

One of the ironic things about homeostatic capacity is that we don’t really realize we have it until we start losing it, typically in mid-life, where all the sudden you start to feel things that you didn’t feel before. At nighttime, it’s a little too dark, the sun shines a little too bright during the day. [When] riding a roller coaster, you may come out of it nauseous, because your body doesn’t re-calibrate. Altitude sickness starts emerging around then. The bouncing back from injury or jet lag, or a late night.

All these things are suggestive ways that we start to experience the loss of something that we didn’t have. That we didn’t used to feel. The loss of something that we didn’t feel when we were younger.

In fact, when we’re 12 years old, another way to define health is the feeling of nothing. When we’re young and we’re healthy, what we feel is nothing. It’s when we start feeling something that we realize something’s going on.

[Damien Blenkinsopp]: Right, right. So in a sense, this is balance, and you’re just feeling well without any negative symptoms, or negative feelings, I guess.

[Dr. Joon Yun]: Yes. So you can think about homeostatic capacity as your body’s ability to self tune, and get back into balance or homeostasis. But think about all the things that happen…well.

So we’ve described the things that are subjective that you can experience. There’s also a lot of objective things that you can’t feel, but start to emerge by the middle of life, again that’s defined by the mid-forties.

When we’re young and our blood pressure’s high, or our blood sugar is high, the body has the homeostatic capacity to return those numbers to a normal baseline. But as we age, a lot of those numbers no longer return to baseline. They remain high.

And we call those situations diseases like hyper-tension and diabetes. The thing about a lot of the diseases of aging as reflections of the body’s declining intrinsic ability to get back to homeostasis because of potential underlying and inevitable erosion of homeostatic capacity.

Now what we do in the health care system today, we provide an external mechanism called the health care system, we trying now here in the US to help the body get back to homeostasis. But because we’re trying to restore homeostasis, and not necessarily focused on restoring homeostatic capacity, the inevitable loss of homeostatic capacity continues manifesting in increasing features of aging. And in the long run the health care system can no longer help the person make the homeostasis, and then death ensues.

So the gambit of the prize is to target and nurture innovations that improve homeostatic capacity. That we restore homeostatic capacity instead of restoring homeostasis, to see if this could be a gateway into improving health, and sustain health, and longevity could be an outcome of that.

[Damien Blenkinsopp]: Great. So this is an area you feel is undervalued, under-utilized, and currently when it comes to health and health care, and it’s something you want to promote.

What is the kind of vision behind the prize? For instance, we had an interview with Aubrey de Grey recently, and he’s talking about extending lifespan considerably. Would you put it along those kind of lines, or is it more kind of making sure that we live to our prime years 80 years old, 90 years old, 100 years and we live really well, versus having the current diseases which plague a lot of people these days?

[Dr. Joon Yun]: Well it’s really about promoting health. Longevity might be an outcome, but there’s a difference between something being an outcome and a goal.

Our goal is to improve health, and helping longevity may be a consequence of that. So I do think that the target is a little it different. And I also think that the target, the homeostatic capacity, is different than homeostasis.

To give you the example of high blood pressure. Think about high blood pressure or hyper-tension as it’s called medically as the lab error reported by the body of the blood pressure being too high. And the way we fix this is in the modern medical system is we give patients drugs that normalize that blood pressure. Meaning, return it back to a number associated with homeostasis.

But because we are externally providing that capacity, when you miss your dose of drug, or when you come off a drug, in many cases your baseline has progressed, and may be even worse. Because the one thing your body knows how to do is to homeostasis against all the external challenges. The more it sees blood pressure lowering drugs, in many ways the body rebounds. It’s called toxic phalasis.

And this is a challenge with most pharmaceuticals that the body remodels against the drug. So when you come off the drug, your lag error can even be worse. You can have rebound hyper-tension, something called addiction decompensation.

The way nature addresses high blood pressure is by exercising. Meaning the natural way to treat hyper-tension is to leverage your homeostatic capacity as a way to lower your blood pressure. Meaning, when we exercise, we’re actually increasing our blood pressure by challenging it. And in this sense, the homeostatic capacity can be stronger. And so the baseline blood pressure actually gets lower the more times you raise it. So it’s almost a mirror image of what we’re doing with the medical system today.

And when we think about the diffuse benefits of aging in, really, all those views of aging, including longevity itself, it’s generally suggested that using homeostatic capacity as a treatment for aging, rather than tools of homeostasis, may actually work in terms of expanding health for society and expanding longevity.

[Damien Blenkinsopp]: Great, great. Thanks. We’ve spoken about hormesis quite a few times on the podcast before. Would you say it’s related to hormesis? When you were talking about exercise, it sounded very similar to the kind of hormetic discussions we’ve spoken about. So are homeostasis and hormesis linked?

[Dr. Joon Yun]: Some people may find some overlapping ideas. Hormesis I first learned of it through some some great body by Ed Calabrese, out in the East Coast. My understanding of it is that it’s the notion that at different ends of the curve your going to have differences in response.

I guess there’s some relation to it, although I think the mechanism attributed to hormesis has been debated out there. But the notion that challenges to the body that, many challenges to the body can actually paradoxically induce competitory strength, or induction of homeostatic capacity. But I do think that there’s some overlap in the ideas.

[Damien Blenkinsopp]: Great, great. Thanks for that. Helps to situate our audience better.

Okay, so coming back to the Palo Alto Longevity Prize. Is there a specific reason why you decided to do it this year, and could you explain a bit more about the background? So you already have many teams participating in this challenge. Have they got any rules around defining the participation? So, have you said that there’s any restrictions to what they can do in order to compete? Or is it kind of very, very broad?

[Dr. Joon Yun]: The Palo Alto Longevity Prize is run by a team, including some of the scientific experts and industry experts in health care, and they’re the ones who convened to determine both the criteria, and they’ll represent the independent judging panel as well. And those final parameters will be announced to the public sometime this year. And there they’re accepting public comments.

Remember this is a new area, homeostatic capacity. It’s kind of a new word, although I think it is a phrase the scientific community understands, and it can embrace, and can develop innovations around. So we’re in the early stages of all that.

As to why do it this year? Well, we know that every year we wait, there’s enormous amounts of suffering that goes on around the planet associated with age and loss of life. And so we know that every week we wait, a million people have succumbed to aging or aging associated conditions. So, we think this is a very significant time, and the sooner we start, the better.

We do think that this is going to take some time, and maybe a series of prizes, with a lot of different starts. And we think it will be a long journey, but the earlier we start, the more people can benefit from improved health.

[Damien Blenkinsopp]: Great, thank you very much. I understand that you’ve put your money, or is it Palo Alto Investors that have put the money in for the prize to stimulate? We’re seeing a lot more prizes now, as a method for stimulating innovation in other industries. I think this is the first one that’s tried to do it in health care, and certainly longevity. Or have you seen other ones before?

[Dr. Joon Yun]: I think there have been other prizes before. The [inaudible 11:56] Prize, Aubrey de Grey, the Methuselah Prize. I’m new to prizes. I’m the sponsor of the prize, and I learned about prizes with some of the experts in the prize community.

And one of the things I like about it is that it mirrors how evolution works, Darwinian evolution works. There’s a niche, there’s a diversity of options that compete for the niche, and there’s a winner.

[Damien Blenkinsopp]: Great. Coming back to the rules of the prize, you’ve decided to focus the prize on using heart rate variability, HRV, which we’ve covered quite often in this podcast before. Why did you decide that this was the biomarker you were going to use for the focus of the prize?

[Dr. Joon Yun]: Exactly. So whenever you want to nurture innovation, you need to have metrics. And homeostatic capacity is a new phrase, and there are some existing biomarkers or diagnostic tests that could represent proxies of homeostatic capacity.

But homeostatic capacity is a diffuse network of many, many innumerable traits. Such as physiological level, tissue level, systems level, molecular level, cellular level. It’s a composition and the inter-relationship between all of them. It’s a composite that reflects an overall organismic homeostatic capacity. So the challenge is how do you take and define biomarkers that represent copies that affect the surrogates for homeostatic capacity?

The reason HRV was chosen was, first of all, it represent a… Well, so HRV is heart rate variability. It is a biomarker of autonomic capacity, which itself is a surrogate of overall homeostatic capacity. So it’s just one variable that happens to have a number of features that make it interesting.

Number one, we have decades worth of heart rate variability data. It’s been in clinical use since 1963 to monitor fetal stress. And when HRV goes low, it’s one of the criteria for determining fetal stress and associated infant-fetal mortality. So it’s notable that it’s not used in the post-natal life, adulthood. I mean there are very few labs around the world that actually monitor HRV in patients as they get older.

And there is good cohort data, population level data, that suggests that declining HRV is also due to a chronologic age. And many of the diseases of aging are also associated with aberration in heart rate variability. None of this is established in a causal way, but the degree of association of HRV decline with some features of aging suggest that it might be an interesting biomarker.

But there’s some additional practical reasons why HRV was chosen. Unlike most biomarkers in health, HRV can be measured continuously, contextually. You can measure it for 24 hours. Most biomarkers, as you know, are done through blood tests, body fluid samples. You only get a snap shot in time. And given the dynamism of the system, most biomarkers have a tremendous amount of variation, even in a 24 hour cycle.

So the fact that [with] most biomarkers, it’s impractical to get continuous monitoring, and you can’t detect changing patterns, and changing dynamism over 24 hour life cycle, as well as in a very different context, make it less useful than HRV, which can be measured non-invasively, continuously.

There’s also a global footprint of devices, including consumer devices, that help measure HRV. What that does is opens up the aperture in terms of the breadth of teams that can apply for the prize. If we make the biomarkers too narrow, it limits the number of labs and groups around the world who might have an innovative idea on the intervention side to be able to process their innovation.

So there is a tradeoff between specificity of a biomarker for homeostatic capacity versus this practically of the diversity of options that we may be able to solicit. So, HRV, again, there’s been empirical association with aging. Mechanistically because it’s associated with autonomic capacity it is a feature of homeostatic capacity. It’s global footprint, non-invasive, continuous monitoring, and relatively inexpensive to obtain, unlike some biomarkers that are proprietary, it’s pretty costless.

[Damien Blenkinsopp]: Great, thank you for that. Are there any other biomarkers that you looked at, and you considered for measuring homeostatic capacity?

[Dr. Joon Yun]: Absolutely. There’s only a small subset of modern diagnostic tests that actually assess homeostatic capacity. And you can think of a lot, well, actually get an annual checkup, but indirect proxies. But more direct proxies, more direct surrogates, really require tests themselves be dynamic.

So, an example of another potential surrogate is orthostatic hypo-tension. So it’s your ability of the cardiovascular system to recalibrate blood pressure from a sitting to a standing position, or lying to a sitting position. When we’re young, we have tremendous real time system dynamism that allows us to adjust to quite the rapid demand. And you really don’t have much else raising your blood pressure.

But as we get older, it’s observed that the body’s ability to adapt to those change in conditions deteriorates. So it’s associated with aging, and that’s one way to infer that there’s declining homeostatic capacity. And this may help explain why as you get older there’s one of the contributors to syncope, one of the contributors to declining ability to perform a lot of more strenuous physical tasks.

You can also start to think about the cardiac stress test as an example of a homeostatic capacity test. This is one of the ones that is more standard practice out there for the medicine of today. Essentially, one of the things we’re measuring is the body’s heart rate response to an exercise challenge.

And in some cases the heart rate response is too rapid. So that could reflect some dysfunction in the Diego Connor Response. And in some cases the heart rate increase is insufficient. So, BP is reflective of a system that is less dynamic than it used to be. And these things are associated in a lot of, on toward clinical outcomes in the long haul.

Anything where the heart rate declines after exercise. And one of the things we look for is does the heart rate return to normal, does it look like a normal heart? Does it happen in a normal amount of time? Because as we age and our intrinsically homeostatic capacity declines in which case this is a non-capacity there is abnormal return to normal as well.

So these are small subsets of the overall diagnosis landscape used in clinical medicines today, that we think already reflect homeostatic capacity. But those things require, there’s a higher burden in terms of throughput to asses innovation, and the tests themselves require more involvement.

And furthermore, the data in those areas are strong, although there are many others, but we certainly need more data across the spectrum. So one of the hopes for the competition is that we help promote the idea, that we gather more, and develop more biomarkers for homeostatic capacity.

[Damien Blenkinsopp]: Alright, great. Great, I didn’t realize that was part of the project. Have you defined the exact standard? Because there’s a few different standards of HRV out there.

One of the ones we’ve discussed quite a lot is is the natural log, RMSSD, which is multiplied by 20 and used by a lot of consumer devices at the moment. Have you defined that as yet, or are you going to be defining that at one stage as a criteria for use in the project?

[Dr. Joon Yun]: Yeah, we’re deferring that to a team of experts that have, they did the exact same topic. So, I’ll leave it up to them

[Damien Blenkinsopp]: Great, great. How can people get involved in the Palo Alto Longevity Prize? I understand there’s already 15 teams which have signed up? Maybe there’s a few more already. What’s the timeline before, for instance, you stop accepting new teams, and then for the other steps of the project?

[Dr. Joon Yun]: Yeah, you know, I don’t have that information at my fingertips. Again, all of that, the process is being managed by the production team. And I’m a sponsor of the prize. So for those details I’ll have to refer you to the team.

[Damien Blenkinsopp]: In terms of your own personal use of biomarkers, are there things that you use, or you track on a routine basis for your own health, longevity, or performance?

[Dr. Joon Yun]: You know, I actually haven’t. I haven’t thought about this project relative to my own health yet. It’s something that I probably will consider. But no, I’m not doing any personal tracking right now.

[Damien Blenkinsopp]: Maybe that’s because you’re really healthy and your homeostasis is pretty good, so you know you don’t feel out of sync, and the need to do it.

[Dr. Joon Yun]: Oh no, I definitely feel it. But yeah, these are early days, and I think a lot more science has to happen. And I think, I think we will learn about it, if nothing else, from this process.

[Damien Blenkinsopp]: Great, great. If someone is interested in getting involved in this, perhaps putting together a team, should they just go to the website for the Palo Alto Longevity Prize, or I understand it’s still available for signing up, as a project team. So would that be the best place to go?

[Dr. Joon Yun]: Yeah, I think the best way to engage is to read through the website. And I believe all the details are there, at the paloaltoprize.org. I believe all the teams have signed up through the website process.

[Damien Blenkinsopp]: Do you know if there’s other ways people can participate beyond just putting together a team?

[Dr. Joon Yun]: I don’t know, I don’t know. Again, I will defer that to the team, the way the public can engage.

[Damien Blenkinsopp]: Great, great. What do you think will happen in the next five or ten years in this area? Have you got some kind of vision or hopes, or are there any things that you’re excited about? The opportunities that are going to occur in this area, biomarkers or longevity, in the next five or ten years?

[Dr. Joon Yun]: I do hold out some hope that there’s a small chance that there are some major breakthroughs coming. And you can sense that even in talking with teams. Scientists tend to be pretty conservative, and also for reasons of competitiveness they tend to under-share hypotheses and preliminary data. And after you hear enough of these really intriguing, unique ideas, you realize that the scientific field is more advanced than the public realizes.

And one of those things that prizes are trying to accomplish prizes such as ours and the initiative such as ours is to accelerate those ideas and actions. So it’s possible that there’s some major breakthroughs that are possible in the five year time frame.

The thing that we know for sure, is that we’ll learn a ton, and the idea to create new paths and new avenues of research that give us more shots on goal in terms of improving people’s health.

[Damien Blenkinsopp]: Great, great. Thanks for that. Do you have one biggest recommendation or insight that you’ve used some kind of data, or you’ve learned about your biology when it comes to health, longevity, and performance, that would be a recommendation for other people when they’re using data?

You’ve mentioned a few things as we’ve gone through this talk about why you selected HRV, for instance. And what would be your one biggest recommendation for using data effectively to improve health, longevity, or performance?

[Dr. Joon Yun]: Well, for now I like HRV because it’s affordable, and it’s also accessible from a technology perspective. And I think the access is growing throughout the world. I like the convenience factor. It’s more practical.

Most other biomarkers, I think the distribution isn’t as broad, and the effect is not at real time. And in terms of in lifestyle habits that, in a way that also match to improving someone’s health…. exercise is still my favorite. And there’s good data suggesting exercise improves the measures of HRV.

We also know that our improvement of HRV as well as exercise itself is also with the amelioration of the stages of aging. So, based on what is known today, I think that’s probably the most practical thing that a person can do to enhance their health.

[Damien Blenkinsopp]: Great Joon, yeah. Exercise is very important. Thank you so much for your time today. I really appreciate it, I know you’re a very busy man. We’ll put together some information on the project, some of those references, in the show notes so everyone can get access to that. Is there anything else that you’d like to share about the project that we haven’t covered already?

[Dr. Joon Yun]: No, that’s great Damien. I appreciate your time, and thank you for having me on your show.

Leave a Reply

Micro-nutrient deficiencies are prevalent today, and prevent our biology from functioning optimally by limiting its activity. The most common and most severe micro-nutrient deficiency for most of us is Magnesium.

A hundred years ago we were able to get five hundred milligrams per day of Magnesium. Today we get closer to two hundred milligrams per day because of changes in food nutrient composition and diet that we’ll discuss today. The impacts can be subtle and long term, to severe and immediate.

As Magnesium has an important role in over 300 enzymes throughout the body, it can effect performance and health in everything from cognitive to muscle performance, and as with many other micro-nutrient deficiencies, increases our risk of cancer by causing DNA strand breaks. For the more severe, but not so uncommon deficiencies in this nutrient, symptoms can include headaches, fatigue (lower cellular energy output) and muscle cramps.

Today, we dive into the bioavailability of magnesium sources, the different types of tests available and their accuracy, and figure out the significant biomarkers.

“[Magnesium] really is the one supplement
that everybody should take.”

– Dr. Carolyn Dean

Dr. Carolyn Dean is both a medical doctor and naturopathic doctor with thirty plus years of medical experience. She is the author/coauthor of over 30 health books (print and eBooks) and 106 Kindle books. Currently in its third edition, the Magnesium Miracle has been Amazon’s #1 best selling book in both the Alternative Medicine and Vitamins & Supplements categories. She is on the Medical Advisory Board for Nutritional Magnesium Association, President of Hallmark-Dean Laboratory, and contributing editor to Natural Health magazine.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Magnesium is involved in 700-800 different enzyme systems within our bodies (05:09).
  • Diverse roles of magnesium (05:33).
  • Magnesium has a “push-pull relationship” with calcium.  Calcium causes muscles to contract, while magnesium relaxes muscles (05:41).
  • 80% of the population is not getting the recommended daily allowance of magnesium (07:25).
  • There are two reasons for this common micro-nutrient deficiency: (1) The soil doesn’t have magnesium. (2) There is more stress/higher demands of magnesium going on (07:37).
  • Medications, diet choices, and water sources can “bump” away, deplete storages, and bind to magnesium (08:47).
  • Amount of magnesium required to metabolize table sugar and high fructose corn syrup (08:54).
  • Common electrolyte products do not replenish magnesium (09:54).
  • Neither farmers nor organic farmers replenish the soil with minerals. Farmers would need to use rock dust on the soil to do this(11:09).
  • The soil is much lower in magnesium currently compared to ancient times due to: (1) overuse of the top soil and (2) the recycled water we use today has not undergone micronutrient accumulation (11:54).
  • When fluoride (a molecule found throughout our environment) and magnesium bind – a compound of magnesium fluoride called sellaite is created (13:15).
  • Sellaite is able to replace the magnesium found in bone and cartilage, overall making bones more prone to fracturing (13:30).
  • 20% of prescription drugs have added fluoride molecules to assist in drug delivery to the cell (13:49).
  • The highest amount of magnesium can be found in the heart (14:36).
  • Explanation of the magnesium depletion cycle (16:01).
  • Dr. Carolyn Dean defines terminology: skipped beat, arrhythmia, and palpitations (18:35).
  • Additional symptoms of magnesium deficiencies (20:45).
  • There are many seemingly unique symptoms or symptom combinations that can appear in a magnesium deficiency. The appearance of these symptoms is based on the individual and that individual’s vulnerable areas (23:45).
  • Doctors and specialists often see and treat the various symptoms individually, and may be unable to put it all together as a magnesium deficiency (24:14).
  • Magnesium deficiencies have contributed to ending the careers of professional athletes due to severe muscle cramps (26:20).
  • Advice Dr. Carolyn Dean gives to parents of teen athletes on muscle cramps (26:44).
  • The typical test administered by doctors is the blood serum magnesium test.(27:57).
  • The red blood cell magnesium test (28:09).
  • The gold standard test is the ionized magnesium test (28:24).
  • Like many lab tests, the blood range of the tests represents the average of the population and the not the optimum (30:15).
  • What to use and how to track your own magnesium (35:30).
  • Reasons why some people feel better taking magnesium and then feel it is no longer helping (38:00).
  • How to slowly introduce magnesium, tracking symptoms and/or RBC measurements as they increase slowly and steadily (38:24).
  • The dynamic between treating the symptoms of magnesium deficiency and other medications (39:24).
  • Table salt compared to sea salt (41:40).
  • Magnesium sources through the skin (42:48).
  • If one is taking a magnesium supplement able to be properly absorbed, then it should not produce the laxative effect (44:58).
  • Foods high in magnesium (46:48).
  • How many milligrams of calcium Dr. Carolyn Dean recommends (47:22).
  • Once treated, feeling symptomatically better can occur overnight, within a week or after several months depending on various factors (51:29).
  • Herbicides and pesticide can also bind up minerals found in the soil (55:17).
  • Discussion of German New Medicine and Total Biology (57:16).
  • Dr. Carolyn Dean does not track biomarkers on a routine basis (57:30).
  • Dr. Carolyn Dean’s one biggest recommendation on using body data to improve your health, longevity and performance is to track magnesium (58:50).

Thank Dr. Carolyn Dean on Twitter for this interview.
Click Here to let her know you enjoyed the show!

Dr. Carolyn Dean

The Tracking

Biomarkers

  • Red Blood Cell (RBC) Magnesium Level: This biomarker indicates the amount of magnesium located within the RBC. This can give a more accurate result then serum magnesium levels. Dr. Carolyn Dean advises an optimal range of 6.0-6.5 mg/dL.
  • Serum Magnesium Levels (or Serum Total Magnesium): This is the most common biomarker tested for when clinically evaluating of magnesium levels currently. It is expressed in Milligrams per Deciliter (mg/dL) and is very limited in its ability to reflect total body magnesium levels. Less then 1% of total body magnesium is found in serum.
  • Serum Ionized Magnesium Levels: This is the measure Carolyn recommends for the most accurate assessment, for which unfortunately tests are not accessible outside of research currently. There are many studies over the last decades using this marker – see pubmed reference.

Lab Tests, Devices and Apps

  • RBC Magnesium Test: Able to be ordered online without a prescription and used to evaluate magnesium levels in red blood cells.
  • Exatest: This test is the most accurate and most expensive test. Magnesium levels present within the tissue cell are determined through a cheek swab.

The Tools

Supplements

  • Transdermal Magnesium Chloride: This is Damien’s described method and is an oil to be placed on the skin and is comprised from super saturated magnesium chloride and distilled water.
  • Magnesium Citrate: Often in powder form, may be dissolved in water and sipped throughout the day.
  • Sea Salt and Himalayan Salt: Carolyn recommended using sea salts because of their high mineral content. Options include Sea Salt and Pink Himalayan Salt.
  • Epsom Salts: Traditionally used to replenish magnesium levels, this is a magnesium sulphate source. Dr. Carolyn Dean recommends placing one to two cups in a medium hot bath and soak for 20-30 minutes. (Note from Damien: Some people, particularly chronically ill with methylation issues may be sensitive to sulphur and get some negative symptoms from magnesium sulphate. So monitor for symptoms if this is your situation.)
  • Magnesium Oxide: One of the cheapest and poorly absorbed sources of magnesium. In this form only 4% is absorbed, while contributing to the laxative reputation of magnesium.

Other People, Books & Resources

Organizations

  • Remineralize the Earth: Dr. Carolyn Dean praises this organization’s focus of soil amendment with minerals.
  • The Heart Rhythm Society (HRS): The Heart Rhythm Congress organized by the HRS awarded, “The Arrhythmia Alliance Outstanding Medical Contribution to Cardiac Rhythm Management Services Award 2012” to Dr. Carolyn Dean.
  • Nutritional Magnesium Association: A non-profit educational site Dr.Carolyn Dean is a part of the Medical Advisory Board.

Other

  • German New Medicine: Dr. Carolyn Dean has studied a version of this, Total Biology. This describes the connection between brain and physical symptoms in the body.

Full Interview Transcript

Transcript - Click Here to Read
[Damien Blenkinsopp]: Carolyn, thank you so much for joining us today.

[Carolyn Dean]: Oh, you’re welcome Damien. Good to be here. Always love to educate people about magnesium.

[Damien Blenkinsopp]: Yeah, and the first time I came across magnesium as being something important for our health was your books. So thank you very much for putting that out there, because it really was something that was a bit different. I’m not sure how you first came upon all of this, because you were the first person to start talking about magnesium.

It’d be interesting just to see, where did this all start? And when did you decide to start focusing on magnesium, and see it as something so important?

[Carolyn Dean]: How I became interested in magnesium is, it actually came to me. Random House, the publisher, wanted me to write a book on magnesium. At the time, I didn’t think that you could find 300 pages to write on one mineral, but I was completely amazed. This was in the late 1990’s.

And I realized that I had magnesium deficiency symptoms of heart palpitations and leg cramps. So for me, it was very serendipitous, and really helped my health. And, as it turns out, has helped hundreds of thousands of people who’ve read the book.

[Damien Blenkinsopp]: Yeah, that’s great, that’s very interesting. Why did Random House decide that magnesium was something worth talking about?

[Carolyn Dean]: Well one of their editors, I was told, had migraine headaches, and found when she took some magnesium, they helped her migraines. And she was so amazed she wanted more information. And as it turns out, it can help literally hundreds of symptoms, and many dozens of conditions. So, it’s quite an amazing mineral. As you said, not many people know about it.

[Damien Blenkinsopp]: Yeah, yeah. So, what is the role of magnesium in the body? Why is it important? Basically, if a deficiency in a mineral – or micro-nutrient, as we sometimes call them – is able to cause a lot of symptoms, it’s because it’s taking on some important roles in the body. And then when it’s lacking, it’s obviously us all these symptoms.

So what is the magnesium doing in our body? Why is it so important?

[Carolyn Dean]: Right, we’ll you’ve laid it out quite well. Magnesium is necessary for the activation and function of between 700 and 800 different enzyme systems in the body. So, it’s catalyzing most chemical reactions in the body.

It synthesized protein, transmits nerve signals, relaxes muscles. And I should throw in here that calcium contracts muscles. And so they have a push-pull relationship, magnesium and calcium. And magnesium also produces and transports energy called ATP.

And yet in medical school we’re just told that magnesium is a laxative. So, that’s why I write the book, and do a lot of interviews, and a lot of papers to describe the importance of magnesium, and to show people how they can improve their magnesium intake.

[Damien Blenkinsopp]: Excellent. Interestingly enough, I’ve had magnesium deficiency myself. I’ve had all the tests you recommend and everything. Also, some additional tests relating to mitochondrial functions. So you just mentioned ATP, and magnesium. And I had issues of my mitochondria and energy production, which caused all sorts of symptoms.

So my own personal story, I’ve come across this directly. And it was coming across in those tests as well, that I needed to build up my magnesium. So we can talk a little bit later about how you get people’s magnesium status to be raised under these things. But certainly for me, it was, and still is, very important to maintain my health.

So, why is it that they, there are many people… Because it’s counted as the second most common deficiency, in terms of micro-nutrients, in the Western world. Why is it today that we have this issue, where it is so deficient? Are there reasons that, either our intake of magnesium has changed, is it lower than historically, or, somehow is maybe the demands for magnesium higher?

[Carolyn Dean]: I think both contribute to the extreme magnesium deficiency to the point where 80% of the population is not getting even close to the recommended daily allowance of magnesium. Number 1, there’s very magnesium in the soil anymore. So, when a plant grows and it’s supposed to pull up minerals into it’s tiny, tiny plant rootlets, if the minerals aren’t there, the plant is not going to have minerals.

I’ve had cases of people on these crazy 140 ounces of green drink a day. And they come to me with heart palpitations and leg cramps – two of the major symptoms of magnesium deficiency – and they can’t believe it when I tell them they’re magnesium deficient, because they’re eating all these plants, all this greenery. And they go and get a blood test, and well and behold, they’re low in magnesium. And it’s because even if they’re eating organic plants, if the soil doesn’t have magnesium, the plants aren’t going to have magnesium.

And number 2, the demands from magnesium are much higher. I suppose there was always stress, of course, but now you see magnesium can be bumped away by medications that contain fluoride. The fluoride binds magnesium. Fluoridated and chlorinated water can bind up magnesium and make it unavailable. The diet, for example with sugars, it takes 26 molecules of magnesium to metabolize one molecule of table sugar.

The quarreling there with fructose, it takes twice as much. So it’s 52 molecules of magnesium required to metabolize one molecule of fructose. So people who turn to these high-fructose corn syrup sweeteners and say, well it’s fruit sugar; they’re actually in worse shape. They’re using up more magnesium.

So, we’re not getting it in our diets, and we continue to dissolve it with our behavior, and with the food. With alcohol you drain it, coffee drains it. Even in the athletics, the sweating where we lose sodium we think, we’re also losing magnesium. And when we just replace with certain electrolyte products that are high in sugar, and maybe high in sodium, we’re not replacing magnesium. And we’re causing people, actually, to have blood sugar imbalances.

You take an elite athlete and their intake of one of the major electrolyte products. They could be taking about 60 teaspoons of sugar a day, which they’re not able to metabolize, which ruins their magnesium balances, and they’re sweating out their magnesium and not replacing it.

[Damien Blenkinsopp]: Wow, that’s a whole host of conditions. I guess one of the most interesting ones is the soil, this input. Why is the soil so much lower in magnesium today? Is it because of overuse? We all hear about how we’ve been overusing the same amount of soil, and the top soil is disappearing steadily. Is that one of the main reasons?

[Carolyn Dean]: Yes, exactly. In ancient times, or even just a hundred years ago, they tell us that we could get about 500 milligrams of magnesium in our daily diet. Now we’re lucky to get 200. And it’s because the soil has been completely depleted of certain minerals, like magnesium, and the farmers don’t replace minerals. Even organic farmers, they don’t necessarily put what we need, which is rock dust, on the soil.

Hundreds of years ago when the spring thaw would bring water down from the mountains, the water and the tumbling of the rocks would create a high mineral content water that would end up in the deltas before it landed in the ocean. And the plains around the mouth of the rivers would flood, and in those plains with high mineral content water, they would grow the crops.

Now, that’s where everybody lives. And the farms have been relegated to places where they have to irrigate. But they just haven’t put the minerals back in the soil.

[Damien Blenkinsopp]: Right. Of course, and we’re using recycled water, which hasn’t gone through that whole natural process of micro-nutrient accumulation. It’s very interesting. I think there’s a business out there for someone, agricultural organic crops with micro-nutrients added. I don’t know if it’s possible. Have you seen that today? Does that exist somewhere?

[Carolyn Dean]: Yes, there’s a great website called Remineralize.org. And they do a lot about reaching education, about amending the soil with minerals. Remineralize.org.

People definitely know there’s a problem. In my Magnesium Miracle book, right at the beginning I talk about a 1934 Congressional Committee that reported on the enormous deficiency of minerals in the soil that just lead people to eat more and more food to try to get the nutrients they needed, which just ended up making people fat and mineral deficient.

[Damien Blenkinsopp]: Yeah, yeah. Exactly. And another interesting aspect that you mentioned was the fact that some molecules aren’t natural to our body. You brought up fluoride actually bind to magnesium. And of course, there’s a lot of fluoride around us in the water, the toothpaste, and so on today. Is that a very tight binding? Are they strongly attracted, those two molecules?

[Carolyn Dean]: Yes, very strongly. They form a complex called sellaite, and it’s brittle. And sellaite, this magnesium fluoride, it’s insoluble. It replaced magnesium in bone and cartilage. And it can make bones prone to fracture.

And what I found when I was doing the recent research for this third edition of Magnesium Miracle, 20% of our prescription drugs have added fluoride molecules, but those drugs are the majority of the commonly used drugs. They added the fluoride molecules to drugs because it increases the drugs ability to dissolve in fats, and therefore go across the fatty cell membranes. Which means it can be built up in stronger levels in the cells.

So anyway, what we’ve ended up doing is what 70% of Americans taking prescription drugs, we’re giving them all this extra fluoride. It’s binding up the magnesium. And when you look at the side effects of the commonly used drugs, a lot of them are cardiovascular side effects. The highest amount of magnesium in the whole body is in the heart. So, when you start to experience magnesium deficiency, you can start to get heart symptoms. Mine were the heart palpitations. That’s very common. I won an award actually in 2012 from the Heart Rhythms Society for my work with magnesium on heart arrhythmias.

But most doctors don’t understand the magnesium picture because we did not learn about it in medical school. You were mentioning – and I know I’m jumping around here, but there’s just so much to say – you were mentioning about the Krebs cycle, the energy cycle, in the mitochondria. Six out of eight of the steps in the Krebs cycle require magnesium. So, when anyone ever talks to me about mitochondrial problems, and they take about all these esoteric supplements they’re being told to take, and that, of it’s so dangerous. You need a lot of magnesium, mainly, to get your Krebs cycle going.

And so what happens with the vicious cycle of fatigue in terms of magnesium deficiency occurring. People go to doctors, and they’re fatigued, their heart may be palpitating, they’re under stress, their magnesium is deficient so they may get high blood pressure. So what happens is they start on this round of medications. They’re given a diuretic that drains out fluids, including magnesium.

They’re not even tested for magnesium – and we can get into that later – but there’s a cycle of blood pressure medications, and then they come back and all the sudden their blood sugar’s elevated. Well one of the signs of diabetes is low magnesium. And then their cholesterol is elevated. Well, the enzyme that helps balance cholesterol in the body requires magnesium. And if it’s deficient, then your cholesterol level will go up.

So, we’ve got people on things like Prozac because they’re fatigued, and they’re not sleeping, so they appear depressed. Well Prozac has three fluoride molecules. They’re put on cholesterol drugs; Lipitor has one fluoride molecule. They’re put on anti-arrhythmia drugs; one of them called Flecainide has six fluoride molecules.

And they irony of putting someone on an anti-arrhythmia drug that actually binds incredible amounts of magnesium is incredible. Because even when you look at the side effects of Flecainide, it’s fast, irregular pounding or racing heartbeat, shortness of breath, and tightness in the chest. The nerves, you have burning, crawling, itching, numbness, prickling pins and needles, or tingling feeling and chest pains. All of those are magnesium deficiency side effects.

Even the shortness of breath. When the smooth muscles in the bronchial tubes tighten up, because without magnesium your muscles get tight because you have relatively more calcium. Calcium tightens muscles, magnesium relaxes them. So that’s where you get all the tightening in the heart muscles, tightening in the calf muscles. And then people think you have a heart problem, whereas you have a magnesium problem.

[Damien Blenkinsopp]: Great, great review there. Just for some people at home, you mentioned palpitations and arrhythmias a couple of times. In kind of layman’s terms, how would you explain that to someone at home?

[Carolyn Dean]: Well, it would be… You don’t even notice your heart beating, number one. That’s normal. But when you start feeling your heart pounding, or going fast, to me that’s magnesium deficiency, until proven otherwise. Unless you’re running down the track or something. But if your heart’s starting to pound out of the blue, it can make people feel anxious for that to happen. They can actually go into an anxiety attack.

Anxiety itself can be a magnesium deficiency. And then your heart can sort of pound along, and then stop for an instant. And then resume again.Well that’s a skipped beat, and when that happens more frequently then it’s called an arrhythmia, or a heart palpitation.

When I used to get my little run of abnormal beats, it would make me have a little cough. I’d just cough as my body tried to re-adjust the rhythm. And it’s mainly that the heart has several pacemakers. The natural pacemakers of the heart keeps the steady beat. If and when the heart muscle is in tension from magnesium deficiency, or it’s damaged by a heart attack, then the accessory pacemakers of the heart can be pulled on or tweaked, and they can start firing out beats inappropriately, and that is an irregular rhythm that’s created.

[Damien Blenkinsopp]: Great, thank you very much for that. That helps clarify it.

So, have we covered all of the symptoms? For people at home, if they were asking themselves a question right now, do I have a magnesium deficiency, and how serious is it, potentially.

[Carolyn Dean]: Right. I can quickly run through a list Damien, because even when I say, well anything that can tighten a muscle can be a symptom. And you see that can be: acid reflux; if your stomach is in a spasm you can push stomach contents up and give yourself some heart burn; the angina I talked about, that’s the heart muscle going into spasm; anxiety; high blood pressure; cholesterol elevation, we mentioned; constipation, where the muscles of the intestines are kind of tighten and spasm, and they won’t push along your intestinal contents; depression; diabetes; fibromyalgia, that’s a huge magnesium deficiency problem. There are other things involved, but that’s where we start.

Headaches and migraines, I’ve mentioned. Even irritable bowl syndrome, where you have these incredible abdominal pains and either constipation or diarrhea. Any sort of inflammation, insomnia. I tell people if you have insomnia then you should take magnesium. If you don’t think it’s working, take more magnesium. Kidney stones, any sort of nerve twitching, PMS, seizures. A lot of some birth problems like eclampsia in women, that ‘s a magnesium deficiency symptom.

I have in my blogs, and in my books, I’ve put down 100 factors where you can gauge your magnesium deficiency. And we’ve gone over a couple, like alcohol intake. If you’re angry, you could be magnesium deficient. If you have any brain trauma, the first thing a person needs to do is have a magnesium intravenous, but not a lot of doctors understand that, or realize it.

If you’re eating a junk food diet, you’re making yourself magnesium deficient. Even infertility. If the fallopian tubes are in spasm, then they won’t allow the sperm to go along the fallopian tubes up to the ovary.

[Damien Blenkinsopp]: Right. So a lot of, it comes across that really there’s a lot of bits of your body that can malfunction if they don’t get the magnesium. And that’s basically what’s going on, they’re not functioning optimally, and it’s causing spasms and different things like this.

Just out of interest, I know my friends and I growing up – because we grow up in the coffee-stimulated management consulting area – we used to get a lot of pains in our chest. I was just wondering, as you said earlier, could it have been coffee induced magnesium pain, or was that just something completely different?

[Carolyn Dean]: It’s quite possible, because if the chest muscle – it doesn’t have to be heart, but the lungs, even the muscles around the ribs can go into spasm, some magnesium deficiency. In my case it was leg cramps. I have big calf muscles from dancing when I was younger, so it would hit me in my calves.

And everybody’s different. Some people who are typing a lot, they’ll say they’re getting carpel tunnel. And often that can be a magnesium deficiency.

[Damien Blenkinsopp]: Right. So it can depend where you’re basically using your body the most, because then, obviously, the magnesium’s getting exhausted to a worse extent in that part of the body, in that area.

So, are there severities, like if you continue to be magnesium deficient you’ll get more and more symptoms. Is that something you’ve seen in your practice?

[Carolyn Dean]: Right, yes. When you were saying that, I thought, you see different people will experience it in different areas. Why would one person get migraine headaches, and another person get chest pain, another person asthma, another person leg cramps? So it can be your vulnerable area.

And then what happens, it just seems to escalate where you start having different body parts effected. By the time people get to me, they have insomnia, they have anxiety attacks, they have irregular heart beat, they’ll get migraine headaches. So when you go to a doctor and you have that whole list, and you’re off to see a half dozen different specialists, and nobody puts it together that it’s all one thing: magnesium deficiency.

[Damien Blenkinsopp]: Great. So, do you understand the mechanism behind the headaches? Is it because there’s too much calcium versus magnesium in the brain, and that’s causing damage? Or how does that work?

[Carolyn Dean]: When I go into that in the book I have a whole chapter on headaches, and it can be muscle tension and spasm in the neck and head muscles. That’s sort of a common one. But it can also be, with migraines, a serotonin imbalance, because serotonin, the feel good neurotransmitter, is magnesium dependent. So if you have a deficiency, it can result in migraines and depression.

So there’s lots of reasons for a person to get headaches. And it can be injury; I remember a patient of mine, she was hit with a baseball bat in the head when she was young, and she began to get headaches. Well, 20 years later the doctors wouldn’t believe that a baseball bat to the head could still be bothering her. But, what had happened is the muscles in the scalp will just clamp down, and create this chronic tension and pain.

[Damien Blenkinsopp]: Okay, so we’ve talked a little about negative health. Right, chronic health conditions. So, being normal, like less than normal. Now, in terms of performance, have you looked at all into the impact of, or have you come across people who their performance has been impacted with various cognitive performance, athletic performance?

[Carolyn Dean]: Absolutely. I’ve had a couple of former NFL players who’ve had to quit the sport because of extremely severe muscle cramping, and then come to find out many years later that it was magnesium deficiency.

[Damien Blenkinsopp]: Wow. So their career’s finished because of magnesium deficiency. And it could have been fixed.

[Carolyn Dean]: You look at Kobe Bryant in the first game of the NBA finals. He was taken off with muscle spasms. So I wrote a big article about Kobe Bryant Has Magnesium Deficiency. And that’s where I was quoting earlier about when you take these electrolytes, you’re just getting sugar and sodium back. But anyway, yes players can be very much effected in any sort of team sport where you’re sweating a lot.

I’ve had a lot of teen athletes whose parents have come to me for guidance in how to get over their spasms. And it’s increasing their hydration, putting sea salt in the water, getting liquid magnesium, and liquid multiple minerals into water. And that is all that it takes to turn them around and keep them in the game.

[Damien Blenkinsopp]: That’s great to hear that. That’s really bad news for the guys who quit the game just for magnesium deficiency. It’s unfortunate that things weren’t known back then.

So, we talked a lot about the symptoms now, so people can have an idea if it’s a possibility. But, if you really want to know, I guess the first thing people do is they go to a doctor and they get their magnesium tested. And what is the standard way of testing that if you go to your doctor he’s going to test you, in terms of labs?

[Carolyn Dean]: Right. Unfortunately, it’s a blood serum magnesium. And the serum, it only has about 1% of the total body magnesium. So it’s the wrong measurement. It’s the wrong dipstick to put your needle into, because you’re not getting any accuracy in that test.

I’ve been recommending people get the red blood cell magnesium test. You can even go online and get it yourself, if your doctor doesn’t know about it. And I tell people to go to their doctor and keep asking and asking for the red blood cell magnesium test. I would love to see the ionized magnesium test, because that is the gold standard. And it’s still in the research stages.

But one of my articles online about kidney disease and magnesium. A magnesium researcher worked with a kidney researcher, and they found that people with chronic kidney disease of all varieties have the highest levels of serum magnesium. But in that same sample, the lowest level of ionized magnesium. So, in the serum it’s looking high because you see the serum has to perfuse the heart. So the serum magnesium is always going to be in this very narrow range, and it’s always going to look pretty normal, unless you’re really far gone, because it has to keep the heart perfused.

So, it will take extra magnesium out of your bones and muscles as needed. So every time you measure the serum magnesium it’s going to look normal. And doctors have gotten to the point of saying, well we don’t bother testing magnesium because it always looks normal. And you will notice in any electrolyte panel you’ve ever gotten, there’s never a magnesium level. It’s calcium and sodium and fluoride, but never magnesium.

So, I’m pushing for the ionized magnesium. In the meantime, I do the magnesium RBC blood test. But, Damien, it’s so crazy out there. The range for the magnesium red blood cell test, it used to be 4.2 to 6.8. And one year later, it’s 3.8 to 6.0 because the population is getting more and more deficient in magnesium. And what a blood range is is just the average population that the lab serves. They don’t look at the optimums, they just look at what’s out there.

So, I have to educate people, “Okay, right. The range may say 3.8 to 6.0, but we want you to be 6.0 or even higher.” I used to tell people with the old range – it would go up to 6.8 – I said, I want you to be 6.0 to 6.5. But it’s a huge educational leap to say to people, well you want to be higher than the range; It’s all marked with red flags that it’s too high. So it’s a huge educational challenge to make doctors, and the public, understand that they really are very deficient in magnesium, and need to take it.

[Damien Blenkinsopp]: This is a big problem with many labs. I mean, it’s the fault of the labs as well, but their normalizing based on the population instead of studies saying that optimum levels, healthy levels, are what they tend to do. Just a normal curve of what they receive in the door. And then they say you’re in the middle.

Even if – as we’re saying – 80% of the population is deficient, so clearly the average is going to be far, far from optimum, in this case. As many tests were in this case. So it’s just, even if you’re getting tests back from labs, you should check what is the reality of benchmarks. And that’s why I wanted you to talk about that a bit.

So what units of measurement are the RBC magnesium?

[Carolyn Dean]: The measurements of the RBC magnesium, how do you mean? The average range, I just mentioned it.

[Damien Blenkinsopp]: But how are they measuring it? Just in case different labs use different units.

[Carolyn Dean]: Ah, yeah. Milligrams per deciliter.

[Damien Blenkinsopp]: Okay. Great. And so you’re saying six or above is what you should be aiming for.

[Carolyn Dean]: Is optimum. I use the word optimum.

[Damien Blenkinsopp]: Yeah. Is there any case where you could have too high magnesium?

[Carolyn Dean]: Well, when I’ve seen – I think it’s twice out of the hundreds I’ve seen – it’s been a bit over the range, and then when I asked the person, they’ve taken magnesium the morning of the test. And in terms of having too much magnesium, the body does have a fail safe for magnesium, where it will give you the laxative effect if it’s got too much – either at that point in time or just too much in general. But no other mineral has that fail safe in the same way, so I consider magnesium an extremely safe mineral.

[Damien Blenkinsopp]: Great, great. And you’ve just dropped another little gold tip there, which is don’t take magnesium before your magnesium test. If you want to get a realistic value there – which goes for most things we’re testing – make sure you’re not interfering with the test results.

So the other test you mentioned was ionized magnesium, and you say that’s better. What are the issues with RBC magnesium first?

[Carolyn Dean]: Well, the RBC magnesium tests what’s in the red blood cells, and that is a different entity than a tissue cell, or a muscle cell. So it may give – and I don’t know, I’m just making this assumption – that maybe it’s 40 or 50% accurate. Whereas the serum magnesium test, it’s only measuring 1% of your total body magnesium.

You see there has not even been enough research comparing them all. This anecdotal study I’m talking about, with the magnesium researcher and the kidney researcher, and finding that kidney patients have high levels of serum magnesium. You see, they’d be warned to not take magnesium. “Oh, it’s going to be too high.” Whereas that same sample had a low level of ionized magnesium. So they had magnesium in their blood, but not in their cells.

And then the study went on to give people liquid magnesium that was ionized. It went into their cells, and their health improved. These kidney patients actually got better. So, when the magnesium researcher asked if the kidney specialist would write about these amazing findings, he said he couldn’t because it was so well known that magnesium can’t be taken in kidney disease.

So we’ve got another instance where people aren’t being given information because it goes against the grain of what doctors have learned all these decades.

[Damien Blenkinsopp]: Right, right. So is this ionized magnesium test available with many labs?

[Carolyn Dean]: No, it’s only about, at the last count, 125 labs out of the 5,000 in the US. And they’re all in research institutions, as I understand it.

[Damien Blenkinsopp]: So that’s like LabCorp, CorQuest, which are the typical ones people go to.

[Carolyn Dean]: No, they wouldn’t have it. I mean, you’re lucky to educate them about magnesium RBC test. I tell people to go to an online site called Requestatest.com. And without a doctor’s prescription you can order your own blood test, which I think is fabulous. And then people can follow their magnesium. The price of it is often less than the copay you’d have to pay your doctor to go in and get a prescription.

[Damien Blenkinsopp]: Right. Because when we order directly, we can’t get insurance to cover it?

[Carolyn Dean]: I don’t know about that. I just talk about the copay in the sense, well insurance doesn’t cover your copay. So, people make up their own minds. But I do ask people to talk to their doctors about it, just to educate the doctors, because doctors don’t even know about it.

[Damien Blenkinsopp]: So it sounds like the ionized magnesium test is pretty hard to get at. Maybe if you are a typical citizen, we can’t actually get access to it right now? Or is there one lab that we can get it from, perhaps with a prescription? There isn’t right now?

[Carolyn Dean]: No.

[Damien Blenkinsopp]: Okay, great. Well, not great, but it’s good to have the clarity on that. Hope it’s coming soon.

The other test I heard you mention in the past, maybe you’ve kind of dropped it now, is exit test? Where you have the scraping of the inner cheek to see what is in the bio-sample. Is that something you don’t recommend though?

[Carolyn Dean]: Well, it is a very good test, you can measure more than the magnesium. It’s getting right into the tissue cells, so I think it is more accurate than the magnesium RBC, but it’s very expensive; it’s hundreds of dollars. However, insurance does cover it. And then there’s another however, you have to get a practitioner to do the scraping. So you have to pay for an office visit to get it.

[Damien Blenkinsopp]: Right. So it’s inconvenient.

[Carolyn Dean]: Inconvenient, that’s the word. Right.

[Damien Blenkinsopp]: Right. So you’re just saying people should get RBC magnesium. I got my RBC magnesium done, I haven’t done the exit test.

[Carolyn Dean]: Oh good!

[Damien Blenkinsopp]: Probably for those reasons, because it was the easiest one to get set up, and the exit test is quite a lot of money considering. If you’ve already decided to supplement with magnesium, because, say you’ve got a few symptoms, then thinking about it, what’s the cost benefit of me doing the exit test versus the RBC.

Because the nice thing is, you can trend the RBC, and if it’s going upwards then you should be making improvements. Is that an assumption you could make?

[Carolyn Dean]: Oh yes. I see that all the time, people improving. And when they don’t, then I just have a conversation about, are you taking medications? Yes, usually. Are you under more stress? Yes. Are you taking your sea salt in water? No.

I have a blog called When Magnesium Makes Me Worse. And I go through this sort of thing where people will start taking magnesium and they’ll feel better, and then they say, well it’s not helping anymore. And it’s often because they’re not taking enough.

When you’re starting to wake up 700 to 800 different enzyme systems in the body, you’re body is crying out for more and more and more. And it doesn’t go on forever. You certainly come to a point where you have a daily requirement. And in fact, as you build up your stores you need less magnesium as time goes on.

So, in the beginning you really, in my opinion, you have to go slowly into magnesium, because it can actually help detoxify the cells, detoxify the liver. So I tell people to go slowly and steadily, and increase as they either watch their symptoms, or watch the magnesium RBC test.

I only started really pushing the magnesium RBC test because I put it in my book. I don’t know the people who are taking magnesium, they’re not my patients. So I’m just trying to be very cautious, and be scientific about it. Especially with people on a half a dozen medications, and then they’re saying, “Well, is magnesium going to be dangerous?” I’d like to say to them, well did you ask that question about your six medications?

Because if you’re on medication and you start taking magnesium for magnesium deficiency symptoms, you’re not going to need as much medication. The medication might start to appear toxic. And then you’re going to say, “Oh, the magnesium is making me sick.” Whereas it’s your body is trying to get rid of the drugs.

So, it’s an education. That’s why I’ve written so much about it. Because we’re in the situation now, as I mentioned, where you have a little bit of high blood pressure, and all the sudden you’re on six medications, and that’s going to start really depleting your magnesium.

[Damien Blenkinsopp]: There’s some very good points on how you’ve taken a personal approach to this, to consider all the factors in your life. So it’s difficult for someone like you, who’s written a book trying to address the general population to just say, everyone do this. It’s not bad.

But I guess having an RBC magnesium test, and judging by your symptoms, you can make a start of understanding where you’re at, and what could be necessary. So what kind of things do you recommend to increase our magnesium? You’ve mentioned sea salt. Is that Himalayan salt, or is that just natural sea salt? (40:19)

[Carolyn Dean]: Himalayan is good, Celtic salt. Yes with the stress that people are under, the stress that makes them lose magnesium, you’re also losing sodium. And I tell people that sea salt, it has the sodium, it has some magnesium, a bit of calcium, but not that much. But it does have 72 minerals. So, there are tiny amounts of minerals that we may not even know we’re lacking.

I have people on sea salt, and overnight they’ll say they’re not getting up to go to the bathroom. They’re retaining their fluid in their cells more than it just running through them, and claim all kinds of benefits. So it’s a great start in terms of water intake. I tell people to take half their body weight measured in pounds, take half that weight in ounces of water a day.

With all the filtering and reverse osmosis, even distilled water out there, people are not getting minerals from their liquids anymore. So I add the sea salt, and of course people say, “Oh my doctor told me not to take salt because of my blood pressure.” Well, table salt is just sodium chloride, and that is almost like a drug. We’re not talking about sodium chloride, we’re talking about sea salt, which has 72 minerals. (41:40)

[Damien Blenkinsopp]: Right, right. And then, the rock salts as well. They’re balanced, basically, instead of being concentrated, many-made synthetic. That’s why you’re saying it’s a drug, because it’s refined compound. Which I guess you could compare to refined food, which often doesn’t have positive impacts on the side because it’s unbalanced, at the end of the day.

So, in terms of athletes, you also mentioned that they have issues with electrolyte drinks. Are there any electrolyte drinks out there which have a more balanced profile?

[Carolyn Dean]: I have not found one yet. I’m more keen on an electrolyte liquid myself, but we don’t have to go there. Because I just couldn’t find anything out in the commercial world that wasn’t loaded with sugar and sodium.

[Damien Blenkinsopp]: Right. So, in terms, are there foods we should be eating? Personally, I use transdermal magnesium oil, magnesium chloride oil from some of the seas, so it’s supposedly pure. Could you talk a little bit about that? Is that one of the better methods to raise your levels?

[Carolyn Dean]: It is a good method. When you put magnesium on your skin, you’re actually stimulating the DHEA receptors in your body, so it helps your hormone balance. Myself, before I got into my liquid magnesium, I had to use so much magnesium oil on my skin it became irritating. So, some people have to dilute it with distilled water.

All of magnesium oil is super saturated magnesium chloride in distilled water. And, the transdermal approach, that was started centuries ago, probably, with Epsom salts baths, where the midwives would use it for all their pregnant patients. And what you do is put one or two cups in a medium hot bath, and soak for about 20 or 30 minutes. And you can begin to see the effects of magnesium immediately just by doing these baths.

It’s a way for people to sort of get introduced to magnesium, because I just said, they may be on half a dozen drugs and afraid to do anything that their doctor doesn’t recommend. So, you do the Epsom salts, you feel better, and then you may feel like going to a transdermal magnesium oil, or some of the oral magnesiums.

In terms of the most common and the cheapest magnesium, it’s actually the least well absorbed. And this is where magnesium will get the reputation for just being a laxative. Because the magnesium oxide is only 4% absorbed, and that means the other 96% will find its way into the intestine and cause diarrhea. Now, that’s okay for a certain percentage of the population that’s constipated, but you do have to be careful to not create too much of a laxative effect.

[Damien Blenkinsopp]: That’s interesting. So if you are magnesium deficient, and you’re taking a supplement – I don’t know which ones you’d recommend – but, I don’t know, magnesium glycinate. There’s many different varieties, there might be a more available one you’d recommend.

But if it’s getting absorbed into your body then it won’t produce the laxative effect. So, is that really based on the economic ones right?

[Carolyn Dean]: Correct.

[Damien Blenkinsopp]: That’s interesting, because I actually had that problem where I was trying to induce… And obviously I had the wrong type, because I had to buy an available type, and wasn’t aware of this connection. Because it never induced the laxative effect I was looking for.

[Carolyn Dean]: And the way around the laxative effect too, there are forums. People can check on my website under resources for the different forums written about them. But you can take, for example, a magnesium citrate powder and put it in a liter of water, and shake it up and just sip it through the day. If you take small amounts of magnesium through the day, then it will gradually get into the cells, and will build up.

But if you take two or three teaspoons of a magnesium citrate powder all at once, then you could overwhelm the cell’s ability to absorb, and then it runs out the other end. So. And that’s a waste of money, and also you could be pulling out other nutrients when you have diarrhea.

[Damien Blenkinsopp]: Yeah, that’s key. In terms of foods, are there higher magnesium foods which you recommend people start to incorporate into their diets?

[Carolyn Dean]: Right, there are, but I’ve already had the caveat about if they’re grown on mineral depleted soil it’s hard to say, but seaweeds are high in magnesium. In the ocean there’s three times the magnesium compared to calcium. So there’s a lot in seaweeds, in chocolate. 100% cacao is high in magnesium, that’s why some women, especially, have chocolate cravings before their period, because they’re craving magnesium.

There’s different herbs. I have it in my book, purslane, for example, is very high magnesium, again, if the soil is high. Cilantro is high in magnesium. Nuts and seeds, deep green leafy vegetables. Some grains. But again, I always have to hesitate and say, but if the soil is depleted, I can’t confirm.

But I do know food has a big impact. For example, I’m telling people not to take calcium supplements, but get your calcium in your diet, but get your magnesium in a supplement. And calcium, for example, we’re told that we need 1,200, 1,500 milligrams. Whereas in the UK and the World Health Organization, they’re only saying 500 to 700 milligrams of calcium.

Well if you look at a cup of yogurt, that’s about 300 milligrams of calcium right there. I’ve done experiments with myself, and I find if I have two or three cups of yogurt in a day, I actually start getting a bit of heart palpitations and leg cramps, because it’s really pushed on my magnesium. It’s kind of bound up my magnesium.

So I know that you can get your calcium from your diet, just by looking at some food list – I have a couple of free e-books that people can get on my website – and you can figure out if you’re getting enough calcium in your diet. Usually from dairy, or bone broth, or fish with bones. But with magnesium, you have to be very, very wary that you’re probably only going to get about 200, maximum 300 milligrams. And I’m recommending people get about 700 milligrams, equal amounts of calcium and magnesium.

[Damien Blenkinsopp]: Great. We’ll put links to all of these things you mentioned in the show notes so that people can find them; the free e-books, and you mentioned something else earlier, about some of the tests. Make it easy for people to find.

Thank you for all of those clarifications. It really sounds like we shouldn’t really trust the food, and go the supplementation route. And you brought up magnesium citrate. Is that you’re preferred supplement?

[Carolyn Dean]: It’s one of them. I have my own product, but again, this is not a commercial broadcast, so people can search sites.

[Damien Blenkinsopp]: But do feel free to point out any… Is there something specific you’ve done with your product that you feel is better?

[Carolyn Dean]: Well what happened with me Damien is I couldn’t get enough magnesium therapeutically, without stimulating my intestines and getting the laxative effect. What I did was work with a chemist to create a magnesium that is absorbed 100% at cellular level, and does not cause the laxative effect.

So that people even, I’ve had people who’ve been forced to live on an IV magnesium drips, where three or four times a week they have to take an IV drip, or their levels become so low they develop heart symptoms and cramping. And they can switch from IV onto a good magnesium that’s absorbed fully. And that’s what we’ve been lacking; all the research in medicine is in drugs, and we haven’t had enough research in the supplementation that people absolutely require.

I mean, the other thing I’m working on is the balance of the other minerals. I’ve found that the thyroid requires nine minerals to make the hormones properly. And instead of using mineral supplementation of the type of mineral that can be absorbed fully into the cells, doctors wait until the thyroid is barely functioning, and then give thyroid hormone replacement, either a synthetic or natural. And the natural doesn’t make that much difference, if you consider that what the thyroid really needs is it’s nine minerals to create it’s own hormones.

[Damien Blenkinsopp]: Yeah. I mean, this is a really recurring theme on this podcast, is micro-nutrient deficiencies across the board are causing many symptoms. So I think it’s really something people need to think about, in terms of their diet and supplementation, trying to maximize how many of these micro-nutrients they’re getting into them. And testing, where possible.

So, if someone has a deficiency, how long does it take to resolve that? If they’re implementing the types of recommendations you’ve just announced? And how often do you think they should get tested? If they’re doing RBC magnesium testing, trying to figure out how close they’re getting to six.

[Carolyn Dean]: Right, I mean. There’s such a range that I get a lot of emails – I have a radio show too, so people call in – in people who have, what I would consider, minor symptoms. They can lose those symptoms overnight. They can be sleeping the first night. But then the people I get in my consulting practice – I do telephone consultations – they’ll be the ones on a half dozen medications, and sick for 40 years. And they’ll start feeling symptomatically better within a week, but then it’s going to be probably several months before they’re completely symptom free.

The way nutrients are approached in our society is as if they’re drugs. And some people will say, “Well I’ve been taking magnesium for two weeks, and I have another heart palpitation. Why is that?” And it’s because magnesium is not suppressing your palpitations, it’s actually trying to heal your muscles, and you’re building up your magnesium stores. And when I get the story of, “Well yes, I forgot to take a couple of doses.” And, “Yes, I had a lot of sugar,” or, “I had some alcohol.”

There’s a balance; when you’re taking nutrients you want your nutrients to be absorbed, so you want really high quality nutrients. And you want the basic nutrients. I have people come in to me who are on dozens and dozens of different supplements, where they read about, “Oh, this is important. If you don’t get it, you’ll surely die.” The advertising for supplements has gotten people so scared that they think they have to take everything. And they end up actually coming to me with stomach distress, because they’re swallowing all these pills.

[Damien Blenkinsopp]: Right. And as you mentioned, there’s ratios involved with many of these. Calcium to magnesium ratios, zinc to copper ratios, and in some cases it’s actually the ratio that’s really, really significant as well. One of the first episodes we had on here was talking about zinc and copper imbalances, and how they can actually create anxieties. and also some conditions in the brain.

So you’ve covered that from a different aspect, but the ratios can be very important too. So, supplementing just one single nutrient can be a problem also. Have you ever come across anyone supplementing magnesium who get problems with calcium balance?

[Carolyn Dean]: In the past number of years, I think I’ve had two people where they’ve just thought that the magnesium was all they needed, and took higher, and higher, and higher amounts. And I don’t know if we proved that there was a calcium problem, certainly, when they did their blood tests. Their calcium levels were not low on their blood test, but that’s where, in my writing, I make sure people are getting their 700 milligrams of calcium every day in their diet. And if not, to take a well absorbed calcium supplement.

I think I’m going to have to work on… They’re called picometer minerals. Picometer is like a trillionth of a meter, so that’s the size of the minerals I work with. And that is actually the mineral ion channels size in the cells. And it’s actually the diameter of the plant rootlets, picometer.

So, what’s supposed to happen is the soil is supposed to be flush with worms and organisms that break down the minerals to a picometer size so that plan rootlets absorbs them into the plants. And then we eat the plants, and we get our minerals. And it’s all supposed to go brilliantly like that. And, we’ve stopped that from happening. Its not occurring anymore, because the soils are so dead.

I mean, we didn’t even talk of the different herbicides and pesticides that actually bind up minerals. The Roundup Ready by Monsanto, it binds up 50% of magnesium, even in the soil, and it has a half life of 23 years.

[Damien Blenkinsopp]: Yeah. What we are doing these days is pretty crazy, to look back on it.

Thank you very much for your time today, and I’d really like to wind down the interview with a few slightly different questions about you, and your ideas about the world of health.

First of all, are there other people, besides yourself, that you recommend to go to for advise and insights on areas around health, or testing, or any of these types of areas we’ve discussed today?

[Carolyn Dean]: Well, when people come to me, for example, with cancer, I don’t treat cancer. I’ve studied something called Total Biology. Have you heard of German New Medicine, or Total Biology Damien?

[Damien Blenkinsopp]: No, I haven’t.

[Carolyn Dean]: It’s the conflict that basis of disease, where a conflict in somebody’s brain, a worry, an unsolvable problem, can actually be downloaded in the body as a physical symptom. Like, if you’ve got a boss who makes you sick to your stomach, then you can develop a stomach ulcer. Or, if somebody’s a pain in the neck, then you can get neck pain. So, there’s simple comparisons like that. And then solvable conflict can also put itself into the body, and unless we deal with the conflict, then physical medicine really won’t be able to completely solve the problem.

So, beyond what I do in my books and my products and my website, I have a two year online wellness program. I really don’t know that anybody is covering the water front in the way I do, but, you know, I’ll refer out to people for the Total Biology, and that aspect of the psychology and physiology of the body that was never addressed in either allopathic or even my naturopathic training so far.

[Damien Blenkinsopp]: Great, great. Thank you very much. Are there biomarkers or labs that you track on a routine basis to monitor, or improve, your health, longevity, or these kinds of concerns?

[Carolyn Dean]: No.

[Damien Blenkinsopp]: Nope? Nothing you look at. Okay. Great.

What would be your one biggest recommendation to people for health, longevity, and performance?

[Carolyn Dean]: It would have to be magnesium, really, seriously. When you look at the products that some of the doctors have these days – and I’m not saying… I’ve been active for over 40 years, and it’s only in the past year or so, I’ve decided that I had to get into products because the ones I needed for myself weren’t available. And people were getting so desperate.

I spent two years creating a two year online wellness program for people, because I wanted to educate, and give them all the information I knew. People don’t have time to do a two year course. They’re desperate, they want something now. And so what I realized when I look at a lot of the supplements that, even the medical doctors are selling, you can’t even find magnesium in their products.

And so that’s where I really come back to start with magnesium. It works on nearly 700 to 800 enzyme systems, it supports the energy of your body, it helps you sleep, it gives you energy during the day, it relaxes you enough to help you sleep at night. So it really is the one supplement that everybody should take.

[Damien Blenkinsopp]: Thank you very much for that. So, in terms of people connecting with you, you just mentioned that you have a radio show. I think it’s also a podcast, correct?

[Carolyn Dean]: Yes! You’re right, we did podcast it. People can just go to drcarolyndean.com, and I have a little radio on the side where people can click on to get my radio show. I do blogs periodically. I used to do them more frequently, but everything really slows down in December when we’re of course doing this taping. So, drcarolyndean.com, you’ll see my wellness program, I have a free online news letter, a couple of my products are listed there that takes you to a website.

And actually, under the wellness program, people can pick up two free e-books on minerals with their pdf format. Under my wellness program.

[Damien Blenkinsopp]: Great. And of course, your book is called the Magnesium Miracle, and it’s in its third edition, I believe?

[Carolyn Dean]: That’s right. The 2014 edition, and it’s on Amazon. And actually, Amazon is doing a great job now, I heard they’re doing same day delivery in some major centers. It’s amazing.

[Damien Blenkinsopp]: Yeah, they are. I mean, I use Amazon every single day, it’s crazy. If you’ve got the iPhone app for Amazon, it’s dangerous.

And if you use the Amazon lockers, you can get stuff literally shipped next to a 7/11 next to you.

[Carolyn Dean]: But then even worse is having a Kindle, where you can order the next book in the series while you’re lying in the bathtub. They’re making a mint on Kindle, because you can’t lend them. So everybody has to buy a new Kindle, where as with books you can lend them all over the place.

[Damien Blenkinsopp]: Yeah, that’s true. I’m not complaining, I love Amazon. It makes everything very convenient.

So Carolyn, thank you so much. Of course we’ll put those references you just spoke about in the show notes, so people will be able to find you easily. But thank you so much for your time today. It’s been a pleasure talking with you, especially after having read your books so long ago. And using magnesium as a result for these many years. So thank you very much for your time, and great to connect with you.

[Carolyn Dean]: Thank you Damien, good interview. Great questions. I enjoyed it. There’s a lot of information out there, and I appreciate being able to do that, so thank you.

Leave a Reply

Is some aspect of mitochondrial damage behind cancer? If so, can this theory help us take control of cancer via tactics such as yearly or more frequent “7 day water fasts”.

When we think about death, cancer is often what we think of first. If you’re like me, most, if not all, of the deaths affecting you personally in your life may have been due to cancer.

Part of what makes a cancer diagnosis so devastating is that it’s mechanisms – how it works, where it comes from, how we can treat it effectively, how we can track it’s development, assess our risk and avoid it – continue to allude us. That makes us feel powerless against it.

Today’s episode is about the theory that mitochondrial damage is behind cancer, and how this theory may let us take control of cancer. We also hear our guest discuss the power of “water fasts” as a potential tactic to beat cancer.

If that’s true then tools that we have today such as ketogenic diets, fasting, lipid replacement therapy and other approaches to mitochondrial repair may help reduce or eliminate the risk of cancer, and even treat it when we have it.

We’ve already seen how important our mitochondria, and keeping them healthy, is in previous episodes, looking at longevity and aging with Aubrey de Grey, and autoimmune diseases with Terry Wahls. Today we add to that list the role they may be playing in the cancer diseases process.

“All cancers can be linked to impaired mitochondrial function and energy metabolism. It’s not a nuclear genetic disease. It’s a mitochondrial metabolic disease… therapeutic ketosis can enhance mitochondrial function for some conditions, and can kill tumor cells.”
– Dr. Thomas Seyfried

Today’s guest, Dr. Thomas Seyfried, is Professor of Biology at Boston College, where he leads a research program focused on the mechanisms by which metabolic therapies such as ketogenic diets and fasting can manage chronic disease and cancer. He sits on the editorial boards of four research journals, and has over 60 published papers on cancer and metabolism.

He is the author of the review paper Cancer as a Metabolic Disease, appearing in the Journal of Nutrition and Metabolism in 2010, and of the textbook in 2012 entitled Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer.

He’s a frequent lecturer and speaker at conferences on the topic of cancer, impaired mitochondrial function, and using ketogenic diets and fasting tactics as therapy to treat and avoid cancer.

This was personally an important episode for me. I hope you feel more in control of your cancer risk after listening to it, as I do having followed Dr. Seyfried’s work.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • How the idea that a change in mitochondrial function is behind cancer started in the 1920s (4:10).
  • The ancient energy mechanism through which cancer cells can bypass the mitochondria through fermentation instead of normal mitochondrial respiration (7:20).
  • The part of mitochondrial function that seems to be compromised in cancer – oxidative phosphorylation (8:15).
  • Different types of cancer cells and tumors have varying damage to their mitochondria. The worst and most aggressive cancers have the least mitochondrial function (9:00).
  • The oncogenic paradox (9:00).
  • Lipids such as Cardiolipins in the inner membrane of mitochondria are the part responsible for respiration (15:10).
  • How Dr. Seyfried pooled research from over 50 years together to develop his conclusions on cancer and the mitochondria (18:00).
  • Therapeutic ketosis and fasting can enhance mitochondria (23:00).
  • Ketone bodies produce cleaner energy, with less oxidative stress (ROS) than glucose molecules, when used for fuel in the mitochondria (27:00).
  • Nuclear genetic mutations prevent cancer cells from adapting to use ketone bodies as their energy source (29:30).
  • Which biomarkers could be indicative of cancer risk? (33:10).
  • Using therapeutic fasting of several days to improve your metabolism (36:00).
  • Using combined blood glucose – ketone meters to take readings and using Dr. Seyfried’s calculator to calculate Glucose – Ketone Indices (38:00).
  • It requires 3 to 4 days of fasting to get into the therapeutic glucose – ketone index zone (42:00).
  • “Autolytic cannibalism” to improve overall mitochondrial function – the mitochondria can either be rescued, enhanced or consumed (47:30).
  • The difficulties with directly measuring mitochondrial respiration vs. anaerobic fermentation and lactic acid to assess cancer status (49:50).
  • Weight loss can come in two types, pathological and therapeutic. The weight loss via fasting is therapeutic and healthy (52:00).
  • Cancer patients do better with chemotherapy, with less symptoms, when they are in a fasted state (52:00).
  • Cancer centers currently do not offer mitochondrial based therapies, only chemo or immuno therapies (57:40).
  • The biomarkers Dr. Thomas Seyfried tracks on a routine basis and his use of the ‘fasting’ tool (101:40).
  • What Dr. Seyfried would do if he had cancer (102:30)
  • Should you remove organs if you discover you have a high genetic risk for cancer? (E.g. BRCA1 as with Angelina Jolie) (103:30)

Dr. Thomas Seyfried

The Tracking

Biomarkers

  • Blood Glucose: A measure of the level of glucose in the blood at one point in time. Dr. Seyfried’s therapies target reduction of blood glucose levels to limit cancer cell growth, and according to his theories high blood glucose is a biomarker of increased cancer risk.
  • Glucose – Ketone Index (GKI): The ratio between the concentration of glucose in the blood to ketone bodies in the blood. The calculation is Glucose (mmol)/ Ketone (mmol). Dr. Seyfried created the index as a better way to assess metabolic status. Therapeutic efficacy is considered best with index values approaching 1.0 or below. Patients with chronic disease like cancer have index values of 50 or more. Thomas’ paper on the use of GKI for cancer patients has just been accepted for publishing: The Glucose Ketone Index Calculator: A Simple Tool to Monitor Therapeutic Efficacy for Metabolic Management of Brain Cancer. It is on Nutrition & Metabolism journal here and you can download an excel sheet to calculate the Glucose Ketone index here.
    Glucose Ketone Index - Thomas Seyfried

    Glucose Ketone Index Tracking of a Water Fast as Therapy for Brain Tumors Trial – Thomas Seyfried

Lab Tests, Devices and Apps

The Tactics

Treatments

  • 3 – 5 Day Water Only Fasts: A water-only fast of at least 3 days and preferably 5 days is recommended by Dr. Seyfried as a tool to reduce cancer risk and to lower your glucose – ketone index to 1.0. He recommends doing this twice yearly. For cancer patients he recommends much more intensive use of the water fast.
  • Ketogenic Diets: The ketogenic diet is a low carb diet which also raises the level of ketone bodies in the blood. We discussed this in depth, as well as the Ketone biomarkers and devices in episode 7 with Jimmy Moore on Ketosis.
  • Intermittent Fasting: An approach to fasting where you fast for part of the day or certain days per week. There are many approaches to this, however in Dr. Seyfried’s research he has found this doesn’t have a significant enough impact on raising ketone bodies to be therapeutic. He has only seen this via the water-fast.
  • Hyperbaric Oxygen Therapy (HBOT): Another therapy Dr. Seyfried believes may be beneficial to fight cancer but is relatively non-toxic in comparison to current treatment modalities (chemo and immunotherapies), and would like to trial in conjunction with fasting protocols.

Supplements

  • Oxaloacetate: A support for the mitochondria, also dubbed as an anti-aging supplement as it has caloric restriction mimicking effects. It is sold by Dave Asprey in his “Upgraded Aging” formula.
  • 3-Bromopyruvate (3BP): Dr. Seyfried would like to incorporate this non-toxic molecule in combination with fasting therapies to treat cancer patients.
  • PQQ (Pyrroloquinoline Quinone): Mentioned by Damien as a potential tool for mitochondrial biogenesis.

Other People, Resources and Books

People

  • Otto Warburg: A well known scientist who worked on cancer in the 1920s and 30s and discovered that cancer cells have different metabolism to normal cells.
  • Albert Szent-Györgyi: The oncogenic paradox was first coined by this nobel prize winner for his work with vitamin C and energy metabolism.
  • Valter Longo PhD.: Dr. Seyfried referred to Valter Longo’s work at the University of Southern California on the impacts of fasting on patients undergoing chemotherapy.
  • Angelina Jolie: The actress recently had her breast’s removed when she discovered she has the BRCA1 genetic mutation, that predisposes women to breast cancer.

Organizations

Books

Full Interview Transcript

Transcript - Click Here to Read

[Damien Blenkinsopp]: Thomas, thank you so much for joining us today.

[Dr. Thomas Seyfried]: Thank you.

[Damien Blenkinsopp]: I’d like to start off with basically kind of an overview, because you are putting for a different theory of cancer compared to that that’s been the reigning theory for a very, very long time now. Could you describe the differences between the two theories, and what is the basis for your new theory?

[Dr. Thomas Seyfried]: Well, it’s not that my theory is new. The theory was initiated in the early part of the last century, in the 1920’s through the 30s and 40s, by Otto Warburg, the distinguished German scientists and biochemist. It was Warburg who found that all tumor cells continue to ferment glucose in the presence of oxygen. Put it this way, lactic acid fermentation.

This is a very unusual condition that usually happens only when oxygen is not present. But to ferment in the presence of oxygen is a very, very unusual biochemical condition. Warburg said, with his extensive amounts of data, that the reason why tumor cells do this is because their respiration is defective. So, in our normal bodies, most of our cells generate energy through respiration, which is oxidative phosphorylation. And we generate ATP this way.

But cancer cells, of all types of tumors and all cells within tumors, generally have a much higher level of fermentation than the normal cells. And this then became the signature biochemical defect in tumor cells. And Warburg wrote extensively on this phenomenon, and presented massive amounts of data – he and a number of other investigators.

But what happened after Watson and Crick’s discovery of the structure of DNA, and the findings that genetic mutations and DNA damage were in tumor cells, and the enormous implications of understanding DNA as the genetic material, this just sent the whole field off into a quest to understand the genetic damage in tumor cells. And it gradually became clear to many people that cancer was a genetic disease, rather than a mitochondrial metabolic disease as Warburg had originally showed.

[Damien Blenkinsopp]: Right, so when you were talking about the energy and respiration of the cells, just a minute ago, that was actually in fact the mitochondrial respiration, and energy generation from mitochondria within cells.

[Dr. Thomas Seyfried]: That’s correct. That’s correct, it’s mitochondrial. It’s an organelle within all of our cells, the majority of our cells – erythrocytes have no mitochondria, so they ferment. But the mitochondria are the organelle that dictates cellular homeostasis and functionality, and provides health and vitality to cells in our organisms, and ultimately our entire body.

And when these organelles become damaged, defective, or insufficient in some way, cells will normally die. But if the damage or insufficiency is a gradual chronic problem, the cells will resort to a primitive form of energy metabolism, which is fermentation. Which is the type of energy that all cells had, all organisms had before oxygen came onto the planet, which was like a billion years ago.

So what these cells are doing then is essentially going back to a very primitive state of energy metabolism, which was linked to rapid proliferation. Cells would divide rapidly and grow widely before oxygen came onto the planet. So what these cancer cells are doing is just falling back on the type of energy metabolism that existed for all organisms before oxygen came on the planet.

[Damien Blenkinsopp]: Does that type of fermentation type of respiration, metabolic activity, is that originating from the mitochondria, or from the cell itself?

[Dr. Thomas Seyfried]: No, there was no mitochondria before oxygen came on the planet. So this was purely a reductive activity within cells. It doesn’t require mitochondria, it’s a purely cytoplasmic form of energy. Glucose is taken in, and rapidly metabolized to pyruvate through cytoplasmic in the cytoplasm, and then the pyruvate is reduced to lactic acid or lactide, which is called lactic acid fermentation.

And this then could drive energy metabolism, and the processes that can emerge from this type of energy metabolism. But it’s a very inefficient form of energy generation, and it’s often associated with rapid proliferation.

[Damien Blenkinsopp]: Right, thank you very much. So, in very simple terms it seems like, basically what you’re saying is, as the mitochondria get damaged they stop functioning, and then the cell goes back to the original form of energy generation, and it’s as if the mitochondria weren’t there any more.

[Dr. Thomas Seyfried]: Well it’s not that they’re not there. They are there, and they can also participate in certain kinds of amino acid fermentations. They still play a role in generating energy and nutrients for the cell, but it’s not through the sophisticated aspect of energy generation through oxidative phosphoryation. That part of their function seems to be compromised, but other parts of their function can take place. But they’re not generating energy through what most cells would generate energy through, which is respiration or oxidative phosphorylation.

And I also want to point out, it’s not a complete shut down of oxidative phosphorylation. Tumor cells, depending on the grade, and how fast they grow, and how aggressive the tumor is. It is true that some very, very aggressive tumors have very few, if any, mitochondria. So these cells are primarily massive fermenters.

But some tumor cells still have some residual function of their respiration, and they grow much more slowly than those tumor cells that have no function, or very little function, of their respiration. So it’s a graded effect, but the bottom line is the cells continue to grow, but they’re dysregulated. Because the mitochondria do more than just provide efficient energy. They are the regulators of the differentiated state of the cell. They control the entire fiber network in the cell. They control the homeostatic state of that cell.

So these organelles play such an important role in maintaining energy efficiency. And when they become defective, the nuclear genome turns on these oncogenes, that are basically transcription factors that drive fermentation pathways. So the cells are able to survive, but they’re dysregulated.

[Damien Blenkinsopp]: Right, which becomes cancer.

So, in what ways are the mitochondria getting damaged. What is the context for this kind of damage that takes place today? Is this a modern phenomenon, because, obviously cancer has become a bigger and bigger target of medicine over the years, and, potentially, it’s been growing. I’d like to hear your view on that.

Is cancer something that’s always been around, or is it something that affects us more today, and how is it that the mitochondria are getting damaged?

[Dr. Thomas Seyfried]: Yeah, what you said there is referred to as the Oncogenic Paradox, which has been discussed by Albert Szent-Gyorgyi, who received a Novel Prize for his work on Vitamin C and energy metabolism and these things, and John Cohn from England. These people had referred to this phenomenon as the called the Onogenic Paradox. How is it possible that so many disparate events in the environment could cause cancer through a common mechanism?

And when we think of what causes cancer, we think of carcinogens. And these are chemical compounds in the environment that are known to be linked to the formation of cancer. So there’s a whole array of these kinds of chemicals that we call carcinogens. Then there’s radiation can cause cancer. Hypoxia, the blocking of oxygen into cells, can be linked to the formation of cancer.

A common phenomenon and finding is inflammation. Chronic inflammation that leads to wounds that don’t heal. This is another provocative agent for the initiation of cancer. Rare germline mutations, such as the mutations in the BRCA1 gene that a lot of people hear about because of Angelina Jolie bringing attention to that area. Viruses, Hepatitis virus, papillomaviruses. And there’s a variety of viruses that can be linked to cancer. Age. The older people get, the greater the risk of cancer.

All these provocative agents all damage respiration. Their common link to the origin of cancer is damage to the mitochondria, and damage to the respiratory capacity of the cell. So the paradox is solved once people realize that these disparate, provocative agents work all through a common mechanism, which is basically damage to the cellular respiration.

Now, but people say, “Well what about all the genome mutations? What about all these mutations?” Which is a major focus in the field right now, is that cancer is a nuclear genetic disease. Now what happens is the integrity of the nucleus and the genetic stability of the nucleus becomes unstable once energy from respiration becomes defective.

Now it’s very interesting. All of the so-called provocative agents that are known to cause cancer through damage to respiration release these toxic reactive oxygen species, which then cause nuclear genetic mutations. And this is what most people are focusing on. The nuclear genetic mutations in the tumor cells are the targets and focal point of the majority of the cancer industry. Now, when you look at the disease as a mitochondrial metabolic disease, the nuclear genetic mutations arise as secondary downstream epiphenomena of damage to the respiration. So what most people are focusing on is the downstream effect, rather than the cause of the disease.

[Damien Blenkinsopp]: You’re saying that because mitochondria are damaged and energy output is damaged, that causes the cell to lose it’s integrity?

[Dr. Thomas Seyfried]: Lose the genomic integrity.

[Damien Blenkinsopp]: Ah, genomic integrity.

[Dr. Thomas Seyfried]: Yeah. Most people you talk to about this, they say “Oh, cancer’s a genetic disease. We’re trying to talk all these genetic mutations. Every kind of tumor has all kinds of mutations. We need personalized therapies because the mutations are different in all the different cells, and the different types of cancer.” And that’s true, but all of that is a downstream effect of the damage to the respiration.

So, people are focusing on red-herrings. They’re not focusing on the core issue of the problem, which is stabilized energy metabolism. And this underlies the reason for why we’re making so little progress in managing the disease.

[Damien Blenkinsopp]: So, I don’t know if you can break it down into a bit more detail. The mitochondria are made up of several parts: the outer membrane, the inner membrane, and so on. Is it certain parts, or is it any part of the mitochondria that’s getting damaged?

[Dr. Thomas Seyfried]: Yeah, it’s very interesting. It seems to be we’ve defined the lipid abnormalities, the lipid components of the inner membrane of the mitochondria. So there’s certain types of lipids that are enriched primarily in the inner membrane of the mitochondria. This lipid called cardiolipin. It’s an ancient lipid that’s present in bacteria and in mitochondria, but it plays a very important role in maintaining the integrity of the inner membrane, which is ultimately the origin of our respiratory energy, which is that inner membrane.

And many of the proteins that participate in the electron transport chain depend, or are dependent under interaction in the lipid environment in which they sit. So, lipids can be changed dramatically from the environment, which then alter the function of the proteins of the electron transport chain, effecting the ability of that organelle now to generate energy.

This is a real issue, and that inner membrane can be effected by all these carcinogens, radiation, hypoxia, viruses. The viruses themselves, or the products of the virus, will enter into the mitochondria and take up residence, thereby altering the energy efficiency of the infected cell.

And most of the cells die. When you interfere with respiration, most cells die. But in some cells of our body that have the capacity to up-regulate fermentation, these primitive energy pathways, they survive, and they go on to become the cells of the tumor.

[Damien Blenkinsopp]: Great, thank you for that. So, this is a very different theory to that which most people have come across, which, of course, you just outlined with the DNA mutations. Which bits of research have you pulled together in your book, and in your presentations, that you feel like present this view of the world the most strongly. Are there key research elements, researchers that have gone on, and maybe it comes down to four pieces that you feel strongly support this versus the other argument?

[Dr. Thomas Seyfried]: I think that’s an extremely important point. What is the strongest evidence to support what I’ve just said? And what I did in my book in evaluating the therapeutic benefits that we’ve seen in managing cancer by targeting fermentation energy. How is it possible that we overlooked this information? It’s very interesting.

Over the last 50 years, various sporadic reports had been published in the literature showing that if the nucleus of the tumor cell is placed in a new cytoplasm, a cytoplasm that has normal mitochondria – and this is cytoplasm either from a newly fertilized egg, or an embryonic stem cell. Because now we have this technology where we can do these kinds of nuclear transplantations. And this ultimately was what lead to the cloning of Dolly the sheep, and these kinds of experiments. These had been done many, many years earlier in frogs, and in mice, before we moved on to the larger mammals and things like this.

But it became clear that when the nucleus of the tumor cell was placed into the normal cytoplasm, sometimes normal cells would form, and sometimes you could clone a frog, or a mouse, from the nucleus of the tumor cell. Now this was quite astonishing. Because people were thinking you would get cancer cells, because the mutations in the nucleus, if the hypothesis is correct that this is a nuclear genetic disease and the gene drivers are in the nucleus, then how is it possible that you could generate normal tissues without abnormal proliferation. In other words, normal, differentiated tissues from the nucleus of a tumor cell.

I was able to pull together a variety of these reports that had been sporadic in the literature over 50 years. And when these reports came out, it was considered kind of an oddball report that didn’t support the gene theory, but most people discounted it, because it was one singular report. But every four or five years, another report. Eight years would go by, another kind of report. And some of these studies were done by the leaders of the field, the key developmental biologists, the best there were. These people were heavy-weights in the field.

And they were coming to the same conclusions. That we were not getting tumors from transplanting the cancer nucleus into a normal cytoplasm. We were cloning mice, we were cloning frogs. We were seeing normal regulated cell grow. Now how can this happen, if the nucleus is supposed to be driving the disease?

So what I did was, I put all these reports together in a singular group. And I distilled it down to what the ultimate results showed. And then when you look at the whole group of papers, together for the first time, and the conclusions are consistent from one study to the other, using totally different organisms, totally different experimental systems, the results are all the same. The nuclear mutations are not driving the cancer disease.

And then if you take the normal nucleus and put it into a tumor cytoplasm, you either get tumor cells or dead cells. You never get normal cells. So this was clear. It became very clear to me, and when people look at these kinds of observations in their group and their totality, it’s a devastating statement on the nature of the disease. It’s not a nuclear genetic disease, it’s a mitochondrial metabolic disease. And the field has not yet come to grips with this new reality.

[Damien Blenkinsopp]: Just on that point, quickly, if you were to predict the future, do you think that this view of cancer metabolism is going to get traction in the near future? Say the next five years, next ten years, and what will it take to make that happen?

[Dr. Thomas Seyfried]: Well, it’s already gaining a lot of traction. People are now coming to realize that metabolism is a major aspect of cancer. But, unfortunately, what the field has done, there’s still links to the gene theory. So, the top papers come out and they say, “Oh, the abnormal metabolism in cancer cells is due to the nuclear gene mutations. Therefore, we still must be on the quest to find out what these mutations do.”

They have not evaluated in the depth of the information that I’ve presented. It becomes clear that this is not a nuclear genetic disease. So the mutations are not driving the disease, they’re the effects of the abnormal metabolism.

Now, there’s a groundswell of new interests in this. Now this opens up a totally different way to approach cancer. Once you realize it’s not a nuclear genetic disease, but it’s a mitochondrial metabolic disease, you have to then target those fuels that the tumor cell is using to stay alive. These amino acids and glucose, which can be fermented. Those molecules that can be fermented through these primitive pathways now become the focal point of stopping the disease.

So it becomes a much, much more manageable and approachable disease once you realize that if you take the fuel away from these tumor cells, they don’t survive. They become very indolent, they stop growing, they die. And now this gives you an opportunity to come in and target and destroy these cells, using more natural, non-toxic approaches.

[Damien Blenkinsopp]: Right. If you could reinforce that a little bit, because as I understand it, the current approach, which is pushed the most, is to target all of the different nuclear genetic mutations – and there’s many, many thousands of them, you can’t really count how many there are, because it’s constantly developing – versus, with mitochondria, as I understand it, mitochondria are all the same. So it’s a completely different problem when you look at it from that respective. Am I summarizing it correctly?

[Dr. Thomas Seyfried]: Yes, I think you’re absolutely right. I mean, it’s a completely different problem. It now becomes a problem of energy metabolism. And the nucleus becomes a secondary peripheral issue.

[Damien Blenkinsopp]: Right. And the fact becomes much simpler, because you’re targeting the same problem versus thousands of different problems.

[Dr. Thomas Seyfried]: Absolutely.

[Damien Blenkinsopp]: And then therapy is… Today we’re developing thousands of hundreds of different drugs to target different types of cancer.

[Dr. Thomas Seyfried]: Yeah, it makes no sense. And the issue is every single cell in the tumor suffers from the same metabolic problem. But every single cell in the tumor has a totally different genetic entity. And we’re focusing on the very different aspects of every cell, rather than the common aspects of every cell.

The problem becomes a much more solvable problem once you target the commonality. The common defect expressed in all cells, rather than the defects that are expressed in only a few of the cells. You would not do that until you came to the realization, and saw the data, that this is a disease of energy metabolism, not nuclear genetic defects. It’s a totally different way of viewing the disease.

[Damien Blenkinsopp]: Right. Thank you.

This may be kind of off subject for you, let me know if it is. But, I understand it, there’s also, more and more people are starting to link other types of diseases – say multiple sclerosis, Parkinson’s, and some of the other chronic diseases that we have and are not very solvable today – to mitochondrial disease. So I’m wondering if in any way you link that to the same origin of cancer, here. That we’re discussing.

[Dr. Thomas Seyfried]: Well, those diseases, that’s true. There are mitochondrial abnormalities in Parkinson’s disease, Alzheimer’s disease, epilepsy, and Type 2 diabetes. I mean, you can go right down the list and find a mitochondrial connection to a lot of these different diseases. But the mitochondria can be damaged, and insufficient, and influenced in many different kinds of ways. So, only cells that can up-regulate, significantly up-regulate fermentation, can go on to form tumor cells.

But many of our cells are not killed outright, and they struggle. For example, the brain. We rarely get tumors of the neurons in the brain, because if you damage the respiration of the neuron, the neuron will die.

Many of the tumors in the brain come from the glial cells. These are supportive cells of the brain, they play an extremely important role in the homeostasis of brain function. But those cells have a greater capacity to ferment than do the neurons. So when mitochondria are damaged in neurons, the neurons usually die. You can never get a tumor cell from a dead cell.

Now Parkinson’s disease and Alzheimer’s disease, these are situations where populations of neurons die from reactive oxygen species. So these reactive oxygen species, which are produced by inefficient mitochondria, kill the cell. And the cells never form tumors, they just die. So you have populations of cells in the Substantia nigra in Parkinson’s disease, or in the hippocampus in Alzheimer’s disease, where the neurons are dying. And they’re dying from mitochondrial energy inefficiencies.

And the idea then, is can we enhance neuronal function by using therapies that will strengthen mitochondrial function. And the answer is, yes. And this is why these ketogenic diets are showing therapeutic benefit for a variety of different ailments, a very broad range of ailments. But the diets and these approaches – what we can therapeutic ketosis – can enhance mitochondrial function for some conditions, and can kill tumor cells in other conditions.

So one now has to appreciate a new approach to managing a variety of diseases that may have a linkage through inefficient mitochondrial metabolism.

[Damien Blenkinsopp]: Could you talk about – we’re coming into treatment here a little bit now, based on your theory. There’s the difference between ketone, or like, fat versus glucose metabolism in the mitochondria. And you were just talking about efficiencies. Could you go over that? What is the difference there? Why is it that glucose metabolism is different that of fats and the production of ketones?

[Dr. Thomas Seyfried]: Yeah, well the body is very flexible. It can burn energy from carbohydrates, which is glucose, or it can burn energy from fatty acids. Or it can burn energy from ketones. And we evolved as a species to survive for considerable periods of time without food. It’s amazing how people don’t understand this. They think if they don’t eat food in a week or less, they’re going to drop dead. This is nonsense.

We evolved as a species to function for long periods of time. As long as we have adequate fluids, water, the human body can sustain functionality for extended periods of time without eating. Now, you say to yourself, well where are we getting our energy. We evolved to store energy in the form of triglycerides, which are fat. And many of our organs store fats to various degree, and we have fat cells that store fat.

Now, when we stop eating, the fats are mobilized out of these storage vacuoles in the cells. And the fats go to the liver, and our liver breaks these fats down, like a wood chipper, to these small little ketone bodies, which now circulate through the bloodstream, and they can serve as an alternative fuel to glucose. So we can sustain, because the brain has a huge demand for glucose, but the human brain can transition to these fat breakdown products called ketone bodies.

So this all comes from storage fat, and our brains can get tremendous energy from these ketones. The energy in food comes from hydrogen carbon bonds that were produced during the production of the food. Ultimately from planets and the sunlight. But the energy in the bonds is ultimately derived from the energy of the sun. Now, our bodies break down these bonds, and recapture that energy. What we’re doing then is just recapturing this energy.

Now ketone bodies, when they’re burned in cells, they have a higher number of carbon oxygen bonds. They produce more intrinsic energy than does a glucose molecule, which is broken down to pyruvate, which is a glucose breakdown product. And when ketones are metabolized, they produce fewer of these reactive oxygen species. They work on the coenzyme Q couple within the mitochondria to produce clean energy, energy without breakdown products. It’s a very efficient form of energy.

[Damien Blenkinsopp]: I like that analogy there, because people could relate to how we had lead gas before, and we cleaned it up a bit, and now we’ve got less waste products in the environment.

[Dr. Thomas Seyfried]: Yeah!

[Damien Blenkinsopp]: It’s a little bit similar.

[Dr. Thomas Seyfried]: It’s the same thing. I mean, our bodies are so super energy efficient when we begin to force them into a situation. In the past, this was done all the time, because in the past the humans almost were extinct a number of geological epochs, for the ice ages, lacks of food and all. And I mean, we have a very energy efficient machine in our bodies that can generate this energy from within. Clean, powerful, efficient energy that allows us to sustain our mental and physiological functions for extended periods of time.

And this comes from the genome. Our genome has a remembrance and a knowledge to do this. It evolved over millions of years to do this. The problem today is that this capability is suppressed by the large amounts of high energy foods that are in our environment. And what happens, this then creates inflammation and the kinds of conditions that allow inefficiencies, and eventually inflammation and the onset of cancer.

So, returning to the more primitive states allows our bodies to reheal themselves. And, as I said, here’s the issue. The nuclear genetic mutations that collect in these cancer cells prevent those cells from making the adaptations to these food restrictive conditions. So, because the mutations are there, the cells are no longer flexible. They can’t move from one energy state to the other, like the normal cells can, which have integrated genomes.

So, the mutations can be used to kill these tumor cells, but by forcing the body into these different energy states in a non-toxic way. It’s not necessary to have to poison people, nuke people, surgically mutilate people to make them healthy. There’s natural ways we can do this, if we understand the differences in metabolism between normal cells and cancer cells.

[Damien Blenkinsopp]: So, from your perspective, anything that would help to repair mitochondria, would that be helpful against cancer?

[Dr. Thomas Seyfried]: Oh, absolutely. Absolutely. You’re not going to get cancer in cells that have very healthy mitochondria. If mitochondrial damage is the origin of cancer, and the cells have very high efficient mitochondria, it’s very unlikely. The risk of developing cancer in those situations is remarkably low.

There are groups of people that we have in the United States, the Calorie Restriction Society of America. It exists in other areas throughout the world. These people have a very low incidence of cancer. They’re in a constant state of ketosis, and the incidence of cancer in these people is very, very low.

Now, I have to admit. This is not an easy lifestyle. People don’t want to be restricting themselves all the time, and doing this stuff. This is the issue. We live in an industrialized society that has come a long way to create an environment that is free of the massive kinds of starvations, and these things that existed in the past. So it’s hard to take your body and go back into these primitive states to do this kind of thing.

[Damien Blenkinsopp]: Right. So, there’s [unclear 31:58] a really big focus on what you’ve been saying on reactive oxygen species, which is kind of like the mini explosion that takes place inside a car when it’s running. And I think people can relate to the fact that all engines are causing damage while they’re running, because they’re producing heat, and so on.

So, with the mitochondria, it’s basically the same. And you’re saying that when we’re on a ketogenic diet, or where we’re fasting and we’re producing this more efficient type of fuel, it reduces our assets [unclear 32:23] causing less damage. And it’s an important type of the damage that is caused to mitochondria.

And this is why eventually it helps with the status of the mitochondria, to heal them and repair them, or to limit the additional damage that goes on which would help to promote the cancer. Is that a good summary, or have I got some things wrong?

[Dr. Thomas Seyfried]: It’s a very close analogy. I would say this is exactly what it is. We damage our body by the kinds of foods we eat, the kinds of environments we’re exposed to. And the mitochondria in certain cells just get damaged, and these cells then revert back to a more primitive form of energy, which is fermentation, which then leads to a total dysregulation of the growth of the cell. Collects these mutations that come as a secondary downstream epiphenomena of this.

And the thing of it is is, how do you target and eliminate those kinds of cells. And cancer, people must realize, this is systemic disease, rather than a focal disease. People say, “Oh, what does he study? He’s a liver cancer, breast cancer.”

These cancers are all the same. They’re metabolically all the same. You need to treat cancer in a singular global systemic way, and this then will marginalize and reduce the growth of these cells. And you have to be able to do it non-toxically.

And these ketogenic diets, or therapeutic ketosis, is just one way to enhance the overall health and well-being of the body while targeting and eliminating these inefficient cells. And this can be done if people do it the right away.

[Damien Blenkinsopp]: Great, great. Thank you very much.

So, based on this theory, what kind of biomarkers would give us insights into someone’s potential to develop cancer? Because today we look at 23andMe data, for example, genetics to kind of asses our risks of future cancer. For instance, on mine it says my highest potential cancer is lung cancer. And that’s pretty much the only markers that we’re given. Are there markers related to mitochondrial function, or damage, that you would feel that would be relevant to estimating a future potential risk of cancer?

[Dr. Thomas Seyfried]: Yeah, well I think one of the risks of cancer is high blood sugar, blood glucose levels. I mean this creates systemic inflammation, which underlies a lot of the so-called chronic diseases that we have, including heart disease, and Type 2 diabetes, and Alzheimer’s disease, and cancer. These are just the predominant number of chronic diseases that we’re confronted with.

So, if we know that high blood sugar is a provocative agent that increases the risk for cancer, then making sure your blood sugar levels are low. And the other thing too is elevation of ketones. So we developed what they call a glucose-keton index that can be used for people to prevent cancer, as well as managing the disease.

So if the glucose-ketone index, which we have defined as the ratio between the concentration of glucose in the blood to the concentration of ketone bodies in the blood. If this index can be maintained as close to 1.0 or below, the body is in a very high state of therapeutic energy efficiency. Which is then going to reduce the risk for all of these different kinds of chronic diseases. So, and if you look at most people with chronic disease, their index is about 50 or 100, rather than 1 or below 1.

We’ve just developed this, and we’re working on a paper. It’s called the Glucose-Ketone Index. It was designed basically for managing cancer, because patients who have cancer, if they want to know what these therapies are doing, how they’re working, you look at your index.

Now, people who don’t have cancer, who would like to do something to reduce their risk, they would do the same thing. And people would say, “What’s your index today?” “My index is 1.2.” You’re in a very good state of health.

And if most people – I can guarantee – people who eat regular foods, their indexes are about 60 or 70, not 1.2 below. Because what you do is when you have a lot of carbohydrate in your bloodstream, the ketones are very, very low. They’re like 0.2, 0.1. And you’re blood sugar is like 4 or 5 millimolar, and your blood ketones are 0.1 millimolar. Well what do you think your index is going to be? It’s going to be huge.

But then if you increase your ketones, if you can bring the ketones bodies up to the same level as glucose, then I have a 1.0.

[Damien Blenkinsopp]: Is this sensitive enough to manage potential? You made a very clear scenario of 60, where that’s a very dangerous situation to be in.

[Dr. Thomas Seyfried]: Oh no, no. I don’t want to say it’s dangerous. I want to say it’s the norm.

[Damien Blenkinsopp]: Oh, okay. Great.

[Dr. Thomas Seyfried]: It’s not dangerous. When you take somebody who has Type 2 diabetes, and his blood sugar is like 300 milligrams per deciliter – and you have to divide that by the number 18 to bring it down to millimolar – and his ketones, you can’t even measure them. I mean, these guys are inflamed. Their bodies are in an inflamed state. And inflammation will cause all kinds of effects.

So, you want to bring people down. How do you get these low numbers? Well, you can either go on these calorie restrictive ketogenic diets, or you can do therapeutic fasting, which is water only fasting, for several days. You’ll bring those numbers right down. You’ll get into an extremely healthy state. Because the ketones go up naturally when you don’t eat, and blood sugar goes down naturally when you don’t eat.

So then you enter into these states, it’s called therapeutic ketosis. The problem is it’s very, very difficult for most people in our society to do this, because our brains are addicted to glucose. If you take somebody who stopped eating for 24, 36 hours, this guy thinks he’s going to go crazy. It’s almost like trying to break the addictions to cigarettes, alcohol, drugs. It’s not easy. It’s very, very difficult to break the glucose addiction.

[Damien Blenkinsopp]: Absolutely. It takes a little bit of time to change your metabolism.

[Dr. Thomas Seyfried]: Yeah.

[Damien Blenkinsopp]: So we spoke to Jimmy Moore before. I don’t know if you connected with him before, and his book…

[Dr. Thomas Seyfried]: Yeah, I know Jimmy.

[Damien Blenkinsopp]: Right, right. So we spoke about some of the different ways to measure ketones. We had the blood test, the blood-prick test with the precision, which is a little bit expensive today. And you have the breath test, the Ketonics, which has just come out. With that index, are you using the blood-prick test, or are you using maybe blood labs, or something a bit more complicated?

[Dr. Thomas Seyfried]: There’s a couple of companies that use the blood test, the most accurate. It’s more accurate than the breath, blowing into a ketosis meter. Or you do urine sticks. So the most important measure, of course, is blood. So you have to take a blood stick. There’s only a few meters that can do both ketones and glucose, using the same meter.

You have to use different sticks. There’s a ketone stick, and a glucose stick. So from the same drop of blood, you can get your blood sugar, and then you can put a new stick into the machine, which is a ketone stick, and then you can take the same drop of blood and get your ketones.

Now what we did was we developed a calculator so that all the person would have to do is to push the button on the meter, and it would calculate already your glucose-ketone index. This would give you a singular number from a drop of blood.

[Damien Blenkinsopp]: So you’ve developed your own device, you’re saying, which does that calculation?

[Dr. Thomas Seyfried]: We developed the calculation. It’s called the Ketone Index Calculator. And because you have to convert everything back to millimolar. Because many of the ketone meters give you blood sugar in milligrams per deciliter, and ketones in millimolar. So we have to convert. You can do all this by hand, you just have to do the divisions and all of this stuff.

[Damien Blenkinsopp]: So you’ve got an online calculator where people can put their values in and it will give them the index?

[Dr. Thomas Seyfried]: Well, we don’t have that yet. What we did was develop the calculator that could be incorporated into these meters.

[Damien Blenkinsopp]: I see.

[Dr. Thomas Seyfried]: This is the thing. So people, regardless of whether you’re a cancer patient and you want to manage your disease, or you’re a person who wants to prevent cancer, or you’re an athlete who wants to know what his physiological status is, or you’re someone who wants to lose weight. All of these issues, you can get a sense, a good solid biomarker sense, by looking at your glucose-ketone index.

And everybody can do that from these meters that are capable. But the meters right now are not designed to give you glucose-ketone indexes. And this is what we’re saying; it’s the index that will tell you your overall status, your health status.

[Damien Blenkinsopp]: Right. So I imagine, right now, you’re approaching the providers of these tools to see if they can incorporate this calculation into their devices?

[Dr. Thomas Seyfried]: Yes. Exactly. They don’t have it yet. They’re not even aware yet of the potential market, or interests, among the general population. Not only for people that are afflicted with various diseases, but people who are healthy and don’t want to get those diseases.

So this is a very simple tool. The only drawback from it is you have to stick your finger with a little prick to get a little bit of a drop of blood. The people with Type 1 diabetes do this regularly. This is not an issue. But for those people who are into this, and they want to do it the right way, and they want to get accurate biomarker measurements, then they would do this. For those people who are interested in this.

This is invasive in the sense that you have to prick your finger to get a drop of blood, but it’s not invasive in the sense that you have to take tissue samples, or any of this kind of thing.

[Damien Blenkinsopp]: And so this is something that people could do on an on-going basis? So I’m guessing for someone with cancer – I don’t know if this would be something you would say – they’d probably want to look at daily, or every few days, or something like that. And someone else, maybe it’s just something they need to do a lot less intensive routine, in terms to just monitor the levels of their general ketogenesis.

[Dr. Thomas Seyfried]: Yes. You’re absolutely right about this. People who are trying to manage their diseases thoroughly might want to do this maybe once or twice a day. Just like someone who might have Type 1 diabetes. They measure their blood sugar several times a day.

The issue right now is the glucose strips are relatively cheap – they’re like 50 cents a piece – but the ketone strips are much more expensive. They can range from anywhere from $2 to $5 a stick.

[Damien Blenkinsopp]: Do you know if that’s due to economies of scale? Or if it’s simply because not enough people are using them yet?

[Dr. Thomas Seyfried]: Yes, it’s an economy of scale, absolutely. Because very few people measure their ketone levels. But now, linking those ketones to your overall general health, a lot of people would be interested in this.

And people in general like numbers. They want to know, and especially a singular number that would dictate your state of health. If you can say to somebody, “Listen. My index is between 1.1 and 0.9,” people would automatically know this guy is in a tremendous state of health.

People like to know that. You say, “Where is your number?” And people like to keep log books. They like to record these numbers. And they also link this to a greater sense of well-being. People who have their numbers down in these ranges, they tell me – and I’ve done it. Some people get into a state of euphoria. It’s like unbelievable.

When your body starts burning these ketones, it’s like you enter a new physiological state. And athletes are doing this sometimes. So it’s a whole new realm of how to monitor your own health with accurate biomarkers that give you an indication of your health status.

[Damien Blenkinsopp]: So do you follow a similar prescription to Jimmy Moore? I believe you understand his approach, where he’s eating a high fat diet, or sometimes he’s fasting. Kind of like intermittent fasting, which has become pretty popular these days.

[Dr. Thomas Seyfried]: Well intermittent fasting is, from what we’ve seen in our work, you don’t get the health benefits, the power of the health benefit, until you’ve gone three to four days without any food. Just drinking water. And then those who can go a week, like a seven day period, this is really when you start to see your blood sugars going down and your ketones going up.

But once you can get into this zone – we call it the zone of therapeutic management – where now you know your in the zone, this is where the health really comes in. And when you say periodic fasting, now there’s a lot of people that I know – numbers of people – who have a rather restrictive diet for the week, and then one day a week they’ll not eat anything. So, it’s one day off on food, like a 24 hour period where they’ll just have maybe a green tea, no calories, or just pure water.

[Damien Blenkinsopp]: Some of the intermittent fasting regimes propose that approach, a 24 hour fast every two days.

[Dr. Thomas Seyfried]: Yeah, but then you’ve got to know, okay what did that do to my index? How effective was the 24 hour fast on my index? And you look down, you say, “Well, I didn’t get my ketones up very far. They went from 0.1 to say, 0.5.” Okay, but if I go four or five days, it goes from 0.1 to 3.0. Oh wow, this is the magnitude difference.

[Damien Blenkinsopp]: Yeah. So have you looked at different people, because when we were talking to Jimmy, he was saying that different people have different responses. It’s based on their current state of metabolism. They’ll have to be more extreme in their approach to get the same level of ketones, and the same impact on an index, depending on, potentially, how damaged their mitochondria are. I don’t know how you look at it.

[Dr. Thomas Seyfried]: Yeah, no, that’s a really important point. It’s certain people. It’s also certain sexes. Women can get into these ketone states much easier than men. And young people can get into these zones much, much easier than can older people.

So it’s an age issue, it’s a gender issue. We’ve seen some of our students get down their blood sugars down into the low 30s, which people would say would be a crisis situation, you’d have to go to the hospital. But their ketones are elevated, and when the ketones are elevated, you have no crisis situation. It’s only when you lower blood sugar and don’t elevate ketones that you have this situation.

Males have a lot more muscle, they tend to burn protein, which can be converted to glucose. So their blood glucose doesn’t go down as sharply as women, the blood glucose of females goes down. Females can get their blood sugars down and their ketones elevated – from all the data that we’ve seen for several years on different gender – and this is what we see.

And older people are simply locked into a much longer lifestyle of high glucose. And for them to get their blood sugar down, it’s a real struggle. And also their muscle mass over the age. They have a lot of other issues that play into this whole thing.

And you’re absolutely right, it’s an individual thing. Some people can’t tolerate this. They get really sick, they get light-headed. Where other people make the adaptations much more quickly. So again, people have to know their own physiology.

But they have to have the biomarkers that let them know. They need to see these numbers, and once they see these numbers they’ll know that they’re on the right path, and they probably can do this if they persist a little bit longer. Rather than throwing their hands up, not knowing what’s going on, being very frustrated. And as I said, once you have this information and knowledge, that these kinds of things become much easier.

[Damien Blenkinsopp]: Yeah. It definitely helps with your confidence in something if you can see that, maybe you don’t feel better, or you don’t feel a difference yet, but if you see the numbers starting to move then it gives you that sense of accountability, and motivation also. I think that’s one of the very helpful aspects of these kind of indexes that you’re talking about.

[Dr. Thomas Seyfried]: Absolutely. This is a very important point, you’re absolutely right about this. Because when you see that you’re killing yourself, and nothing’s happening, or you don’t feel anything, but when you see numbers starting to change in the direction you know your hard work is starting to pay off. And then you get motivated, and you want to see then how far you can push these numbers.

Now this is not going to hurt anybody. You’re just lowering blood sugar and elevating ketones, and your body gets into a new state of health. And people feel it, believe me. You can feel this stuff happening. But there’s a rocky road going from the high glucose state to the high ketone state. And that rocky road can be more rocky for some than others.

[Damien Blenkinsopp]: Absolutely. So there are other aspects to mitochondrial health that certain people are looking at at the moment. I don’t know if you’ve come across any of these, but I thought I’d just throw them out in case you had some comments on them.

Some people are talking about mitochondrial repair, in terms of repairing the membranes with specific lipids, by providing those lipids to help reinforce the mitochondria. Other people talk about things like PQQ to help stimulate biogenesis of new mitochondria. I don’t know if you’ve heard about these things, or have any ideas or opinions on them.

[Dr. Thomas Seyfried]: Well, in my book I called it autolytic cannibalism. And this is basically, the mitochondria can either be rescued, enhanced, or consumed through an autophagy mechanism. And when you stop eating, now every cell in the body must operate at its maximal energy efficiency. That means that the mitochondria in those cells must be operational at their highest level of energetic efficiency. Otherwise the cell will die, and the molecules of that cell will be consumed, and redistributed to the rest of the body.

Now, in cells that have some mitochondria effective, or more efficient than other mitochondria within the same cell, the inefficient mitochondria can be incorporated into the lysosome. The parts of that mitochondria can then be redistributed to the healthy mitochondria within the cell. And this way you eliminate internal energy inefficiencies, but without having to kill the cell, because the cell is able to repair itself.

Whereas those cells that can’t repair themselves die, and their molecules are then consumed by macrophages, excreted back into the blood stream, and the nutrients now are used to support the health and vitality of those cells in the body that have this higher energy efficiency. It’s a remarkable state of efficiency. So it works both with individual cells, and throughout the whole entire physiological system.

[Damien Blenkinsopp]: Great, great. Thank you. I’m just thinking, you’ve spoken about fermentation versus respiration. Is there any way to measure that, that you know of? Is that being done in studies? So are the studies coming out are comparing the state of fermentation versus respiration taking place in people’s bodies, and correlating that to cancers, or anything like that?

[Dr. Thomas Seyfried]: Yeah, that’s kind of hard to do, because we all have lactate in our bloodstream, and the lactate comes from erythrocytes, our blood cells. The blood cells have a shorter half-life than many of the other cells in our body, and those cells have no mitochondria. They have no nucleus. So they’re little cytoplasms that primarily ferment.

But they don’t use a lot of energy, because the role of that cell is simply to exchange gases. So it floats around in our tissues, it deposits it’s oxygen and picks up CO2, as more or less a little mailman running around, picking up this and dropping that off. And they have a shorter half-life. But they have lactate.

Now if you have a tumor, or if you’re under hypoxic stress, lactic acid will go up in your bloodstream. But it’s hard to know if a tumor will do that. Sometimes what tumors will do, they have a phenomena called cachexia. This is where the tumor cells will send out molecules that will digest proteins, or dissolve proteins in our muscles and other proteins. And these proteins then go to the liver, and are broken down into amino acids, and the amino acids are conjugated into glucose.

So the glucose goes now into the tumor cell, and some of the proteins and the amino acids go to the tumor cell after being broken down. So the tumor is essentially causing our body to starve to death. We might be eating, but it looks like we’re not gaining any weight, and we’re becoming moribund and looking like we’re starving to death. This is an effect of the tumor,.

Sometimes you don’t see that. Sometimes lactic acid will go up, and sometimes it won’t. So there’s a lot of ambiguity of looking at a good biomarker to assess the state of what level of tumor growth you might have, other than the fact that you’re losing weight even though you’re eating. Which is the cachexic state; you’re kind of wasting from within. This is the whole thing.

And this is one of the fears that the medical profession has with cancer patients, because they say these poor people are losing weight through this cachexic mechanism, and then you come along with a metabolic therapy, and they say, “Oh, this can’t work.” But the issue, of course, is that there’s two types of weight loss. One is a pathological weight loss, and the other is therapeutic weight loss.

Pathological weight loss is cachexia, and of course if you treat it with toxic chemicals and radiation, you get so sick with fatigue, nausea, diarrhea, vomiting. I mean, this is pathological weight loss. Therapeutic weight loss is you’re losing weight, but your body is getting extremely healthy, and killing cancer cells at the same time.

So weight loss can come in two different varieties: pathological and therapeutic. And people have a tremendous difficulty in understanding the differences between these kinds of weight loss.

[Damien Blenkinsopp]: I think we’ve mentioned on a podcast before that when people are fasting in this state, they actually feel better, even if they have, for instance, chemotherapy. They tend to do better in chemotherapy when they have been fasting.

[Dr. Thomas Seyfried]: Yes, because it reduces inflammation. We published a number of papers showing how therapeutic fasting reduces systemic inflammation. Systemic inflammation contributes to a pathological state, and facilitates tumor growth.

So therapeutic fasting, while at the same time you’re taking a toxic drug, it’s like what are you doing here. But it does take the sting out of that toxic drug. People feel better when they’re therapeutically fasting. I think Longo’s group down at University of Southern California has clearly shown that some of these cancer patients can do a lot better, and feel better, when they’re fasting while they’re taking chemotherapy.

But you’re absolutely right about that.

[Damien Blenkinsopp]: Thank you so much for this interview[unclear 53:08] Thomas. I want to ask you just a few more questions to round off now.

What do you think will happen in the next five or 10 years, or hope? What are your visions for this area, in terms of biomarkers, like testing devices, or change in the way we approach this? Do you think there’s specific opportunities ahead, are there specific questions you’re looking at at the moment to resolve, in research, or so on?

[Dr. Thomas Seyfried]: Yeah, well I think the people themselves are demanding a change. The issue is that they haven’t been shown other alternatives, other than the standards of care, which are conducted by the major medical schools: Dana Farber Cancer Center, MD Anderson, John Hopkins, Yale Cancer Centers, Sloan Kettering, UCSF. The major industries of cancer and academics are closely aligned in how to do this.

And it’s not working. We’re having about 1,600 people a day are dying from cancer in this country. And the statistics in other countries in Europe, and China, and Japan, are not far off of this. And if we had Ebola outbreak in this country, where 1,600 people were dying a day, this would be of the greatest catastrophe that people can imagine.

But for cancer, it seems to be okay. This is the norm. Well it doesn’t have to be this way. It doesn’t have to be this way. And the issue here is that the people see that we have more, and more survivors, and people doing pretty well on these metabolic therapies. Why are we not doing this as more of a general treatment as opposed to these toxic approaches to manage the disease?

So I think the change will come from the grassroots. I don’t see it coming from the top medical schools, because these people are not trained. They’re medical education doesn’t give them the training to identify these approaches to therapy. It’s not part of the medical training.

There are a number of physicians that are recognizing this now, and they want to become part of this new approach to cancer management. Now, you have to realize that we’re just beginning. This is just a new field, it’s a beginning field. Even though the science is well, well established, the implementation of this science for patient health is just at the beginning. It can be refined, it can be modified.

A lot of this now we’re talking about, the potential for managing cancer in a non-toxic way with greater therapeutic efficacy, is just beginning. So, I think that we need more trained people. We have to have people that understand this. Eventually, these kinds of approaches will be more and more recognized, and more and more implemented in the overall society.

The problem is people have not yet found a way to make a large profit on this kind of an approach as you can with certain drugs, and immunotherapies, and these kinds of things. But that will probably come in time, once people understand what the best approaches and techniques are.

[Damien Blenkinsopp]: Another aspect I wanted is there’s more research being undertaken on mitochondria over time. Do you think that will help, in any way?

[Dr. Thomas Seyfried]: Yeah, I think it will help a lot, like you said, with the lipids. And we’re looking into this ourselves. I think there’s ways that we can enhance mitochondrial energy efficiency through various diets and supplements, and things like this.

And there will be a real quantitative measures that can assess this, for people to recognize what works and what doesn’t. So I think it’s just that it’s an area that has been not well appreciated, and not well recognized.

And as long as people think that cancer is a nuclear genetic disease, the focus on the mitochondria hasn’t been there. People have known the importance of mitochondria, and it’s been a very major area of scientific research. But it’s not recognized as the solution to the problem. It’s kind of a side effect.

What we’re looking at is understanding mitochondrial functions, and it’s interaction with the nucleus and other parts of the cell to maintain a healthy cell – a healthy society of cells – and a healthy overall physiology. All linked to the mitochondrial energy metabolism. This is going to be a very exciting new development.

[Damien Blenkinsopp]: Yeah, I agree. There’s not a day that goes past that I don’t think about mitochondria these days. And hear someone talk about it. It happens a lot on this show, also.

If someone wants to learn more about your work, and this theory of cancer, and the index you were talking about, where should they go?

[Dr. Thomas Seyfried]: Well, I wrote the book On Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of the Disease. That’s published by John Wiley Press. Unfortunately, it’s a science book and it’s not cheap, like you’d find most of the Amazon books, but it gives you the literature, it gives you the science. It gives you the hard evidence to support everything that I’ve said.

Another book that’s just appeared is Tripping Over the Truth: The Metabolic Theory of Cancer, by Travis Christofferson, who’s written a book for the layperson, where he actually read my book and went back to test all the things that I was saying, and actually talking and visiting and interviewing those scientists who work in the gene theory, and work in the metabolic theory, and get the word directly from them. It reads like a novel, and it’s much less scientifically intimidating than what I wrote.

I wrote this book to convince my peers, and people in the cancer and scientific field, the evidence that supports what I’m saying. This sometimes can be intimidating to the layperson. Whereas Travis went out and actually interviewed those scientists, and asked them the specific questions. And now it becomes a very intriguing story; I mean, how did this cancer thing get so far out of whack with what we know about it. People like to see this, and read it.

So that is another book that’s generating… If you go on Amazon, you’ll see the reviews. They’re all quite outstanding for Travis’ book. And I’ve been privy to a number of other books that will be coming out over the next year, which are harping on the same general theme, that cancer is a metabolic disease, and it can be beaten by metabolic solutions. Totally different than what’s been going on in the main focus.

And this is kind of shocking, because you go to the top cancer centers, and they don’t speak anything about this. They’re still talking about the standards of care as they have been done, or they’re talking about immunotherapies, which is the new buzzword for the cancer field, where you’re going to identify all the mutations, and then make anti-bodies to the defective proteins, and then treat people. And they show a few survivors on the cover of the Wall Street Journal saying how wonderful this works. But they don’t show you the other evidence showing how many people are dying from this.

All this will change, because the people in this society, the public, is going to be fed up with the lack of progress, and what we have is a new way to approach this problem based on solid scientific fact. It’s just that these facts are not well understood or recognized at this point.

[Damien Blenkinsopp]: Great. Thank you very much, and we’ll put all of this in the show notes, so people will find these links easy. Also the index you spoke about, I’m guessing there’s nothing really published about that. If people go to your website in the future, will you have something on there which will talk about that in more detail?

[Dr. Thomas Seyfried]: Yeah. We have a paper that’s under review right now, where we’ve submitted a paper for the index, and we’re in the process of making some revisions on the index. And the index was, in this paper, was mostly focused on managing brain cancer, but we also noted that this index could have a broad applicability to a whole range of different diseases.

And in the Journal of Lipid Research, which is the top journal in the field of lipid biochemistry, I edited one of the issues that was entitled Ketone Strong: Emerging Evidence for the Role of Ketones and Calorie Restriction for the Management of a Broad Range of Diseases. So, more and more scientists are getting involved in this, and more and more information will be coming out. Both in the professional scientific journals as well as in the public interests articles in journals, and magazines, and radio shows.

More and more people will be coming to know this, and I think the field is going to have to deal with it. And I think in the long run, we’ll emerge into a new way to manage these chronic diseases with a lot less toxicity, and greater efficacy.

[Damien Blenkinsopp]: Great, great. Thank you. Now, just two more questions, personal questions for you.

What data metrics do you track for your own body on a routine basis, if any?

[Dr. Thomas Seyfried]: Well, basically I try to get on a scale and see how much I weigh. Obviously, if you can keep your body weight at a stable level for a period of time, this is certainly one way to maintain homeostasis.

I’ve done the three day fast, but as I said, when you’re older like myself, it’s very uncomfortable, but it’s certainly doable. It’s like training exercise. You’d have to do it probably a couple of times a year to get into the state. I think every time you do this, you become more confident in your ability to do it again.

There is a state of uncertainty and discomfort, like, “Oh my god, I’m not eating any food. How can I go, and I feel uncomfortable, and a little light-headed.” And you try to drink water to say, “Maybe I can fill my stomach up with water and I won’t feel as hungry.” And then you start getting water intoxication. And eventually you realize that you really don’t need to drink a lot of water, and you just have to bite the bullet.

But as I said, as we begin to do this, we realize that it’s not so life-threatening as everybody would think it would be. So I think I try to do that. But as I said to a lot of people, they said, “Oh, you must do this all the time.” No, I don’t do it all the time. But if I had cancer, I’d know exactly what I would do.

[Damien Blenkinsopp]: What would you do? Just to speak it out clearly.

[Dr. Thomas Seyfried]: I would stop eating.

[Damien Blenkinsopp]: Completely?

[Dr. Thomas Seyfried]: I’d get my index down below 1, that’s for sure. And then I would transition off to these high-fat, nutritious kinds of diets, ketogenic diets, and maintain my index. And then of course, we’re investigating – it’s very hard to get funds to do this kind of stuff too, because it’s not considered sexy science – what is the best combinatorial therapy that would work with therapeutic fasting and ketogenic diets, that would put the greatest amount of pressure.

And most of it has to do with what kind of non-toxic drugs would you dovetail in with therapeutic fasting and ketogenic diets? And like hypobaric oxygen therapy, 2-deoxyglucose, 3-bromopyruvate, oxaloacetate. I mean, we can go down these lists. Most of these are non-patentable drugs, but they have tremendous power when used together with these other therapies. And most of this stuff is just trying to figure out the dosages, the timing.

These kinds of issues, it’s just like perfecting the engine. How did the car engine become so efficient today from the way it was in 1900?

[Damien Blenkinsopp]: Right. So the things you just mentioned either stress the cancer cells specifically, like hypobaric oxygen, or they support the mitochondria, oxaloacetate, right?

[Dr. Thomas Seyfried]: Yes! Exactly. What you’re doing is you’re enhancing mitochondrial function in normal cells, and you’re putting maximal metabolic stress on the tumor cells. For the first time, we’re using our normal cells to directly combat and battle the cancer cells, while enhancing their health and efficiency.

[Damien Blenkinsopp]: So for someone who has, say we do a 23andMe test – like a lot of people on this podcast do their 23andMe test – and it comes out with some DNA, and it says, maybe you have a pretty high chance of cancer in your lifetime – and it could be lung cancer or whatever. Lung cancer’s not a good one, because often it’s smoking. So, one of the other more general ones, like breast cancer.

What would you basically say that they should be fasting once per month for three days, or twice per year for seven days, and maybe looking at those therapies you just outlined.

[Dr. Thomas Seyfried]: Yeah. People who have Li-Fraumeni syndrome, which is an inherited germline mutation in the gene for P53 which encodes a protein in the electron transport train, or BRCA1. Product of the BRCA1 gene has been found in mitochondria. We look at a number of these so-called inherited genes that increase your risk for cancer. But as I told you, everything passes through the mitochondria The mitochondria are the origin of the disease.

So, the inherited mutations simply make that organelle slightly less efficient in certain cells of our body. Not all cells, but only certain cells, like the breast, the uterine, or these kinds of things. And we know that there are people, like if you inherit the BRCA1 mutation, your risk of cancer goes up significantly. But not everybody who has BRCA1 mutation develops cancer.

So clearly the environment can play a huge role in determining whether that gene will be expressed or not. You can do prophylactic removal of organs, and things like this, to reduce your risk. But it would be just as effective in my mind to transition the body to a metabolic state that would minimize the problem of that gene influencing the mitochondrial function. It seems a lot less draconian than doing these massive surgical mutilations.

Or you can do both. The idea is some of these inherited mutations, they might have a preferred organ – like a breast, or a uterus, or ovary – but you’re not going to remove all your organs. You’re not going to remove brain. You’re at a higher risk, so what can you do to lower your risk? As I said, if you keep your mitochondria healthy, the risk is going to be significantly reduced.

People need to know this so they can make choices that would be best suitable for them.

[Damien Blenkinsopp]: Thank you so much for the information today. This is really an information packed episode. It’s got this great new take on cancer, which I think is very positive, because it’s talking about something which people can have more control about. So it’s not just that this is a new approach, and the older approach has been struggling for quite a while, it’s become very expensive, and so on, with not so much success, but also that this is an approach which is within people’s own manners, sphere of management.

A lot easier to start having an impact on their own lives. So it’s very positive from that perspective also.

[Dr. Thomas Seyfried]: Yeah, I agree. Absolutely.

Leave a Reply

Today we’re looking at HRV- endurance training, adrenal fatigue, and future app developments.

If you didn’t listen to it, in Episode 1 we primarily looked at resistance training, or weight training.

Today we also look at some scenarios where the HRV metric can be confounded where an increase in it is not good, how it can be used to identify possible adrenal fatigue and how to improve its accuracy by combining it with Resting Heart Rate and qualitative measures.

Today’s guest is Simon Wegerif who founded ithlete, the first HRV app company, which appeared 5 years ago in 2009. In comparison to Andrew Flatt, whose focus was resistance training, Simon has a background in primarily endurance training and it was for this he originally became interested in HRV.

Since 2009, through working with its client base including a range of pro and amateur athletes and everyday gym goers, and now universities in connection with studies, ithlete has evolved its app to cater for specific scenarios like adrenal fatigue and understanding how individual factors are impacting training. Simon has been diligent in staying up to date with the research and adapting the ithlete app to take advantage of it as it evolves.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • The status of research on Heart Rate Variability and some of the issues to overcome such as standardisation.
  • HRV as a predictor of endurance performance – now as effective as running times?
  • Using “Active Recovery” to recover quicker from endurance and resistance training.
  • True overtraining vs. non-functional overreaching – how to improve training results by understanding how HRV indicates these two .
  • How to diagnose potential adrenal fatigue with a combination of HRV and RHR (resting heart rate) metrics.
  • The one situation where you don’t want your parasympathetic to become dominant (or your HRV to be high).
  • The need for HRV benchmarks to be established in order to compare your “health future” to others and as a proxy for aging.
  • The Palo Alto Prize spurring on new investment in research to improving longevity based on using HRV as a feedback mechanism for experiments.
  • Using yoga breathing (Pranayama) to increase Heart Rate Variability by up to 5 points within a few days.
  • The biomarkers Simon tracks on a routine basis to monitor and improve his health, longevity and performance.
  • Simon’s one biggest recommendation on using body data to improve your health, longevity and performance.

Give some love to Simon on Twitter to thank him for this interview.
Click Here to let him know you enjoyed the show!

The Tracking

Biomarkers

  • Heart Rate Variability (HRV): Measures how your heart rate varies over time. Research studies link HRV to recovery status, stress and other aspects of human physiology.
  • Resting Heart Rate (RHR): Measure of your heart rate at rest (typically measured upon waking).
  • Calories: We discussed the merits of measuring calories in and out, the current hype cycle around ‘calorie counting’ apps and devices, and its relationship with weightloss.

Apps and Devices

  • ithlete HRV App: The app Simon developed which includes some of the RHR and adrenal fatigue functionality discussed during this episode.
  • Polar H7 Bluetooth Smart Heart Rate Sensor: A chest strap heart rate sensor that works with the ithlete and other HRV apps (Damien uses this one).

Simon Wegerif and ithlete

  • ithlete: Simon’s company and the HRV app with the same name.
  • You can also connect with Simon on twitter @SimonWegerif.

Other People, Books and Resources

Resources

People


Full Interview Transcript

Transcript - Click Here to Read
[Damien Blenkinsopp]: Hi, Simon. Thank you very much for making time today to come on the show.

[Simon Wegerif]: No problem, Damien. Really good to talk to you.

[Damien Blenkinsopp]: What I thought we would first do is quickly, where does ithlete fit in with the world of HRV apps and development, from your perspective?

[Simon Wegerif]: Okay, well, ithlete was the first HRV app available, and when I first started getting really interested in HRV, which was early 2009, I decided it was so interesting to me as an engineer by background, but also a keen recreational endurance athlete, trying to make the most of my own somewhat limited abilities, that the iPhone was just being launched early in 2009, and talking to a couple of people, I was looking for ways to realize my hopeful invention of a convenient, simple-to-use, but accurate HRV measuring device. And people said, you know, why don’t you do it as an app in the iPhone? So I started thinking about that, and I made that my target during 2009, and got the prototypes all done on an iPod Touch, and at that time, I think it was IOS version 2 was just coming out, so we were easily the first to bring even accurate heart rate measurement onto the iPhone, let alone HRV. So we’ve been doing this for a little while now, and the product, I think the current version of the app is relatively mature because of that.

It’s also — being the first gives you some advantages in the early — doctors in research started looking at it quite early on, and we’ve now got some good quality validation studies that have been done that show, in fact, the ithlete measurement to have an almost perfect correlation with the gold standard of ECG, which we’re very happy about. The ithlete finger sensor has also been validated.

[Damien Blenkinsopp]: Great, great. Well, you have three sensors. You’re using the finger sensor, the Bluetooth heart rate chest straps, and isn’t there another one?

[Simon Wegerif]: Yeah, the other one was actually the original one, Damien, so in the early days of the iPhone, there wasn’t any convenient and reliable way of getting a heart rate signal into the phone, so I designed a little adapter, a plug-in adapter which would go into the headset socket, which I still think was a good choice, because headset sockets are available, you know, on pretty much every phone, and the way they’re connected has remained standard, now, for three or four years. So it’s a little device which users can take from one phone to the next, be that iPhone, Android, or even Windows phones, if we do an app version for that. And that little receiver picks up the signal from the Polar type of chest strap, and, of course, that Polar transmission system has been around since the early 1980s, so there’s an awful lot of products in the market that support that.

In fact, although Bluetooth [Smarties 00:05:56] is, in many ways, the state of the art, and the finger sensor is the most convenient, we still sell a lot of the — what we call the little ECG receivers because of the massive installed base of Polar type straps and systems.

[Damien Blenkinsopp]: Okay, great. So I know you stay up-to-date with the research, and you’ve been following this since 2009 or before, so could you give us a bit of an overview, from your perspective, of the research? How much is there related to HRV? Where are the strongest areas, and, you know, how you look at it?

[Simon Wegerif]: Yeah, I think if you were to put heart rate variability into PubMed, which is the — you know, the recognized research database of peer-reviewed papers, I think you’d probably get about 14,000 hits. So there’s an awful lot of peer-reviewed research which has been done on HRV.

[Damien Blenkinsopp]: Do you mean 14,000 papers, separate papers?

[Simon Wegerif]: Yes, 14,000 separate papers, yeah.

[Damien Blenkinsopp]: Great, great.

[Simon Wegerif]: Which is quite a high volume. A lot of that is focused on disease state, so looking at autonomic dysfunction, for instance, in diabetes, cardiovascular diseases, cancer, and a lot of other disease states like that, but there is a fair body of research studies on sports performance and health as well. During my preparation for designing the ithlete app, I read about 500 papers during 2009, and I’ve now got about 1,000 in the collection, my collection that I’ve read.

Some of the papers have got some strikingly good methodologies and breakthroughs, and others are a bit weaker. I think one of areas where heart rate variability research has not done itself any favors is not standardizing in units or protocols. For instance, things like the duration of the measurement, the units that are going to be used, the position of the subjects, whether they’re lying down, walking around, standing, sitting, what are they doing. There hasn’t been much standardization there, I think partly because a standards document was never adopted in the industry.

[Damien Blenkinsopp]: So one thing I noticed about your ithlete app when I was playing around with it was that when you’re taking the reading, it’s got the breathing timer. It’s got this circle that moves up, in and out, with your breathing, which I thought was great to try and standardize that aspect a bit better in terms of how you’re breathing and just keep more rhythmic and controlled every time you’re doing it, instead of different. Is that why you put it in there, or?

[Simon Wegerif]: Yes. Breathing has a very important impact on heart rate variability, so when we talk about HRV, particularly in sports performance and everyday health use, we nearly always mean parasympathetic HRV, and parasympathetic HRV is primarily dependent on breathing. In fact, the HRV is caused as part of the breathing feedback loop with the brain. So as you breathe in, your heart rate gets faster; as you breathe out, your heart rate gets slower. And it always seemed to me, as an engineer, that unless you’re controlling your breathing in some way, that your HRV measurement process is going to be somewhat unpredictable, if you’re just relying on a breathing pattern which is uncontrolled. So controlling that breathing, but without creating stress, hopefully, in the user is the objective here, because everyone who knows much about HRV will know that stress lowers your HRV. So we don’t want to stress the person during the measurement, but we do want them to have a constant breathing pattern, and hopefully the ithlete breathing pattern is something that’s evolved over three generations of the app now, and we hope that people find it peaceful and relaxing to use.

[Damien Blenkinsopp]: Yeah, it’s kind of like this pulsing heart thing. I found it relaxing, and it’s just nice to have an indicator. Because I’ve used other apps, and, you know, they don’t have that. So every time you’re probably breathing a little bit differently, but you don’t notice it. So I thought it was a nice touch. Thanks for that overview.

So, you’ve done a lot of work in the endurance and aerobic areas. We haven’t looked at that yet on the show, so that’s what I’d like to explore a bit more with you. Any idiosyncrasies or differences compared to weight training, which we’ve looked at quite a lot with Andrew Flatt in the past. How would you say that it differs from weight training in the way HRV relates to endurance?

[Simon Wegerif]: Well, one thing, as a segue or a link from the body of research on HRV, Damien, is that a lot of the studies in the sports performance area have actually been done with endurance sports. So they’ve been done with running, cycling, rowing, cross country skiing, because, of course, Finland and the Nordic area has been one that has done a lot of adoption and research into HRV. So there is — the body of research in endurance sports is strong. It’s also something that I’ve been personally interested in, because one of the reasons I created the app originally was to improve my own performance, originally, in triathlon, but lately in long distance cycling.

And so HRV, interestingly, has been something which is really quite well proven and quite well applied to endurance sports. And one of the things about some of the research that’s come out in the past couple of years has been the very good correlations between changes in HRV and changes in performance. So there have been studies done at the national level on French swimmers where they measured their HRV before doing a weekly 400-meter pool time trial, and they found the correlation was so good between the individual’s change in HRV and their variation in performance on the Thursday time trial, that they said one or the other is good enough here. So if we measure their HRV, they don’t need to do the weekly time trial to assess performance improvement.

And a key researcher in this field also, Martin Buchheit, also found when club runners were training to improve their performance in 10K races, that only the runners that improved their HRV during — I think it was an 8-week training program. Only the ones that improved their HRV, improved their running times. The ones whose HRV didn’t improve, their running times didn’t improve, either.

So there’s been some very clear findings in the endurance area. And I think training guided by HRV is becoming more and more practical for endurance sports as a way of maximizing performance with the training time that’s available, but without risking overtraining.

[Damien Blenkinsopp]: Right, right. I know with respect to endurance, we’ve touched on this a bit with Andrew Flatt, he was talking about basically how he would be doing weight training, and his HRV would go down, but if he did a bit of aerobic as well, he would limit how far his HRV would drop the next day. How do you explain that? What’s going on there?

[Simon Wegerif]: Yeah, there’s been a pretty important study that came out, I think it was late last year from a couple of researchers in the University of Queensland in Australia, and again with Martin Buchheit involved, that built on work done by researcher Stephen Seiler, who’s been looking at the way, for instance, marathon, long distance runners have trained in Kenya for many years. And what he observed there is that they tend to follow a polarized approach to training. So the majority of their volume, say 80% of their training time, is conducted at what appears, to many athletes and coaches, to be really quite moderate paces, fully aerobic work. And in fact precisely defined, it’s a level of aerobic work below the first lactate threshold.

So essentially the lactate level in the blood is close to the athlete’s ordinary baseline. And recovery from that kind of aerobic work, although athletes can do habitually quite high volumes of that, you know, many hours a week, is very quick. And that’s reflected in HRV. But when you go above that threshold, then recovery takes much longer to achieve.

So in Andrew’s case, I think what he’s really enforcing is the fact that aerobic exercise really allows rapid recovery, and the fact that the metabolism is accelerated is helping to process the byproducts from the high intensity sessions and perform, essentially, what we call active recovery. Active recovery actually gets you back to baseline more quickly.

[Damien Blenkinsopp]: Does that reduce the stress, the stimulus to improve your body in any way? We’ve also spoken to, like, Doug McGuff of Body By Science. He talks about inroads, so, you know, one of the things about heavy weight training is you want to create a large enough stimulus to improve strength. So is this in any way — it sounds like it’s reducing, in a way, the stressor. Is that a correct way to look at it? I’m just wondering if that has an impact on how your body tries to compensate.

[Simon Wegerif]: Yeah, it does seem to be having that effect by stimulating the parasympathetic nervous system. And the parasympathetic nervous system is good for reducing inflammation, for rebuilding energy stores, glycogen in the liver, for ensuring that oxidative stress is reduced. And the really useful thing about long slow distance or aerobic training in endurance athletes is that it provides a good level of stimulus for mitochondria to adapt. So one of the things you want as an endurance athlete is an efficient metabolism with lots of mitochondria in the muscles, which are able to process fuels and turn those into energy. And what you also want is a metabolism that’s able to use fats as fuels. You know, your store of fats in any body, even thin people, is many, many thousands of calories, and fat is a very efficient way to store fuel. You know, it’s 9 calories per gram. Whereas, carbohydrate is 4.2 calories per gram, and carbohydrate is usually associated with quite a lot of water retained in the body as well. So if you can use fats as fuels, that’s a big advantage.

If you’re running a marathon, then you’ve only got enough glycogen for about — you’ve probably got about 800 grams. You know, you’ve probably got — your total body store is about 3,000 calories, of which your body will probably only allow you to use a couple of thousand, so your ability to supplement that glycogen fuel with fat stores is something that your body learns to do and learns to adapt to when you spend time training aerobically.

[Damien Blenkinsopp]: Yeah, we discussed this with Jimmy Moore. He’s done a lot of work with other people in keto diets and so on involved with training. So, yeah, it’s good for you to make that connection and bring that up in this context.

Okay, so kind of round off the impact — so you’re saying it helps recovery — it helps accelerate recovery by stimulating the parasympathetic system.

[Simon Wegerif]: That’s right, as well as building — building the cardiovascular system and energy stores and energy system to make you — make you efficient, really, and be able to go for a long time.

[Damien Blenkinsopp]: Are there any cases where we shouldn’t be doing this? If we’re just focused on HRV, it’s like, oh, well, it leads to a higher HRV, so — if we’re always just aiming to increase the HRV, which is part of the discussion I wanted to have today, so should we always be doing that? So if we’re weight training and we can do a little bit of aerobic to increase our HRV, so everyone be doing this?

[Simon Wegerif]: I think everybody should be doing a certain amount of it, but it’s not going to lead to good race pace performance unless it’s also complimented by some high intensity stuff. And the general adaptation syndrome of Selye, which was, you know, written a very long time ago, basically talks about stressing the system and then allowing time for it to recover, and when it recovers, it supercompensates, so the body is stronger than it was before. And high intensity work is a very good way of stressing the body sufficiently that it is stimulated to adapt and supercompensate compared to where it was before. And that’s a necessary component of high performance athletics.

[Damien Blenkinsopp]: Okay, okay. So it sounds like everyone — although it’s not going to lead to a higher baseline, by the sounds of it. If we think of we’re trying to increase our HRV over time in terms of kind of aggregate, rather than the ups and down adjustment cycle of just trying to time our training properly, doing a little bit of aerobic with our strength training probably isn’t going to increase the baseline. It just may help us to get back to another workout sooner than later in terms of recovering quicker. Is that a fair assumption?

[Simon Wegerif]: Yeah.

[Damien Blenkinsopp]: Or would that be, actually, kind of biasing the result, and it would be better to — I guess this area isn’t 100% clear as yet.

[Simon Wegerif]: It isn’t 100% clear. I’m trying to recall my own experience of doing a lot — because I’ve prepared for a pretty long cycling event across the Alps this summer, and I did a lot of hours of fully aerobic training, so I was very careful to keep my heart rate and intensity level below the first lactate threshold, and I accumulated a lot of hours, basically, about 15, 17 hours a week for about four or five weeks of this. I didn’t actually see my HRV baseline rise much. What I did notice was my resting heart rate went down during that period, though, and that was a very clear trend.

[Damien Blenkinsopp]: Okay, so let’s talk about that, because I know that’s something very important to ithlete. You track the HR, the resting heart rate, as well, and you use that in your assessment. And you see it as an important part. So what is the HR for you? What is it doing in terms of tracking and helping you to understand performance and recovery and so on?

[Simon Wegerif]: Well, resting heart rate, most people who do training and even people who know about health would recognize that a lower heart rate — a lower resting heart rate is very often a good thing. And most of the time, that it true, because it’s actually the ratio of your maximum heart rate to your resting heart rate that determines your VO2 max. So there is, for instance, a ready reckoner for VO2 max, which is your maximum heart rate divided by your resting heart rate times 15. So, you know, as your resting heart rate decreases, provided your maximum heart rate stays the same or only decreases a very little bit, then your VO2 max will increase.

Now, there are also situations, which can be due to either non-functional overreaching, so some states of overtraining, or even —

[Damien Blenkinsopp]: When we say non-functional overreaching, what does that mean?

[Simon Wegerif]: Well, non-functional overreaching is basically what you might think of as the third stage in progression of training load and recovery imbalance. So the first stage is shock, also known as the alarm stage, which is the body’s healthy response to a new stressor. And during that stage — so you do something intensive, your body is temporarily stressed. It reacts with an increased sympathetic tone, increased output of central stress hormones, increased adrenaline, norepinephrine, cortisol, and if you then allow time for the body to recover, then it supercompensates, and you actually end up you are a little bit fitter than you were before the stressor had been applied.

Now, overreaching is a deliberate imbalance of training and recovery, usually over a short period of time within a periodized block. So a lot of endurance training programs are periodized into a month or a 5-week block whereby you have a progressive overload, then, you know, ending up with a taper or a recovery week. And that is called functional overreaching, because you deliberately continue to stress the body, and then in the last week, you taper, and you supercompensate, and, you know, the benefits of training are imbedded in your system.

If the balance of training and recovery is such that, you know, your body really — it can’t cope with the amount of load that’s being applied, and that can include environmental conditions as well, so that can include bad diet, lack of sleep, all these other things which are, in fact, stressors to your body as well as training, then if, you know, after a short taper period you don’t recover and supercompensate, but you stay in the hole, as it were, then that’s non-functional overreach.

[Damien Blenkinsopp]: Uh-huh, okay.

[Simon Wegerif]: But people do even go beyond that. It is — yes, it is really — the way I would define non-functional overreaching is that when you take the training load away, you don’t see recovery or supercompensation within a few days or a week.

[Damien Blenkinsopp]: And does it take much longer, or would you have potentially basically lowered your baseline by overstressing the body?

[Simon Wegerif]: Yeah, and it can take weeks to recover from non-functional overreaching. And non-functional overreaching is still not as bad as true overtraining. True overtraining is really quite a serious condition, and it’s not that common, but it can takes months or even years to recover from. It can —

[Damien Blenkinsopp]: How would you differentiate the two?

[Simon Wegerif]: Yeah, true overtraining, again, is an extension of the states of overreaching, whereby you take away the training altogether, and the individual really remains in a chronically stressed state. I think it is quite rare, although certainly we’ve been contacted on a number of occasions by athletes and coaches who know that they are overtrained. And this is also known as the exhaustion phase in the General Adaptation Syndrome. And the body is basically continually failing to adapt to the chronic stress. And the chronic stress also starts to burn out the adrenal system, so the central nervous system starts to shut down production of central stress hormones. The adrenal glands themselves desensitize.

A sympathetic response is normally quite healthy.You know, when a person needs to have a fight or flight response, they want to be able to turn it on and turn it off again quickly. When somebody’s overtrained, that response is pretty much absent, to be honest.

[Damien Blenkinsopp]: Right. We talk a lot about the importance of parasympathetic. In one of our previous interviews, we talked about the fact that most people are sympathetic dominant, mostly because of lifestyle reasons today, and so on. So in the HRV Sense app, for instance, Ronda Collier, she noted that most people have a very high sympathetic in their LF, and their HF tends to be much lower. And over time, they can, you know, look at that for stress and so on. But now we’re talking about also that overdominance of parasympathetic can be a problem? Is that associated with adrenal fatigue?

[Simon Wegerif]: Yes, indeed. Once the body gets itself into this state whereby the sympathetic response is essentially impaired, then — it’s interesting. I mean, that’s a pretty bad state, right? I mean, that’s also a state where protein synthesis becomes impaired, so, you know, muscle damage becomes much more likely. Decreased testosterone and other anabolic markers, increased baseline cortisol, so basically, you know, the body is in quite a stressed state, although it’s sensitivity to the adrenal family of hormones has been reduced. And then, you know, parasympathetic becomes essentially dominant. You swing to a high HRV, which if you weren’t looking at heart rate, you might say that that’s a good state, right?

[Damien Blenkinsopp]: Right, right, right. So let’s be clear. What would the heart rate be doing that’s different to show that this is a negative HRV despite the fact that it’s high?

[Simon Wegerif]: Yeah, so what actually happens is that the resting heart rate decreases pretty significantly compared to your normal range. So all of the ithlete measures are based on solid statistics and smallest worthwhile change and things like that, so we’re always tracking rolling means and rolling standard deviations. We can look at the heart rate and see if that all of a sudden — you know, if that over a short period of time goes much lower than it should do normally, and coupled together with an unusually high HRV, then that is quite characteristic of parasympathetic dominant sympathetic burn out state.

[Damien Blenkinsopp]: Right, right. Have you come across many cases of this?

[Simon Wegerif]: Yeah, I’ve certainly see it in myself. We first came across it, because it’s not that well documented, so most of the textbook stuff on overtraining tends to talk about sympathetic dominance, and indeed that is the case through functional and non-functional overreaching. But then, you know, when people keep going, and there are some very motivated type A individuals that keep on going, and they get themselves further into this — into this truly overtrained state, the first time we —

[Damien Blenkinsopp]: Right. So would it be correct to say that your HRV would go down for a while, and if you ignore that, then you might get to this situation?

[Simon Wegerif]: Yes, absolutely. That is exactly what we see.

[Damien Blenkinsopp]: Right, right.

[Simon Wegerif]: The first time we noticed this, in fact, was in the beta testing of the original ithlete app in 2009, when we gave it to a national standard runner and triathlete, and he did a three-day running event in Southern England over the South Downs, and he said, ‘Hey, you know what, guys? My HRV was really high this morning, and I’m completely knackered. You know, what’s going on?’ And we started to look into it and talking to some researchers and developed this test, basically, out of that.

And we certainly have seen it a few — you know, a few times. I’ve seen it a couple of times myself. In fact, the day after I finished the Haute Route Alps, which was 1,000 kilometers in seven days across the Alps, I was six hours a day on the bike working quite hard, the day after that, the Sunday, my HRV all of a sudden swung from low, which had been progressively decreasing during the week, and it swung very high, associated with a much lower than normal resting heart rate, and ithlete went — gave me a straight red.

[Damien Blenkinsopp]: Right.

[Simon Wegerif]: So ithlete doesn’t mess about in that situation. It gives your a red card straight away.

[Damien Blenkinsopp]: It’s nice that it does that, ‘cause, you know, often I imagine most of the apps don’t pick that up, that scenario. So in terms of a swing of HRV, do you remember your — just to give people an idea, where did it kind of start from baseline, and it lowered steadily to what, and then it jumped up one day?

[Simon Wegerif]: Yeah, I can’t remember the numbers right now. I did do a blog post about it, in fact, so it’s on — yeah, myithlete.com/blog, I did a blog post about my HRV before, during and after this actual event. I think you can go look at that.

[Damien Blenkinsopp]: That’s good. So we’ll put a link in the show notes to help people. Okay, so this final thing on adrenal fatigue, is adrenal fatigue is a widely discussed topic today, because a lot of people, not just people who are training, but often it’s the weekend warriors, the people who are working during the week, and they got out and have pretty stressful jobs, and then they’re training at the weekends, or they’re doing triathletics and all these other things at the weekends. And there’s this question of when they start getting more and more tired is the adrenal fatigue. Doctors and clinicians argue about this and how to test for it. And many of the tests are considered not ideally accurate, there is saliva test, there is blood tests, and there’s a bit of discussion there. So I’m just wondering whether you think this would be a relevant biomarker, and if you’ve seen anyone try to compare it to some of those other adrenal fatigue tests?

[Simon Wegerif]: I haven’t. A practical test I could recommend for people, though, is if you suspect you might be starting to get adrenal fatigue, then the likelihood is that you won’t be able to manage high intensity exercise. You know, you simply — you hear comments like, ‘I was unable to get my heart rate or my power up into the right zone.’ You will notice that. And it is literally impossible. You just cannot manage the effort levels, no matter how hard you try. So your perceived exertion would go right up, but your metabolism and your body wouldn’t respond to the workload and energy levels that are required.

[Damien Blenkinsopp]: Yeah, yeah. So I noticed, also, that when you were talking about how to notice this, you know, you spoke about an athlete who came to you and said, ‘Look, my HRV’s really high, but I’m feeling terrible. I’m feeling really tired.’ So in ithlete, you have a bunch of indicators that you track whenever you track your HRV for training, in the morning you have sleep, fatigue, muscle, and stress, and mood, and diet. Do these filter into some kind of algorithm, or how are you using these to help people make decisions?

[Simon Wegerif]: They are going to. I mean, at the moment, these are quite widely used subjective metrics, and they are quite useful for tracking overall health and wellness, as well. So at the moment, it’s great for people to record those every morning, and on the ithlete, if they rotate the dashboard around to the landscape chart, they can visually for themselves see correlations between any one of those variables and their HRV, and in my case, I’m really not very good, if I’m lacking sleep, quality or quantity. So, you know, my HRV normally shows quite a good relationship with my sleep score. Other people —

[Damien Blenkinsopp]: Right. Is that the same for everyone, or do people have different weaknesses? You know, the high leverage weakness you’ve got to kind of avoid. So yours is sleep. Mine is probably sleep, too.

[Simon Wegerif]: No, I think people absolutely do have individual characteristics there. It could be stress for some people, or it could be diet in others, if they have particular dietary sensitivities. But what we are just starting to do, right now, in fact, is a cooperation with a UK university on some advanced statistical algorithms which will look for relationships between those individual subjective variables and the HRV over a period of time. So what we hope to be able to do within the next six to eight months or so is to be able to give users feedback and insight into their own data.

I — you know, for me, HRV has always been a journey of personal discovery. I’ve found out things about myself, what my body and my brain likes as assessed by HRV, and, you know, I’ve been able to keep my HRV sort of steadily trending upwards over the five years that I’ve been doing this; whereas, normally it would decline with age. But, yeah, what we want — what we aim to be able to do is to give users insights, exactly as you say, Damien, telling people, you know, over the past month, sleep was the most important factor for you, perhaps again, and diet was the second, and it seems like you’ve been having a lot of stress recently, and that’s been affecting you as well.

So I think there’s potential for this to go quite a long way, including things like, perhaps, looking at all the relationships between everything people are capturing, and then saying with some statistical confidence all of this stuff that you’re capturing isn’t explaining all the variation we’re seeing in your HRV, is there something else? Is there, for instance, travel?

You know, one of our — one of the members of our team just noticed that driving for periods above three hours was causing a big drop in his HRV the next day. So potentially we can also alert people to things that they’re not capturing or not trying to understand right now, but which nonetheless are affecting their health.

[Damien Blenkinsopp]: Yeah, yeah. So, yeah, just to be clear, because I didn’t bring this up before, but these ratings you enter into your app are basically from, you say sleep quality, and you just give a rating from weak — it’s kind of like 0 to 10, right?

[Simon Wegerif]: Yes.

[Damien Blenkinsopp]: Or you can put very strong, and that’s for each of them. So they’re qualitative measures, but as you say, you’re finding correlations with them, and you’re going to be looking into more of that.

[Simon Wegerif]: Yeah. We turn the position of the slider into a number, like you say, between 1 to 10, and I think that’s a technique — I think that’s called a visual analogue scale or something like that, and the statistics will be using those numbers to determine relations and give people feedback.

[Damien Blenkinsopp]: Right, great. Well, [00:35:23] we’ve explore a bunch of new topics and interesting scenarios that we hadn’t come up with before, because you’ve got this user base which is using ithlete. I think what would be interesting is, like, what do you see people mostly using this for, and what are the kind of biggest use cases, and most useful things people are using it for?

[Simon Wegerif]: We’ve got a wide variety of users. We’ve got well over 10,000 users now on the ithlete app, and they really vary. They do vary from weekend warriors to — all the way through to top professional athletes, both in team sports, endurance sports, things like boxing as well, through to health and wellness practitioners. So we certainly get quite a few bulk orders from chiropractors and holistic wellness practitioners and people like that. And I think it’s used for all kinds of things. It’s used by health conscious people who just think HRV is a good metric to track every day, and, of course, it is. It’s a sort of holistic measure of adaptation reserves or overall well being. So it’s a great thing for people to track.

I think in the more serious side of sports, people are looking in their training not to have dug themselves into too much of a hole, and they fairly quickly start to take the tool seriously when they get amber and red warnings, and they still go training on those days. They fairly quickly work out that that’s a bad idea, and they start to trust the tool more. We give them feedback on a day-to-day basis.

[Damien Blenkinsopp]: Is there any scenario where you wouldn’t trust it? I mean, we’ve highlighted one that you’ve identified and you’ve integrated now into ithlete, with that one HRV going up. Is there anything else you’ve kind of got on the horizon? Maybe there’s a couple of other scenarios that need to be looked into?

[Simon Wegerif]: Yes, definitely. One of those is taking readings at an unusual time. So the ithlete algorithms are based on you doing things at the same time every day. Ideally, it should be first thing in the morning, because then you haven’t got additional variables of drinking a coffee or not, or having something to eat, or looking at — opening emails, having an argument, anything like that. Those variabilities all eliminate it. And, of course, another advantage of doing it first thing in the morning is that you can plan the day ahead. So, you know, darn, I got an amber instead of a green, but it’s not too late, I can modify my training or something else that I was going to do today.

[Damien Blenkinsopp]: Yeah, that’s interesting, because in a future episode, I want to have someone talk about willpower, because I’ve read a fair amount about the correlation between HRV and willpower, and, you know, basically motivation and drive. So if I have a low HRV one day, I’m, like, okay, I’m going to take on less and less business tasks today. I’m going to focus maybe on one instead of trying to get five done. I kind of factor in like that. I mean, obviously you’re feeling like that as well, but I’m also kind of aware that maybe I need a recovery day in terms of just taking on work stressors and mental stressors and things like that, in order to be able to take on bigger stuff the next day and so on.

[Simon Wegerif]: Absolutely, or there might be some intervention which will help you a bit. So if I get an amber in the mornings, then I often, you know, I will change my training to an hour aerobic bike ride around a particular route in the local forest that I really enjoy, that, you know, is visually stimulating. And I know that will help me make the best of my current physiological state.

But back to the question you were asking about when would you not trust ithlete, or in fact any HRV product that compares to baseline, and that is if you get up significantly earlier or later than your normal time. So one of the things about the waking measurement is that you are taking it after you’ve had the cortisol awakening response, so basically when light starts to fall on the back of your eyes, even through your eyelids, it kicks off the cortisol awakening response, which basically gets your body ready to get up and start being active again. So it banishes the melatonin, and it starts the sympathetic nervous system to a certain extent, enough to get you out of bed and get moving in the morning.

Let’s say you normally do that at 7 a.m., and then one morning you have to get up at 4:30 in order to catch a plane or something like that. This is something that I noticed quite early on, that my HRV would, in that situation, be much higher than normal.

[Damien Blenkinsopp]: Ah, because parasympathetic is higher.

[Simon Wegerif]: Yeah, basically. Because my body was still in sleep mode, so the parasympathetic was dominant at that time.

[Damien Blenkinsopp]: So, basically, the circadian cycle is very important to control for.

[Simon Wegerif]: It is important to control for, and some people — I think everybody, once they realize that, that really your morning measurement should be +/- 45 minutes, something like that —

[Damien Blenkinsopp]: So I’m thinking jet lag is — because I just came from Europe to the U.S. a few weeks ago, and my HRV has been a little — I think I was surprised to see how high it was, given how tired I was feeling. So maybe that had some of the impact there.

[Simon Wegerif]: It could do. It could do.

[Damien Blenkinsopp]: Or do you think you adjust pretty quickly in terms of that cycle?

[Simon Wegerif]: I don’t think you do adjust that quickly. We’ve had so many stories reported back to us over the past few years. An Australian coach has said, ‘I never realized what an impact jet lag had on my body,’ and that was by doing HRV measurements, and he was flying backwards and forwards between Australia, Europe and America. And those are long haul flights. I think one rule of thumb is something like your body needs a day to adapt its circadian rhythm to each hour of time zone change. So if you’re doing all that trans-Atlantic or trans-Pacific travel, you’re going to have a really hard time getting adjusted, and your HRV is going to give you feedback on that.

[Damien Blenkinsopp]: Yeah. So the only other confounder is basically the issues is controlling for circadian rhythm and other things you’re introducing, like caffeine or those things. But in terms of actual scenarios, the only other one you’ve seen is where you continue to overtrain and eventually get to this adrenal fatigue situation, without introducing — and then the other scenarios are where you’ve introduced either a circadian or some other confounder in terms of stimulant or activity which is influencing your HRV?

[Simon Wegerif]: Yes, I would say so. Water has some interesting effects on HRV. Hydration level is something that — you know, some of the professional teams that are using ithlete, they want to control hydration level.

[Damien Blenkinsopp]: So are you saying dehydrated would lower your HRV, potentially?

[Simon Wegerif]: Yes, because it stresses the system, so, yes, that will tend to make you more sympathetic dominant. But, of course, that’s something that’s quickly fixable, right? You drink water, and within 15 minutes that HRV will have been restored, because your body absorbs water so quickly. So that will give you a false low.

[Damien Blenkinsopp]: Right.

[Simon Wegerif]: So if you woke up dehydrated and you were normally fully hydrated, you will get a falsely low — I mean, it is a low HRV at that point in time.

[Damien Blenkinsopp]: It’s relevant, yeah.

[Simon Wegerif]: But you have to take it — it’s relevant; it’s important, but you don’t have to take it easy the whole day —

[Damien Blenkinsopp]: Yes.

[Simon Wegerif]: — because recovery from that particular situation can be very rapid. You just drink large glasses of water and you’re right as rain.

[Damien Blenkinsopp]: That’s a good point. It’s a momentary HRV lapse, a decline. Are there any other scenarios where there are HRV’s you can quickly addressed? I’m thinking training scenarios. I mean, obviously, there’s, maybe a stress scenario, caffeine and things like that.

[Simon Wegerif]: Yeah, mental stress is important.

[Damien Blenkinsopp]: So people can account for those kind of things by — hopefully, if they’ve identified it, then they can retake their reading in an hour or so and see if it’s readapted to their usual baseline.

[Simon Wegerif]: Yes, they certainly could do that, yup.

[Damien Blenkinsopp]: Okay. Well, so you’ve talked about some of the things you’re going to be doing in the future with the algorithm and the correlation. Is there any other future developments and things that you — like, if you’re looking at the whole HRV app space, is there other things you’re looking forward to or that you see could be possible in the future, 5 or 10 years? Where do you see it all going?

[Simon Wegerif]: Well, what I personally hope for is that HRV, it is starting to get credibility now in sports training and sports performance. You know, it’s becoming, thanks to some of the really quality research that’s being done, it’s becoming more and more trusted. I’d like to see HRV trusted as a precursor to Western chronic disease, and in particular I mean conditions like high blood pressure. High blood pressure is an autonomic imbalance disease, and basically high blood pressure can certainly be caused by chronic stress over a period of time, and the blood pressure regulatory mechanism starts to go adrift. But you will see, in the case of not only high blood pressure, but type 2 diabetes as well, that HRV will go out of what ought to be considered acceptable normal ranges months or even years before those diseases take hold.

So what I’d like to see is HRV used as an ongoing wellness barometer, if you’d like. So I’d like to see normality of standards create for HRV measures, and for those actually to be something that people do, perhaps on their own initiative, but something that primary care physicians, general practitioners, etc., are happy to discuss.

[Damien Blenkinsopp]: Yeah, because — I mean, today we take our — if we go to the doctor for a standard checkup, we have our blood pressure and we have our heart rate, standard heart rate taken. What you’re suggesting is potentially HRV could be a better measure, and it should be included in those, if we could be more standardized and stuff, because you’d see it decline steadily over time if there were some chronic issues building.

[Simon Wegerif]: You would, and you would see it declining outside of a normal range. We exhibited — we launched the finger sensor in V3 of the Apple Consumer Electronics Show in Las Vegas in January. We probably did 200 demos during whatever it is, the three days that CES is on, and we had people who illustrated HRV values which, by looking at them, some of them were predictable, and in some cases, people really needed to pay attention. So we had a very large gentleman who came to see us, who said he got diabetes and he hadn’t been exercising recently, and he got 35 on the ithlete scale. And that shocked even him, because that is a very low number. I mean, that’s an extreme case, but —

[Damien Blenkinsopp]: Was that lying down or standing?

[Simon Wegerif]: No, that was sitting. So we did — all of these demos were done with people basically sitting at a table. But I would like to see some normative ranges exist for people. And also by tracking over weeks and months, that they’re able to do what I’ve seemed to been able to do, which is to basically find ways to keep my HRV increasing over the long term as opposed to declining with age. HRV is a very good forward looking indicator, and that’s why I sometimes call it a barometer. You know, it’s telling you about the weather to come, rather than the weather as it is right now. I would like to see it accepted and accredited.

And I think there’s been a useful start made in that area recently. There’s been this announcement about the Palo Alto prize, and that basically is, I think, either a half million or even $1 million award to researchers who can show initially in laboratory animals that they’ve developed techniques which would cause animals’ HRV not to decline over a period of time. The idea is that that will be applied to human studies later on, once the techniques are proven. So HRV is starting to become recognized now as a longevity indicator.

[Damien Blenkinsopp]: Right, right. You wouldn’t have seen it yet, but we also interviewed a guy named Todd Becker who’s very interested in hormesis and aging and longevity, and you might have read his stuff.

[Simon Wegerif]: Yup.

[Damien Blenkinsopp]: He plays around with that to increase HRV.

[Simon Wegerif]: I did read it. His article on HRV was excellent, really, really good.

[Damien Blenkinsopp]: Yeah, so he has some interesting points on that. Look out for the interview when it goes up, because it has some relation with this discussion.

So in terms of places where people could go to learn more about this, are there any people or particular journals where you think are good sources of information about HRV?

[Simon Wegerif]: One of my observations about HRV, there’s this massive body of research out there, but unfortunately it’s largely untapped, and I think that’s partly due to the impenetrable nature of medical research language. What we have tried to do is also to summarize a number of what we regard as some of the most important articles. So on the ithlete blog, we have done a number of research summaries where we’ve tried to take — captured the essence of what we regard to be some of the most important papers and put it up there for people to look at.

Also, we’re doing a new website where we’ll be putting more resources in there. I think Todd Becker’s article is an excellent introduction to HRV with a really good — a really good, if you like, approach to experimenting with different interventions on himself to see what made a difference. I think Andrew Flatt is doing some very good work at HRVtraining.com. There are a few sites around. And even Men’s Health carried an article or two on HRV over the past year.

[Damien Blenkinsopp]: Was that a good quality article, or was it just good that it’s getting the word out there?

[Simon Wegerif]: It’s good that it’s getting the word out there. I think reasonably brief at the moment. But HRV is getting more mentions in the mainstream press, which I think is important.

[Damien Blenkinsopp]: Great. Okay, so I’d like to round off with a couple of personal questions. I always like to get some information about how people like you, who’ve obviously spent a lot of time thinking about data on biology and working with it, actually make use of it. So what kind of data metrics do you track for your own body on a routine basis? HRV, I guess, obviously. But beyond HRV, or in the specific context of HRV?

[Simon Wegerif]: I’m always wrestling with how to quantify my training. So training load is something that’s interesting to me. And I don’t think that any of the existing measures are really adequate.

[Damien Blenkinsopp]: So is that — are you talking about cycling or — you’re talking about volume?

[Simon Wegerif]: Yeah, that is the point. So training load metrics, there are many of them. So how do you quantify any kind of workout? If it’s cycling, is it miles? Is that a good — is that a good indicator? Is it average heart rate? Is it something about zones, the amount of weighted addition of all the zones you are doing? In team sports, they use RPE a lot, which is rating of perceived exertion. They also do translations from GPS data using group statistics for acceleration levels and running speeds and things like that.

But all of this training load stuff, what are we trying to achieve exactly with respect to — you know, training is all about stimulus and adaptation. From what I can see in endurance sports, there’s two completely different kinds of stimulus that we provide to the body, both of which seem to be necessary, and both of which are very helpful. One is this aerobic stimulus, which some people call the long, slow distance, and the other one appears to be the high intensity stuff. So how should we quantify each of those, other than by observing Kenyan runners who win all the long distances races and seeing what they do? I’m really interested in the science and the biology and the physiology behind that.

There’s all the stuff about calories. How do we measure calories? Why do we measure calories? What exactly are we going to do with that information? That stuff is of interest to me. Calories was of interest, before I did this trans-Alpine cycling, because I wanted to lose weight, but I wanted to do it in a controlled way, and in a safe way as well. So I didn’t actually damage either my health or my sports performance, but I wanted to lose 7 kg, just a stone, a reasonable amount of weight, and I wanted to do it very safely.

[Damien Blenkinsopp]: So you focused on calories to do that?

[Simon Wegerif]: I ended up actually focusing on food types. So what I actually did as advised by my good friend, Dr. Mike T. Nelson, was actually just to deliberately introduce a lot more protein into my diet, and basically diet — there’s an easy way and a hard way to diet, and I think the hard way is to think about all the things that you can’t do. And I think the easy way is to introduce good stuff, and that will necessarily push out some of the other things.

And what I mean by that is — Mike’s advice, specifically, was to increase my protein intake dramatically. And one of the ways I chose to do that was by having a big omelet after training in the mornings every day. And that actually makes you much less hungry during the day for snack foods, biscuits, carbohydrates, things like that. I also asked my wife not to buy biscuits and not to put biscuits in the — or cookies in the cookie jar, so that those were just sort of taken out. I was also — with chocolate, I just said I’m only going to have two squares of 70% chocolate a day, and that’s okay. Because 70% cocoa chocolate is so strong that you don’t want lots of it anyway, but it does sort of just satisfy that need.

So by deliberately eating lots of protein, I basically pushed out quite a bit of carbohydrate, and that combined with the volume of training actually tailed my weight down quite nicely.

[Damien Blenkinsopp]: Right. You make an interesting point in calories, because there’s a lot of devices coming out to measure calories. One of the areas of investment. And obviously that’s been a huge focus for the last 30, 40 years in diet books and so on. However, there’s a fair amount of research now to say that calories are not necessarily the whole thing, input and output, and that it’s a bit more complex than that.

In our discussion with Jimmy Moore a couple of weeks back about focusing on fat. You focused on protein. He focuses on fat intake, and it has the same impact. It satiates you and you tend to lose weight, and you’re not counting calories.

Yeah, so this is arguing whether it is useful to count calories, and these are the kinds of discussions I love to bring up, because especially when the marketing and everything that is out there is saying, ‘Let’s count calories; it’s going to change our behaviors; it’s going to have an impact on our lives.’ But is it really as beneficial as it’s portrayed to be, or are there better methods, like we’re doing — we looked at using the ketonics, which measures your state of ketosis, and as long as you’re staying in a state of ketosis, you’re going to be losing weight. So there’s other approaches to it that may be more useful, depending on what you’re doing.

And the training load thing, I think, is also interesting, and difficult, as you said. There’s not really any measures. We talked to Doug McGuff from Body By Science. He has a very specific protocol which kind of allows to do that, but you have to use that exact training protocol; whereas, I think what we kind of really need to get to is like you were talking about, is we have the metabolic and the strength, or as you call it, the aerobic and the —

[Simon Wegerif]: The high intensity HIT.

[Damien Blenkinsopp]: The high intensity stimulus, and how do we quantify those? Is there any way to quantify those so that we can see what stressor we’re getting, and then we can see, oh, we got a decline in our HRV because it was that stressor. Right? And currently you’re trying to do this with qualitative measures, which is pretty much the best I’ve seen that exist today as well. I don’t know — so you haven’t seen anything? It seems you haven’t — on your journey looking for that, you haven’t yet found anything that might be better than a qualitative measure?

[Simon Wegerif]: No. I’m always looking for things which are practical, which people will actually do every day. So anything which is too complex to calculate, people might do it a few times out of interest, but then it’s not going to imbed itself as a habit.

One thing I will say about calories, though. This whole motto of ‘What gets measured gets done.’ So giving people some kind of feedback that they can relate to which motivates them is always important, and whether that’s steps or whether that’s calories, I personally don’t mind, so long as it motivates them to imbed good habits and to reach for smart targets and goals.

What I think the particular problem I have with calories is that, yes, perhaps you can measure calories out, calories expended. Calories coming in is pretty difficult, though, unless you’re really going to spend a lot of time not only looking at the back of food packets and weighing things out exactly, which can be done, but at the end of the day, it doesn’t seem to work out that well, either. I mean —

[Damien Blenkinsopp]: It’s very impractical. It’s very time consuming.

[Simon Wegerif]: It’s very impractical, and it doesn’t actually work out that well. So people who’ve tried to do this very exactly, like Nigel Mitchell, who is the consultant nutritionist for Team Sky and is a very well recognized and respected nutritionist, says that if you do this exercise exactly — so on professional cyclists, they use power meters. You can measure the exact number of joules that they have expended. They can also measure the efficiency of the cyclist in terms of oxygen consumption, they can work out very accurately how many calories in those guys should need, and even if you do do all the food weighing stuff and measuring and everything else like that, the weight balance doesn’t seem to come out exactly as you would have hoped. There’s some quite large inaccuracies in there, one of which I believe is potentially the fact that the calorie numbers on the back of the food packets are achieved by burning the product in pure oxygen and seeing how much heat it gives off, but to what extent does that really represent the way our digestive systems work? And do they always do the same thing with two forkfuls of pasta? Does it matter, you know, what else you’ve got in your stomach at the same time?

[Damien Blenkinsopp]: And your microbiome, which is another interview with recently did. Like, your microbiome can impact how you metabolize the food. So I think it is more than calories, and it seems like the research is steadily going towards that, but it actually seems pretty complex. You know, microbiome, the types of macro and micro nutrients that you’re consuming. But, as you say, if you’re counting calories, you’re potentially looking at helping yourself to behave better, so it potentially could help.

Just, I think there is a device and a crowd sourcing project which is tracking calorie input, so in a more convenient method, I think it’s still in crowd sourcing. I’ll put the link in the show notes, because I can’t remember the name of it, but it would be interesting to see if that one works out. Because, yeah, like noting down everything you eat is not something that I can see people doing for a very long time.

What has been the biggest insight about your own biology that you have drawn to date from any data or anything you’ve tracked?

[Simon Wegerif]: I will tell you, I haven’t mentioned before in this discussion, but it is actually HRV — so HRV biofeedback, which is another — another topic in its own right and may be one that you will cover in a future podcast, but one of the things in my journey to steadily increase my HRV was — I do tend to be quite a driven person. I do tend to get moderately stressed, and my wife is much calmer. She’s been doing yoga for a number of years, and she’s always told me, ‘Simon, you should try yoga breathing.’ And I must admit, I did poo-poo it a bit, until I actually had a chance to meet up with an old friend who was a yoga instructor, and he told me about breathing. And I started to relate that to HRV, and I built myself a little biofeedback app prototype, and that, over a period of just a few days, made a big change upwards in my baseline for about 5 or 6 ithlete points.

And that was a really — that was a really big insight for me, that I could increase my HRV and feel much better quickly by using basically guided, deep diaphragmatic breathing. And there are good reasons as to why that should work.

[Damien Blenkinsopp]: You were tracking — you were doing this for, like, what 10 minutes a day or something like this? And you were using an HRV device to see if you were raising it? Or were you just using the HRV for training every day, and just watching it? So it was like an experiment?

[Simon Wegerif]: It was like an experiment. I did my ithlete reading every morning, and then, I mean, you couldn’t help but notice how much it had swung upwards when I started doing this breathing practice. And what I found even more surprising was that when I experimented again by not doing it for a few days, my HRV remained elevated. So it seems to have a chronic effect on upwards HRV. And I think this is a technique that’s got a lot of potential for the future as well.

[Damien Blenkinsopp]: Yeah, very interesting. Great, great point. Okay, last question. What would be your number one recommendation to someone trying to use some form of data to make better decisions about their body’s health or performance?

[Simon Wegerif]: I think it would be do it consistently. Do it consistently. Preferably, you know, every day or several times a week, and do it for a period of time. And when you’re trying to — if it’s a measure that you’re trying to improve, like HRV, try to change just one thing at a time to see if that thing does make a difference. So just be a little bit scientific in what you do and how you do it. Because otherwise, you know, there’s so much data around now that actually deriving information from that data is in some ways getting harder, because there’s more and more data, more and more variation in it.

[Damien Blenkinsopp]: Great, great point. And yeah, the information overload is going to get worse as time goes on, because there’s so many devices and things coming out. I know I already have too many devices, and I’m trying to decide which ones I focus on. And HRV happens to be one I very consistently do, because it is very rewarding, and I notice the changes.

So Simon, thank you very much for your time today. It’s been a great discussion, and I can’t wait to put this out on the podcast.

Leave a Reply

A different philosophy: Leverage highly time efficient workouts to increase strength, build lean mass, promote cardiovascular performance and provide longevity benefits.

In 2009 I found my time getting swallowed up by the demands of my career job while starting my own business on the side and trying to keep to my crossfit workout program (which I dearly loved).

I barely had any time or energy to socialize or get anything else done. More worryingly my performance in my workouts was going down – not up. I found myself getting more and more tired during and after workouts, having to hold off on some exercises due to persistent muscle soreness and back and shoulder muscle injuries.

I finally stopped ignoring that my exercise program wasn’t helping.

Something was going to have to give – but I needed exercise for stress relief as well as to stay healthy. Right? I needed to find time-efficient workouts and how to optimize workouts for strength and size gains

Today’s interview is about how I fixed all of these problems, re-found greater health, higher energy levels and saved a crap load of time so I could work even harder on my startup. And discovered the joys of tracking workout results, and watching them improve… every single workout.

Enter the Time-Efficient Workout

The solution found me in a bookstore. The book’s title popped out at me as the answer to my problems (and seeming far too good to be true). “Body by Science: A Research Based Program to Get the Results You Want in 12 Minutes a Week“.

Today’s guest is Doug McGuff, co-author of the book, and an emergency doctor, gym owner and weight lifter.

His book describes how to perform, track accurately and optimize High Intensity Training workouts, and the many well researched benefits to doing this type of workout.

Doug himself has been practicing high intensity training since age 15 – that’s 37 years, and been training clients with it since 1997 (that’s 17 years!). As you’ll see in the interview Doug has a very solid grip on the research and science behind his workouts.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Where high intensity training came from and its use in the world’s of athletics and rehabilitation.
  • How to reduce the volume (amount) of exercise you do and how different body types can benefit from different exercise volumes.
  • The neural development and psychological benefits of strength training and how you see them in terms of increased performance in the gym.
  • Using time tracking to optimize each workout and exercise by measuring by ‘muscular failure’.
  • Finding the right ‘load’ to use in training for each exercise based on a specific time measurement taken for each workout.
  • The speed bumps that each exercise (exercise movement) have – and how to surpass these and increase strength despite this barrier.
  • Why weight training, done the Body by Science way, trains your cardiovascular system – or in other words trains your metabolism and energy production (as effectively, or more than, traditional aerobic exercise like jogging).
  • Creating the largest stimulus for growth via ‘peak intensity’, in terms of strength per exercise and in terms of metabolism for the workout as a whole.
  • How approaching weight training with the slow protocol makes it one of the safest exercises and has translated to Doug McGuff never having seen a training related injury at his gym.
  • The unique calibration used in Body by Science workouts to optimize training stimulus vs recovery time so that you get the most growth and development out of your body and avoid overtraining.

Give some love to Doug on Twitter to thank him for this interview.
Click Here to let him know you enjoyed the show!

Biomarkers in this Episode

  • Time Under Load: The time in seconds your muscles are loaded with weights for a particular exercise. Typical times aimed for are 80 seconds (1 minute 20 seconds). Doug McGuff specified that when you have stabilized at 80 seconds for an exercise (i.e. can’t increase the time under load) for a couple of weeks you will increase the weight for your next workout. Increasing your time under load for an exercise indicates that your performance is improving (your time should not go down unless you increase the weight lifted).

Other Resources Mentioned in this Episode

    Doug McGuff, Body by Science and Ultimate Exercise

  • Body by Science: The original book describing how to do these workouts and explaining the science behind them in detail. Doug also mentioned his second book covering the workouts in more depth, named Body by Science Question & Answer book
  • You can also connect with Doug at his personal site, on the Body by Science website and on twitter @DougMcGuff.
  • Other People, Resources and Books Mentioned

  • Arthur Jones Inventor of the weight machines we see in all gyms today via his brand, which is still a leader in the field, Nautilus.
  • Tim Ferriss’ Geek to Freak blog post and his book, “The 4-Hour Body” including his “Occam’s Protocol” for efficiently gaining muscle mass. Both of these describe “Body by Science” style workouts.
  • Cross Fit workouts and gyms have becoming increasingly popular the last decade and advocate a high exercise volume approach to fitness.
  • Renaissance Exercise, founded by long time advocate of high intensity training, Ken Hutchins, mentioned by Doug for their equipment and perspective on training.
  • Mark’s Daily Apple/ Mark Sisson: Doug mentioned that he has submitted a book for publishing with Mark Sisson’s publishing company on how healthcare got to the state it is in today.

Full Interview Transcript

Transcript - Click Here to Read

[Damien Blenkinsopp]: Doug, thank you so much for coming on the show today. As I mentioned, I have been using your workout since 2009 and they really change the way I approach everything and really help me in various areas of my life beyond working out. So I think this is a fantastic, interesting topic and of course it has got loads of quantifying areas too, so thank you for coming up.

[Doug McGuff]: Thank you, Damien, It is a pleasure to be here.

[Damien Blenkinsopp]: Just to give people a little bit of background, you published your book, Body By Science, in 2009. Could you give us a brief background of where these workouts and this approach came from and a bit of the history and what led to you publishing that book?

[Doug McGuff]: Sure. It has been a lifelong interest of mine, probably since I was about 14 or 15 years old. I started working out around that time and I was doing it to improve performance as a BMX racer, which is a type of sprint bicycle racing, and it worked so astoundingly well that I was immediately hooked. And that was back in the late 1970s, and it just so happened at that time the nautilus training concept was exploding. That was invented by Arthur Jones to introduce the idea of high- intensity training, that by making the intensity level of the exercise higher, that the exercise could be more effective and more time-efficient. I traded my janitorial services for a membership at a Nautilus gym and while cleaning up in the office I found a copy of The Nautilus Training Principles Bulletin written by Arthur Jones. And the owner let me take a copy of it and I read it cover to cover in one sitting and have been interested ever since.

Over time, that concept of high-intensity training has been refined more and more over the years. The idea of a high-intensity training is that the intensity and the amount of training are inversely proportional out of necessity. And as more and more refinements were made to produce higher and higher levels of intensity, what was found was that for the body to recover and produce a good adaptive change that ratio, that inverse ratio, was actually quite disproportionate. For any incremental increase in intensity you are able to achieve through modifications in protocol or equipment, that the amount and frequency in training had to go down disproportionately.

Probably the first time that was really driven home was in the 1980s when Nautilus was researching the use of high-intensity strength training for the treatment of osteoporosis. And they created what led into the super slow exercise protocol, lifting and lower the weight very slowly in order to protect these elderly, frail women that they were training. And what they found was two things – one is very little went a long way. It was very easy to overtrain people. And two, a rate of progress that was much more dramatic than they had seen in the past. And they thought perhaps that was attributable to the fact that these were elderly and deconditioned subjects, but when they took the protocol and applied it to more normal athletic populations, they found a similar sort of response. And over the years from that point forward into time, that sort of protocol has been refined more and more by the inventor of the protocol, Kim Hutchins, as well as other people that have made different tweaks to that protocol along the way, both in terms of protocol and equipment, and that is kind of where we have arrived today, where we have really refined things so that it can very hard and very brief.

[Damien Blenkinsopp]: Right, and to give someone a kind of rough idea of what this requires, with the people you are training how often do they work out?

[Doug McGuff]: When you look at the population in general, how well you recover from exercise is kind of distributed on a bell curve. On the extreme left tail of that bell curve you have people with very good recovery ability that can recover from this kind of workout in 48 hours, but they are quite rare. On the opposite end of the curve you may find some people that need 14 days and sometimes longer to completely recover between workouts and in the middle you are going to find the average recovery time is going to float somewhere between four and nine days, with seven being roughly average.

So that is where most of our clients tend to fall out. We have a handful that train twice a week and do well at it and we have others that either because of their lifestyle, they are full-time shift workers, night shift workers, have small children, they will end up falling out to about an every 12th day frequency. So it is variable but the average is about every 7th day.

[Damien Blenkinsopp]: And how long does a training session last, typically?

[Doug McGuff]: Most of our training sessions will last somewhere between eight and 15 minutes with there being a certainty that any given client will do not one second more than that. The workouts that tend to run a little bit longer are actually in the less robust subjects. And small, petite females that are not so strong or our senior clients that are older and perhaps a little bit frailer, they require a little bit more time between machines and they can tolerate a higher volume of work because they are not bringing so much punishment to themselves, as is the case with a much stronger person.

[Damien Blenkinsopp]: So in that case you have to do more types of exercises, individual exercises, to get the more volume?

[Doug McGuff]: Yes, they can actually tolerate a higher volume of exercise and sometimes in order to deliver an adequate stimulus to them we actually have to do a little bit more than we do with someone that is able to train at a higher level. The clients with workouts that last a little bit longer is it can be either because they have some sort of limitation that makes us have to be more gradual about working our way up to muscular failure or just their tolerance for high-intensity exertion as such that we kind of have got to take an incremental workup to actually reaching the level of fatigue necessary to trigger the stimulus, whereas someone that is more aggressive and stronger can, for lack of a better term, do themselves in at a faster rate because they can tolerate a higher level of fatigue accumulated more quickly.

[Damien Blenkinsopp]: Right, so for the people at home I just want to make sure that they get all the concepts we are talking about. So when it comes to volume you are talking about – how would you explain that in kind of layman terms?

[Doug McGuff]: Well, we do typically anywhere between three to six, and typically about five movements. And each movement is done in only one set and the set is carried out in a way where the muscle is under continuous load and there is no escape and we typically use super slow reps, which is on the equipment we have an excursion in the lifting phase of around 8 to 12 phase, and the same in the lowering phase.

So the movement is quite slow, and that is to deprive the clients of using any momentum to get out from under the load, so the muscle is being continuously loaded and fatigued. And that results in reaching a point where they can no longer move that load, typically in about one minute, 20 seconds, to two minutes, the will typically bite the dust in that time frame. And then we move quickly from one exercise to the next.

So you go through those five movements very quickly, so you have got two minutes reaching failure on each machine and very little rest in between the two.

[Damien Blenkinsopp]: So in your case volume is really equating to time that you were actually doing exercise. If you add that up it is like the total volume.

[Doug McGuff]: Yeah, and the reason we did that was the way that we know whether a client is appropriately recovered between workouts is simply by the record keeping. We know the resistance that they used last time, what their recorded time to reaching muscular failure was, and on a subsequent workout if they are not performing in that realm or we see a drop off in performance, we know that recovery may have been inadequate and is a cause for that. So that gives us some sort of feedback on adjusting their volume and recovery so that they are showing improvement on a workout by workout basis.

What we found initially is that when we are using a very slow rep cadence, where you are going ten seconds out and ten seconds back, each repetition lasts 20 seconds. So simply counting repetitions provided too gross of a measure of performance for us. Because someone could do four repetitions and that could be the full 80 seconds or they could have stopped somewhere around 72 seconds and if you just recorded four you never would have seen the difference between the two.

So we started running a stopwatch on it just to get more of a fine-tuned dial so the drop off in performance when you are using such slow reps would then become evident to us.

[Damien Blenkinsopp]: Right, and simply put if you are lifting the same way as you said resistance, then you get a longer time, and then you are getting stronger?

[Doug McGuff]: Technically, yes, although you really have to be careful with that because the process we are trying to trigger is very intrinsic. The stimulus that is causing the adaptation we are looking for is called inroad. And inroad is the momentary fatiguing of muscle. If you start out with 100 units of strength at the beginning of the set, at the end of the set you end up with only 40 units of leftover strength, and how quickly and aggressively we can go from 100 down to 40 determines the quality of the stimulus.

So what you have to be careful of is that both instructor and client are focused on that intrinsic goal. It is possible to focus on the extrinsic goal, making the weight go up and down for longer. And if you focus on that goal extrinsically then what you can do is you can sandbag during the easy parts of the range of motion. You can squiggle and worm and do anything to milk out extra time to show apparent progress on paper. So the process only works if the subject and hopefully the instructor are blinded to the actual recording process.

So the client, we don’t show them their weights, we don’t let them know a goal time, we just have them – and literally sometimes what we are shooting for is actually a shorter time under load. We want them to police their form in such a way that they bite the dust sooner rather than later. Because it is possible to be coming very close to failure and then heave and jab and do some sort of form discrepancy which actually compromises the stimulus but gives you an extra rep. And that is what we very strictly want to de-emphasize and keep them blinded to their performance so that they are just focusing on that and performance occurs organically. And in a blinded fashion so that we can use that data in a meaningful way.

And our instructors, when they are running the stopwatch, they are not sitting there watching the stopwatch and comparing it to the prior performance because then you start to coax the wrong behavior out of the subject. The stopwatch is either hanging on the machine or held behind the back so that however it turns out is really just serendipitous to the process.

[Damien Blenkinsopp]: Right, so this is very interesting. You are basically trying to do it in a controlled manner so that the data isn’t biased, as you say squiggling and kind of cheating just because you want to hit the same mark. I remember when I was doing this that I have to admit that sometimes I wanted to get the same time or greater than the week before.

[Doug McGuff]: Yeah, it is a very strong human tendency to do that sort of thing when in fact if you are really becoming more refined and applying the stimulus to yourself. You may go from one workout to the next and all of a sudden you are reaching failure ten seconds sooner than you did previously, but for a good reason. So you kind of have to have some insight into that to be able to milk the most out of the protocol. But one thing that became evident as we did this in a blinded fashion is that when you have selected a proper weight, and there is a pretty wide range of what this proper weight can be, what happens is you end up recruiting the targeted musculature, the motor units in that in a sequential fashion.

You fatigue one set of motor units that are slow twitch and as soon as they drop out then you jump to the next set of motor units that are higher order intermediate twitch and if you fatigue those quickly enough you will jump next to your highest order motor units that are the strongest, but the fastest fatiguing. But when you do the set correctly, you are recruiting those in boxcar-like fashion one right after the other. And what the time under load ends up representing, and at least this is my theory, is a signature of what your fiber type and mix is. And what you will see is once you get up to a meaningful resistance, then on a workout by workout basis and in a blinded fashion the client starts to fail almost to the second. We first saw this when we had a client that would bail on the overhead, press at one minute 21 seconds, every time.

So once you have found that, you are now at a meaningful resistance. And meaningful resistance has a fairly broad range. If you want to progress the weight or the resistance, once you have found that recurring time under load or that signature time under load, that is a period in which you can jump the resistance on a workout by workout basis fairly aggressively. Now, eventually that falls off and there is a range of meaningful weight for that particular time under load. Eventually you get heavy enough where some imperfection in the machine strength curve or friction or something is going to make you have a sudden drop down in your time under load. But there is a broad range of weight where you are almost going to reach failure, to the second.

[Damien Blenkinsopp]: So when you say ‘reaching failure to the second,’ what does that actually mean? That means that you have reached a time that is going to be the same every workout?

[Doug McGuff]: Yeah, okay, so the instructor loads you in the machine and says to very gradually start the movement, get it moving, keep it barely moving, they reinforce what you are doing, not resting at a lockout, smooth turnarounds. But the moment you started the stopwatch is behind their back and they pushed start. And they police very good form and you lift and lower the weight until your fatigue reaches a point where you can no longer make the weight move because your forced output has dropped below the selected resistance. At that point they will have you try to attempt to produce movement even though it is impossible for several more seconds. And then that will reach a point of failure where you can no longer sustain the effort and then he presses the stop button on the stopwatch, again behind his back.

This workout it says one minute 21 seconds, he records that on that chart. You come back next week and we increase the resistance by four foot-pounds, repeat the process. You reach failure, the stopwatch is behind his back, he pulls it out, and it says one minute and 21 seconds.

[Damien Blenkinsopp]: So you are progressing in weight and the time is remaining still, which means you are getting stronger.

[Doug McGuff]: Correct, or it means that you are at least aggressively recruiting all of the musculature that you have available. Because what you will find is as people become very advanced, the limitations of this quantified approach are not the subject and his body, although that is somewhat of a contributor. The bigger contributor is the limitations of the equipment and the mechanics involved. Every movement has a sticking point, which is sort of like a little speed bump where the resistance is higher than it should be for your strength output and your leverage at any given point in the range of motion.

So you have this movement that has got a speed bump. But when you first start out and you are not very strong and you are not using a lot of weight it is like pushing a Yugo over a speedbump. But by the time you become very strong and you are using a higher resistance, that sticking point becomes much more meaningful. Now it is like pushing a mack truck over a speedbump.

[Damien Blenkinsopp]: So by speedbump do you mean certain muscle fibers are kind of like the weakest link?

[Doug McGuff]: No, I mean that there is something about the movement itself where there is a mismatch between the resistance the machine is delivering and the forced output of your muscles. So if anyone has ever done a chest press or a bench press type movement you will know that the hardest point in the range of motion is when you shoulders and your elbows reached 90 degrees, because the involved levers and moment arm of those levers have a lowest forced output at that point. And there is no real way to construct into the machine enough of a dropoff to account for that. So there will always be this sticking point as you come out of the bottom and your elbows reach 90 degrees. And that becomes a weight limiting factor after a certain amount of weight, where you will always fail at that point in the range of motion for purely mechanical reasons.

[Damien Blenkinsopp]: Right, okay, understood.

[Doug McGuff]: But that is not so important as by the time you reach that being a problem you have already progressed quite a bit and become much, much stronger. And then you are into a realm of the exercise that becomes more difficult to quantify, but is actually even more productive. Because what you come to understand then is you have progressed through this well enough to understand the internal process going on and you have become much more adept at simply using the resistance as a tool, the resistance as something to contract your musculature against because the continuous contraction against a meaningful load that produces a deep level of fatigue is the stimulus.

Eventually, increasing load over time is not just the load going up over time that produces the adaptation. It is your ability to contract against the meaningful load and produce a deep level of fatigue that is the stimulus. So you don’t have to forever progress the weight in order for there to be results. So what appears on paper does not necessarily always reflect what is going on internally, and that is because of the mechanical limitations of how we apply the resistance to the body.

[Damien Blenkinsopp]: Okay, honestly. So to take your example, I am sure you have been doing this for a very long time now. You are going to do this and you are going to get stronger week by week and eventually you are going to hit a peak genetic point, for a better word, where you have kind of built as much musculature and strength as you are genetically susceptible to do. How long does that take and what does that mean for the workouts afterwards?

[Doug McGuff]: Well, it is variable for different people. Some people ramp up to a full expression of genetic potential within a matter of 12 weeks. For other people it seems to draw out over many, many years with a quick rise up to where the curve becomes [inaudible 00:24:45] but then there are very gradual improvements over long, long spans of time. And those gradual improvements are eeked out by becoming more and more masterful in the application of the stimulus to your own body.

And that is where the really neat aspects of this kind of training come in, you get not only the physical adaptation but all of those sort of [inaudible 00:25:11], zen-like mind-body connection benefits that come along with that. And to some extent the science is starting to bear out how quickly you approach that [acentonic 00:25:23] curve and has a lot to do with your own genetic makeup.

[Damien Blenkinsopp]: I’m sorry, could you clarify – what does [acentonic 00:25:30] curve mean?

[Doug McGuff]: Well, if you picture a sigmoidal curve where you start off with a gradual rise in slope and then it becomes very steep almost straight up, but then the slope becomes more gradual. So it is like an S-curve, yes. So acentonic is when you get to the top of the S and you start to bump up against your potential.

[Damien Blenkinsopp]: Right, it starts. So you are getting less benefits per workout at that stage.

[Doug McGuff]: Correct. It is sort of a diminishing marginal utility, but it is because you are reaching the limits of your own adaptability and genetic potential.

[Damien Blenkinsopp]: Yeah, I think there is a lot of – I just wanted to bring up that since you popularized this method Tim [Ferris 00:26:09] also has popularized it with his 12-week Occam’s protocol and his posts about Geek to Freak, I am sure you are aware, has created a lot of controversy because people don’t believe that it is possible to gain that type of mass. But I just wanted to bring up that basically his is exactly the same method as your method. And that is why.

[Doug McGuff]: Yes, he actually consulted with me when he was writing the Four Hour Body. It was supposed to be a two-hour Skype consult, and I think he was in the Dominican Republic at the time or – but the electricity grid there was just very, very sharky so the two hours ended up happening over about a three month period. We finally got it all together where he gathered the information from me that he needed it anyway. It was a fun time.

[Damien Blenkinsopp]: Yeah, great, great. I am sure that people of aware of that also, just to make the connection that it is actually the same method and everything. One thing you just brought up is the mental aspect of this. And one thing that I have seen in myself and in other people using this protocol is that the first workout they will get to a certain level and then the second workout they tend to go a lot further. And i put that down to either psychology in terms of getting used to pushing themselves harder. or actual neural development of the links between the muscle, the muscle fibers, and in the neural connections, so they basically have more bandwidth to tell their muscles to contract. How do you look at that? Have you seen that kind of evolution?

[Doug McGuff]: Yeah, absolutely. And I think the answer to that is all of the above. What we are coming to find out about muscle is that it is more than just tissue that contracts and produces movement, it is actually turning out that it is the largest by mass endocrine organ in the body. It secretes all sorts of chemical messengers, cytockines that have been termed myokines. One of which is brain-derived neurotropic factor, which causes neurons to reach out to each other and make new connections, and that is kind of part of improving your neuromotor efficiency and your ability to aggressively recruit muscle.

Part of it is becoming tougher, simply. It is not that you are becoming limitless, but you are learning where your limits actually are and that they are in fact further out than you ever imagined them to be. And that is one of the benefits of this kind of training that goes beyond any objective, physical results that you can produce. It is just the psychological benefit that comes from doing hard things.

[Damien Blenkinsopp]: Yeah, it is like learning to overcome a challenge, which is really hard. The first time that people do this workout they find it very, very hard. And then they realize that just by trying harder mentally they can go a lot further. And that applies of course to other areas of their life. It kind of transfers and they can see that they can overcome hard goals and challenges like that.

[Doug McGuff]: Yes, and it is amazing that until you do this sort of thing you don’t realize the extent to which your body has almost like preinstalled software that sets up a panic reaction when you face muscular fatigue. When the window between what you are struggling against and what your capability is starts to close and narrow down, there is a panic point where you just try to escape that experience by any means possible. And it takes an understanding that this there and a deliberate mental focus to overcome it. And as you do that, your ability to overcome that panic and push through it reveals that where you’re actual endgame is much further down the road than you thought. And whether it is simply metaphor or if it is just a manifestation of the fact that this exists in many different areas of your life, I am not certain. But what I am certain of is that as you become more adept at doing this you become much more panic-resistant in almost any situation.

[Damien Blenkinsopp]: That is very interesting, and of course beneficial. So I think there is so much in these workouts that I am trying not to miss important details. One of the unique things about it is that you put all of the exercises very close together. So that is why we are getting down to this 12-minute window because you are starting with a chest press, you are going straight to a leg press and then a shoulder press. And literally you line up your machines, so if you are using machines to do your presses and then you are kind of ready to go with the right weights and you move from one to the other pretty much as fast as you can, is that the way that you run it?

[Doug McGuff]: Yeah, and you can go overboard with that concept where the metabolic effect of the workout can be a right limiting factor. And it is a little bit of a tweak or an art form to get the most out of it without causing it to be an unnecessary burden to the rest of the workout. So for most of our clients we do move them briskly between machines and it can be anywhere between five and 45 seconds between the movements, depending on their metabolic condition at any given point in time.

Your ability to deal with the waste products of high-intensity exertion is a trainable factor. So over time two things are happening and you have kind of got to juggle these a little bit. One is as you get stronger you are doing a much larger amount of both mechanical and metabolic work. So as you get stronger you are producing a lot more metabolic byproducts and fatigue, lactic acid and such. And your body’s ability to metabolically deal with that is trainable.

[Damien Blenkinsopp]: So is that, when we are talking about metabolism, would you put that down to the generation of ATP in the mitochondria and efficiency of your energy output?

[Doug McGuff]: Yeah, there is a lot to it though. I mean, it is more than just how quickly you can produce ATP. The experience at a cellular level is that the anaerobic portion of metabolism, turning glucose into pyruvate outside the mitochondria, doesn’t produce a whole lot of energy per cycle. But you can turn that cycle really, really fast, such that you can deliver pyruvate, the end product of that cycle, to the mitochondria at a rate faster than which it can use it. Now, once the mitochondria picks up pyruvate it can make 36 ATP per cycle, but that cycle can only turn so fast.

So when you are delivering pyruvate to the mitochondria faster than it can use it, pyruvate stacks up in the cell. When it does that gets shuttled through lactate dehydrogenase and you make lactic acid. That begins to drop the pH within the cell and as your pH goes from 7.4 down to 7.0 and beyond, the metabolic machinery and all the enzymatic processes within the cell start to fail and fall apart.

The way your body deals with that is, number one, your mitochondria adapt and learn how to handle pyruvate more quickly. Number two, your body finds other destinations for the lactate. The lactate that is circulating in your blood can be brought back to your liver and the enzymes that do this can up regulate. You can take lactate which is circulating in your bloodstream, bring it back to the liver, and that can go through a process of gluconeogenesis to make more glucose. And that is a process called the Cori cycle.

Your body learns to generate buffers to offset the acidosis. Your body makes a chemical called [2-3-diphosphoglycerate 00:34:01] that makes your hemoglobin molecule offload oxygen to the tissues much easier. And that enzyme exists in higher levels that lives in altitude, like Colorado Springs or high in the mountains, because you have to be more efficient at offloading oxygen. Well, you do this kind of training and you upregulate that enzyme. So there are multiple different things that make you more metabolically capable of high level of exertion and dealing with the byproducts of that high level of exertion.

[Damien Blenkinsopp]: Right, and well this metabolic aspect is traditionally a lot of people, say aerobics, when they are referring to these kinds of adaptations.

[Doug McGuff]: They do, but that is incorrect. Aerobics is a term that just took on a life of its own. Aerobic refers to that portion of metabolism that occurs within the mitochondria. But aerobic became synonymous with any metabolic work or any cardiovascular conditioning. As if somehow magically just the mitochondria could be hooked up to the heart and blood vessels. But that is not true. The entire cell is serviced by the cardiovascular system. And number two is the aerobic system cannot even run unless it is delivered substrate by the anaerobic system in the first place.

so, exercise of any type only occurs when we start to rise the intensity above a resting level and start to deliver pyruvate more rapidly to the mitochondria. And the type of training that we are talking about today is just taking that delivery mechanism to its ultimate expression by taking it as aggressively as we can.

[Damien Blenkinsopp]: Right, so what I wanted to make clear for people at home is instead of talking about cardio or aerobic here, we are talking about metabolic, which seems like a better term for it because it is more about energy production.

[Doug McGuff]: Right, and the book goes into that in great detail. Me and John LIttle, my coauthor, wanted to make a big, big deal in making this metabolic distinction, because not only do you not want it, and it is not really possible just to isolate a segment of metabolism and focus on it, what you really ought to be focused on in terms of having a level of fitness that is complete and actually confers survival benefit in extreme situations, is you want global metabolic conditioning. And that is what this delivers.

You can get more aerobic-type metabolic conditioning than out of most traditional protocols because you are actually causing the aerobic cycle to run as fast as it possibly can.

[Damien Blenkinsopp]: So it is like the HIT, the high-intensity training which people associate with cardio work as well?

[Doug McGuff]: Right, the spring interval type training. And it does a very similar thing. As you move from one machine to the next what you are doing is in a steer step fashion you are stacking these metabolic byproducts and you are incrementally forcing themitochondria to work harder and harder by delivering substrate to them faster than they can handle.

[Damien Blenkinsopp]: So you are trying to hit peaks of intensity in terms of metabolic output so that your body is like oh, we are going to have to be better at this next time because we have got to deal with these peaks.

[Doug McGuff]: Right, the advantage that doing it with controlled cadence weight training as opposed to an aerobic piece gives you is safety. In order to produce a level of meaningful intensity on any aerobic piece, you have to exercise in such a way that you risk injury because the forces have to go up exponentially, along with the intensity. But with appropriately done weight training, with a slow cadence, the forces – as the intensity goes up, the force is actually diminishing because you are becoming weaker and weaker but you are doing it through a controlled lifting and lowering of a fixed amount of weight.

So force is mass times acceleration. The weight you are using is a given mass, but the movement protocol is such that almost all acceleration is taken away.

[Damien Blenkinsopp]: Right. I think people can relate to that because when they are lifting the weight it gets harder every time. So when you are saying they are getting weaker, it is getting harder to lift the same weight.

[Doug McGuff]: Right, but the force that your body is seeing is actually staying stable or in fact going down because the force your body is going to see is never greater than mass times the acceleration and we have done everything we can to eliminate acceleration out of the movement so that your muscles are continually loaded. As opposed to being on an [inaudible 00:38:44] or a treadmill where you have to turn the speed up really high and everything is flailing around and you are pounding the surface harder and your joints are seeing more force. All the while you are becoming fatigued and the force is going up and your risk for injury is going up. As opposed to when you are doing a controlled movement leg press. When you hit failure it is because you are producing less force than the mass you are trying to lift. So at the peak of intensity it is actually getting safer, which is a very unique twist.

[Damien Blenkinsopp]: Yeah, so there are less injuries. I think one thing that we kind of skipped over is the major difference between this and traditional weight training, that with traditional weight training you have reps and rest in between each rep. So it is like one, rest, two, when you have got the barbel. With this method it is a constant load, you don’t stop in between, and there is no rest when you take the strain off completely. It is just a constant movement.

[Doug McGuff]: Correct, and depending on the type of movement we are using, we are enforcing a specific performance behavior to ensure that. So if you are doing a compound movement, a multi-joint movement, for instance – a pushing movement like a chest press, traditionally as you get out to the top of a chest press, if you wanted to you could lock your elbows and create a bone-on-bone power and give yourself a little bit of rest. And what we do in our training regimen is as you approach that lockout, we never go to complete lockout. We never go to complete lockout.

We stop our joints this short of lockout and we do what is called a turnaround technique, which is basically a change in direction like you are going over a loop, or cresting the top of a roller coaster, so that you change direction from positive to negative in this very slow, continuous loop that occurs prior to joint lockout so that your muscles never get any escape from the load that they are facing. As opposed to a single joint movement. Let’s say you are doing movement like a barbell curl or an arm-cross chest block. In that, when you reach the point where the weight is completely lifted and you are in full contraction, you are actually under a much heavier load and there is no rest from the weight in a single joint movement.

So in that we will actually, after the second or third repetition, induce what is called a squeeze technique, where the person actually contracts harder against the weight and their congested muscle tissue to make the load that the muscle is seeing actually increase. So there are specific behaviors that occur during different given movements that basically are carried out just to make it as hard as possible.

[Damien Blenkinsopp]: So, to give the listeners an idea, at the end of this workout you are really breathing hard. You are puffing as if you have been running. People are typically used to that kind of experience when they are sprinting, not so much when they are lifting weights, because there is this rest in between. So the metabolic aspect isn’t really pushed because it is like one, rest, two, rest. And there is that metabolic rest in between. But with yours, like, what is the experience at the end of the 12-minute workout?

[Doug McGuff]: It is dramatic. Your ears will be roaring, your awareness will constrict down to like you are looking through a paper towel tube. Your heart is racing, you’re breathing very hard and very fast as a means of your body is blowing off carbon dioxide and as a means of trying to normalize your blood pH from the severe lactic acidosis that has accumulated during the workout. So it would be very similar to the kind of metabolic experience if you ran an all out 440 meter dash. At its minimum it would be like that. I mean, it is a very profound and demanding metabolic experience.

[Damien Blenkinsopp]: Yeah, so we are basically saying that this workout can do everything for you – like, typically people will do weights and cardio because they want the balance. But in terms of this workout, because it has this metabolic emphasis as well as the strength emphasis, it is basically and all conditioning system?

[Doug McGuff]: Yeah, it does give you total conditioning. Now, if there is a specific metabolic oriented sporting event that you want to participate in, you will have to do some participation rehearsal of that kind of activity in order to turn your dial up or down for that specific combination of metabolic elements. But the workout will make you capable of doing that across a broad continuum. So if you want to go out and run a 10K, you will be in good condition where you can start off training for the 10K and then refine that without having to start from scratch.

By the same token, if you want to be a sprinter you are well-suited for that as well. But you do have to do some rehearsal of a specific metabolic activity in order to optimize your performance at it.

[Damien Blenkinsopp]: So what you are saying is adaptations are specific, so if you want to win a 10K run, you have got to do a 10K, yeah, exactly. Okay, so have you looked at other markers? I think a lot of people at home are not going to be like well, this cannot be the same as cardio. Have you looked at other biomarkers which illustrate the improvement in metabolic activities? Like [inaudible 00:44:10] or potentially mitochondria markers or anything like that?

[Doug McGuff]: Well, the book is replete with studies that kind of demonstrate that. So that is available in the bibliography of the book and if anyone just wants to plug into PubMed and explore that kind of thing you can see good evidence for that. Serendipitously we are not doing it deliberately as part of running the protocol in the business, but we do gets lot of reports from clients of improvements in all sorts of metrics. We have had plenty of type two diabetics that were essentially cured that were on oral hypoglycemics and started to have spells of hypoglycemia because they essentially no longer needed the medication and went off those meds.

We have had lots of clients go off of statins because all those numbers had normalized for them. Women who have had their DEXA scan done every year that have shown reversal of bone mineral loss and no longer carrying a diagnosis of osteoporosis. We have seen hemoglobin A1cs drop very significantly. We have seen people that keep track of that or their C-reactive proteins and other things, so very significant improvement. But that is all just anecdotal evidence that is by the reporting of our clients. That is not science, that is anecdotal evidence with a strong reporting bias built in, but it is still there.

[Damien Blenkinsopp]: Right it is kind of like N=1 experiments, each person just recording their own thing.

[Doug McGuff]: Yeah, I wouldn’t take any of that to the literature. But there is certainly plenty of anecdotal evidence through the facility. But that is not something that we are actively studying or seeking either.

[Damien Blenkinsopp]: I continue my own experience, just to add another anecdotal one. I was suffering from chronic fatigue and I was trying to battle it, just pushing it, so I was doing crossfit, and I was trying to eat Paleo and making various changes like this. And I was exhausted still and having difficulty working and things like this. And then I discovered your work and I started taking this basically very limited approach to stimulus, which is once per week. Or actually I actually got to the point where I think I was working out – one set of body parts we haven’t really spoken about, but one set with the legs once every 12 days or something. So I was really taking the long recovery approach.

And I found myself getting more energy, slowly having more energy days, less low energy days. And it got better for me over time. Where as crossfit seemed to push me the other, which is a very high-volume kind of program.

[Doug McGuff]: Yeah, and it will work but when you are faced with that kind of issue what you really have to understand is that this is not something that can be overcome with a warrior mentally or a Navy SEAL buzz training mentality. Because what you have to understand is that those sort of indoctrination versions of exercise are not done as a stimulus, response thing. They are not putting people through that in order to get them physically conditioned. They are putting people through that to weed people out to find out who are the most resilient intrinsically.

So that kind of Johnny Quest mentality to exercise can backfire on you because of this whole mindset of don’t force it, get a bigger hammer, really does not work because first you have to have the capacity and that capacity has to be brought out through intelligent programming that respects your body’s need for intensity and recovery.

Once you have done that, what you will find is once you have given someone the metabolic capability and the muscular strength to function at a higher level, then their activity levels will spontaneously rise. And then that starts to happen then you have people that are conditioned in such a way that they find themselves going to do crossfit activities as recreation but clearly I think that people that have chronic fatigue, fibromyalgia, I really do believe that is just a metabolic illness that involves mitochondrial down regulation, the ability to generate citrate through the mitochondria is just down regulated over time because of dietary and activity issues. And that can be cured with an intelligent application of exercise, but it cannot be fixed by saying okay, I am just going to man up and bring a sledgehammer to this process. Because that will just backfire on you.

[Damien Blenkinsopp]: Yeah, right, and there is a lot of controversy about that chronic fatigue or communities and so on where the approach has been psychological, like you are talking about. The psychological light, let’s push for it that kind of thing, versus your approach which is actually trying to define the exact stimulus you are capable of using at this moment in time. And then trying to identify the exact amount of recovery you need before you provide another stimulus.

[Doug McGuff]: Right, and the other focus is that by using a protocol that uses 100% of the mechanical work that is going on to try to use the highest percentage of that mechanical work for producing the largest amount of the internal process that is actually the stimulus. And a lot of people, the people that originated super slow that are now known as renaissance exercisers, they have a specific term for this.

Inroading is the internal process of producing rapid and deep fatigue. But they have this concept of inroading versus outroading. And outroading is just like moving furniture. It is doing a lot of mechanical work, but it is doing it with such a level of form that very little of that mechanical work is directed internally at producing rapid and deep fatigue, which is actually the stimulus. So you can have someone sling a sledgehammer at a tractor tire and do a shit ton of mechanical work but very little of that work will be brought inward to the body, producing a very specific focus of fatigue to produce a desired adaptation. So you can pound a tractor tire all you want, but not necessarily have spent all that mechanical work on producing much that is productive.

[Damien Blenkinsopp]: Right, exactly. One of the points that I think is really essential to this whole method is the recovery. And you talk about this extensively and we haven’t really touched on that. But how do you know when you need to recover more? This is the essential part which most people ignore and don’t focus on enough. And we have spoken about this in previous podcasts, the importance of recovery in any training program or, you know, in life in general. And obviously today we run around like stressed individuals and we push ourselves and we try to do exercise, we try to work and we try to sleep less. So there is a lot less emphasis on recovery. So how do you define, in this program, how much recovery is required before you train out again? And how do we know that we have to wait an extra few days? As i explained eventually I was doing the workout, so a kind of partial workout once every 12 days. So how do you get to that point in understanding because at first it starts at 7 days a week. How do you understand exactly how much recovery you should be putting into it?

[Doug McGuff]: This is probably one of the most important concepts of the book. And i will probably make this a final comment, since we are running out of time. But there are several ways of approaching this. One is when you have not appropriately recovered, when a client has not appropriately recovered, we can see that both on paper – there usually is a fairly marked drop off in performance, but also their behavior as they are administering the stimulus to themselves, tends to fall apart sooner, that panic that we spoke about earlier that they had mastered now expresses itself prematurely during the work set. So that is one evidence.

From a more qualitative standpoint in a given individual, you will feel it. You will feel it in terms of the day after a workout you will feel like you have been run over by a truck. You will have that whole flu-like syndrome going on. On a more protracted basis, what I always tell people is that the workout the next day, you should feel a little fatigued and maybe a little below baseline, but overall you should feel invigorated and have a sense of well being. And for certain, over the course of a week you ought to feel above baseline more days that you feel at baseline or below baseline. And that is a gross, qualitative measure that you can use for that. But certainly your performance record will reveal it to you. But you have to really pay attention to how you are feeling, both the day after a workout and over the course of the week between workouts. You should definitely be feeling above baseline more days that below.

[Damien Blenkinsopp]: Right, and before you go to your next workout you should basically be feeling great. If you are feeling in any way tired or anything it is a signal that you are not actually ready.

[Doug McGuff]: Right, and when I work out a schedule and you go into it feeling just kind of meh, that is not good. You want to go in raring to go. You want to feel like you can push a truck over, that kind of sensation.

[Damien Blenkinsopp]: And I would like to say that is one of the things I liked about this. It is like each – because you are only doing it once every week or once every ten days or whatever, you are actually really excited to go to the gym. And you have only got 12 minutes to make the most of it. So I found that it is a great, efficient exercise and motivation tool. Because you are like, ‘I am going to put as much in it, because I have only got this one chance in ten days to make the most of this.’

[Doug McGuff]: And the other thing that really drives that process is once you have an intellectual understanding of exactly what the stimulus is and how your body responds to it, then you really know that you want to apply that in the most effective way possible and that is very motivating. The link to my blog, through Dr. McGuff, DrMcGuff.com – if you go through there, there was a blog that I put in there that was called rock, hammer, nailgun. And it describes the difference between different types of workouts and using equipment and technology and mental understanding of the process to refine that and what you really want out of it is nail gun.

So having an intellectual understanding of exactly what you are trying to accomplish makes you much more effective at doing a really hard, brief, and effective workout.

[Damien Blenkinsopp]: The last point on the recovery was like in terms of the performance charts they are tracking the time, coming back to the time. I guess the biggest indicator that you need to recover more is if you are using the same weight and your time starts declining?

[Doug McGuff]: Yes, not necessarily that it starts declining because you can have a few seconds drop off as a result of refining your effort and doing yourself in sooner, but when you have not recovered adequately you will have a drop off in time that is significant. And that will be combined with a bewildering feeling of what in the hell is wrong here. Because you will reach failure suddenly, you will have that sense of panic come on way too soon. You will know that things aren’t right.

[Damien Blenkinsopp]: Great. I am conscious that time is running out. Thank you for so much information and detail. It has been great. Are you working on anything currently? Anything that you can update us on? I will put links, of course, to your blogs and everything but is there anything interesting that you are currently working on that you would like to bring up?

[Doug McGuff]: Right now we are just turning in a manuscript to Mark Sissen, Mark’s Daily Apple. He has a publishing company but this one is actually being done by me and a coauthor named Dr. Robert Murphy, who is an economist. And it is an expose and deconstruction on how the American healthcare system got where it is today. So that manuscript is being turned at this time and hopefully that book will be out in the near future. But right now we I just post my workout every week with a little subject on high-intensity training, some of the recent scientific literature is always on the blog. And I can always be reached for consultation and/or questions through DrMcGuff.com. I have got all the social links with Facebook and Twitter and post pictures from workouts on Instagram every week, so there is always something going on.

[Damien Blenkinsopp]: Yup, and I would add that your book Body By Science is extremely detailed. And we kind of jumped over many, many topics because it is so deep today. And it is so different, so really I would highly recommend that people get that.

[Doug McGuff]: Yeah, and actually if you go on Amazon for the book, the book has a companion with a question and answer book. When we originally wrote the book we turned in 840 pages of manuscript that had to be pared down to 209 pages. The question and answer book has everything else that was in there done in a question and answer format, and it is pretty informative as well.

[Damien Blenkinsopp]: Well great, Doug. Thank you so much for your time today. It has been a pleasure.

[Doug McGuff]: Yeah, Damien, it was my pleasure. I really appreciate it.

Leave a Reply

A couple of cutting edge and very relevant quantified body topics today- quantifying the microbiome and the state of crowd science

We’re looking at the microbiome, which you probably have seen is the big new topic in the health media and news the last few years. Research is increasingly relating differences in our microbiomes to a range of disease conditions, primarily chronic and gut related ones. If you’re already buying the probiotics or prebiotics in the health store – the reason you’re doing that, is for the microbiome.

But what, if anything, do the probiotic and prebiotic products do for us? How dangerous is taking antibiotics – through changes they make to our microbiome? How does what we eat influence our microbiome?

It’s hoped that quantifying the microbiome, understanding what types of bacteria and other things make it up, will provide a lot more insights into our microbiomes – but how far has the science behind quantifying it advanced? How reliable is it? – and can it lead to us making decisions that improve our microbiomes that in turn lead to better health and less disease.

As we’ll see this is really cutting edge currently – and changing fast. But we have an excellent guest today to bring us up to date on all this.

Jessica Richman, is CEO and co-founder of uBiome. uBiome is the largest crowd science, or citizen science driven project to date. uBiome, already the most popular of the consumer microbiome services, is just about to go through a revolution thanks to recently having gained significant funding, and the backing of Y-Combinator as well as many big name investors such as Marc Andreeson and Tim Ferriss.

“The best ideas are not the ones in our building because you can’t hire everybody in the world who is thinking about your problem. The best ideas are out there in the crowd somewhere and the idea is to bring [those ideas in].”

Jessica, herself, has an impressive background having started and sold her first company in high school… and having accumulated countless scholarships and awards in academic institutions including Oxford and Stanford universities since. Her major interests include network analytics, innovation, collective intelligence, and crowd science.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • What the microbiome is and how it varies across our bodies.
  • The many different aspects of the microbiome (bacteriophage, fungi etc) and why uBiome provides solely data on the bacteria in your microbiome in order to deliver their service at the low $89 price point.
  • The different areas of health that the microbiome and its status and and is increasingly being linked to in research studies.
  • Different approaches to quantifying the microbiome and their accuracy: cultures vs. microarrays vs. next generation sequencing.
  • 23andMe’s model for delivering consumer based low pricing via focusing on genetic SNPs (Single Nucleotide Polymorphisms).
  • The 5 body sites that you get quantified with uBiome (the same used in the Human Biome project).
  • How uBiome is avoiding the FDA regulatory landmine that 23andMe got hit with and which forced it to cut down the information, range and depth of services they were providing to consumers.
  • Citizen science or crowd science and what it means for the future of science and potentially the medical world.
  • Comparing different sequencing methods of uBiome, American Gut and others and progress being made to one common standard.
  • What should we be aiming for in experiments we run on our biome? Diversity? different ratios of the different types of bacteria?
  • The value of getting a baseline sequencing of your microbiome now to compare with in the future (especially if you should get chronically ill in the future).
  • Do probiotics impact the microbiome? If so, how do they impact it? Conflicting anecdotes, research studies and “marketing hype” from all the probiotic supplements and foods now available.
  • Personal insights from Jessica on how what she tracks about her own body, experiments that have worked, and her top 3 recommendations for people trying to improve their bodies and health through the use of data.

Give some love to Jessica on Twitter to thank her for this interview.
Click Here to let her know you enjoyed the show!

Lab Tests and Devices in this Episode

  • uBiome Microbiome Sequencing: The lab tests discussed in this episode. These can be ordered by anyone and done from a kit sent to your home.This is a sample chart output from their interface with my sequencing showing that I have more firmicutes and less bacteroidetes than the standard person on a paleo diet:
    damien-paleo-biome
  • 23andMe: The largest and cheapest service for getting your genetic sequencing (a subset of your total genetic makeup).
  • American Gut: The other main consumer microbiome sequencing company (not for profit).
  • Ketonix: The breathe analyzer for assessing your ketone body levels and whether you are in a ketogenic state. We covered this topic in detail in a previous episode with Jimmy Moore.

Other Resources Mentioned in this Episode

Jessica Richman & uBiome

Other People, Resources and Books Mentioned

  • The Human Microbiome Project The original NIH (National Institutes of Health) funded project to first sequence the human biome between 2007 and 2012.
  • Ilumina The solution uBiome is using to do their next generation sequencing of the biome.
  • 23andMe’s regulatory conflicts with the FDA
  • Jeff Leach Jeff heads up American Gut and has published his own self experiments to change his gut and move it towards a more diverse gut microbiome by interacting with Hadza hunters from Tanzania (read about it here)
  • Chris Kresser Chris, a functional doctor who works with patients on improving their gut microbiomes, has discussed that taking probiotics doesn’t change the microbiome’s makeup, but seems to impact it in via other changes or modulatory effects.
  • Probiotic foods: Jessica says she feels better with Quest Bars, while Damien has noted anecdotal beneficial effects with this Kefir product.

Full Interview Transcript

Transcript - Click Here to Read

[Damien Blenkinsopp]: All right Jessica, thank you very much for being on the show.

[Jessica Richman]: Hi, it is great to be here. I am really grateful for the opportunity.

[Damien Blenkinsopp]: Sure. So to kick it off for you, let’s talk about what the microbiome actually is. I understand it is not just the gut. So how would you describe the microbiome?

[Jessica Richman]: The microbiome are organisms, the microorganisms, that live on or in all of us. And there are many different microbiomes in the body. I think we should take a step back first though and say why is it called the microbiome? What is a biome? So a biome is an ecological area. So in the macrobiome, the biome that we are part of – you can be part of the rainforest, or a desert, or a tundra. And these are environments in which organisms live. And in the body, the microbiome where it actually could be anywhere, not just in the human body, but the microbiome are the microenvironments live in. So if you think about it, it is very different living inside your nose than it is living on the surface of your nose. So inside your nose it is windy, it is warm, it is slightly wet, and there are immune system interactions with human cells. On the outside of your nose it is probably colds, it is dryer, it gets sunlight, there are different kinds of cells that the bacteria are interacting with and if you think about it, it is a very different type of place to live for a bacteria.

[Damien Blenkinsopp]: So you could use the analogy of looking at the world and the jungles, the deserts, and all these different kind of things living in them?

[Jessica Richman]: Exactly, right. And if you think about it the outside of your nose is much more like a desert and the inside of your nose is more like the rainforest, let’s say. It is a very wet environment for an organism to live in. So if you think about it that way, it makes sense that there are microbiomes all over your body and all these spots have very different types of organisms in them and the microorganisms are very influenced by the environment they are in and what can survive in various environments. it is very different, just like plants of the rainforest don’t do very well when they are in the desert. But microorganisms that normally live in the rainforest die off when they are put in the desert. And it is not just bacteria, of course, there are also other microorganisms.

So there are fungi and yeast and all sorts of other organisms that live there and there is this whole ecosystem that we were just never able to see until recently because now it has just become less expensive to sequence the DNA on these organisms, some of which can’t be cultured. So previously you would figure out what was living there by trying to grow it in a petri dish, but that means you have to have the right food, the right conditions, it has to be able to be grown in that kind of environment and not all organisms can be. So now we are finding out things that were just impossible to see before. So now we know more about the microbiome and we have learned that my nose, the inside of my nose, is much more like the inside of your nose than my nose is like my foot, let’s say, because these are very different environments.

Our feet have more in common – the same spot on your body but very different types of places. So the NAH funded a project called the human microbiome project which was sort of supposed to follow after the human genome project to learn about the human microbiome, and they looked at 250 people and they established a lot of the sort of basic technology for doing this. And what we do with the biome is we have scaled up that technology and made it possible for anyone to have access to the same technology to understand what is in their microbiome at various sites and then what to do about it.

[Damien Blenkinsopp]: Is this like PCR DNA analysis?

[Jessica Richman]: So it is next generation sequencing, which is – there are a number of different platforms but kind of the leading one at the moment is by a company called Illumina, and they make what is basically a camera. It is funny, we just got one, and it looks like a printer/scanner – like an HP printer/scanner combo, one of those things you buy at an office supply store. It looks like that but what you actually do is you put a tiny tube of liquid in it that has the DNA in our case of 500 different people’s microbiomes, and it is seriously a tube that is less than an inch long. And you stick it in there and it is a camera that takes pictures of each of the base pairs of the DNA as it goes along and then tells you what the base pair is. So it is really amazing technology. They have really, they have changed the world.

[Damien Blenkinsopp]: So just to be clear, is that something you are going to be using or is that what you have used to date?

[Jessica Richman]: Yeah, so that is what we use right now. So right now we do next generation sequencing and we have been sending that out to various people to get – we sort of do all the processing and they just kind of – it is kind of like sending out your printing to Kinko’s or something. You prepare the document of what should be in it, and then they do the printing part. We have now brought that in house because we have brought in some funding and we sort of have the opportunity to bring it in house, which gives us a lot more flexibility, it is lower cost, we can do things faster because it is right here. So this is the technology we have been using all along and this enables us to really, inexpensively, make consumer price points for $89 to be able to tell you exactly what is in the DNA of all the bacteria that are living in your microbiome.

[Damien Blenkinsopp]: Yeah, so what are the limitations of this? Just a minute ago you were talking about the fact that the microbiome has fungi and bacteria. Today even there are viruses, bacteriophage, viruses that infect bacteria, and all this crazy stuff that we don’t hear about but it is so super complex. So are you just looking at the bacteria aspect of it?

[Jessica Richman]: Yeah, so we have the capability to look at fungi and even to do full metagenomic sequencing, which is to look at every organism, all the DNA that is in the sample, whether it is bacterial or human or plant or from the food you have been eating or every bit of DNA that is in the sample. But we currently sell to consumers the bacteria because it is simpler, it is easier to compare, and we have more people who have those kinds of samples. But there are definitely things that we are developing for the future, products that we are developing for the future based on specific other slices of the microbiome, like fungi. And full metagenomic sequencing is really expensive – it is thousands of dollars so it is not really a good – there is this much consumer demand for that.

[Damien Blenkinsopp]: Right, so that people understand 23&Me is pretty well known and they took a similar approach. They are only scanning certain aspects of genetics.

[Jessica Richman]: Well, it is a little different. So 23&Me looks at snips. So they look at our single nucleotide polymorphisms that are specific parts of the human genome that are known to be correlated with specific research outcomes. What we do is we look at all the bacteria. So there are other technologies that some people use that are based on microarrays that will only look for certain bacteria. So instead of – it is kind of an intermediate point between a culture-based method. That is maybe too technical. With culture you say is X bacteria there, yes or no? Does it grow or not? And maybe it couldn’t grow or maybe you did it wrong, whatever so there is some fallibility built into that. With the microarray method you say are any of these 96 bacteria there? And it can check for all of them. WIth the next generation sequencing you can find everything that is there and we are selectively looking at just bacteria because it is sort of priced so that the consumers can pay.

[Damien Blenkinsopp]: And is this a selection of bacteria I assume there is going to be classification, or a library of what is known well today? Maybe there are just some things that we don’t know there. so does it see everything?

[Jessica Richman]: That’s true, yeah. Well, it is everything that is known plus all the things that we are finding. so there are some public databases of bacteria and what we have done is we have taken the public databases and then added our own and basically enhanced them and so we had it in – they are polydatabases so people upload a lot of junk to them that they think is a good idea to upload and they are not very well curated academically. So we have taken those databases and cleaned them up and streamlined them and added a bunch of things to them to make them better.

[Damien Blenkinsopp]: Yeah, I think what is coming across is that this is quite new and it is exploratory. So the human microbiome project, how long ago was that –

[Jessica Richman]: So that started in 2007 and went until 2012 and we started our company with a crowdfunding campaign, actually, two months after the human microbiome project ended. So we sort of had this – you know, my background is not in biology. It is in computer science and economics and I was doing PhD in computational social science and learning about applied math relating to social networks. And I just saw there is so much interesting information relating to biology and some of the same skills that I was learning could be applied to this new information that was coming out. So we started this project right after the human microbiome project ended. And it is really new. The human microbiome project was really groundbreaking and helped establish this whole field. and you can see the number of scientific papers that are related to the microbiome is on this exponential curve up as the human microbiome project progresses. but we decided to take this technology and bring it to the public.

[Damien Blenkinsopp]: Yeah, and so at this stage now, for the consumers, what do you think – what can they get from it, if they get their biome? First of all you have talked about microbiomes. So you do the gut, you do the nose, genitals, mouth?

[Jessica Richman]: Mouth, skin, and genitals. Those are the ones we currently do. So we have the technical capability to do other sites and we are going to be launching some products that relate to the skin, for example, between your toes and things like that. But at the moment we do those five because those are the five that were in the human microbiome project. So it sort of gave us a basis for the data and sort of sample collection procedures that have been well validated. Yeah, we sample all those microbiomes of those five different sites. Then what consumers can get out of it is they can see what is in their microbiome, first of all, and then how that compares to other people and then how it compares to existing studies of the microbiome.

So right now in our [user interface – 00:12:50], it is very nerdy. It is very [inaudible 00:12:52] from our crowdfunding campaign, but you can see what are your bacteria, how does your distribution compare to other people’s distribution of bacteria, and then you can learn a little bit about each of the bacteria that are in your sample and how they relate to existing studies, which studies involved with which bacteria we are building right now. And this should be out in the next few months, like two or three months. We are actively in the development process and this is software that will go a step further and give you much more data analysis about what is in your sample.

The cool thing about doing it now is you are basically biobanking your samples. So if you sample now it is not like it is lost and you missed your opportunity, it is the only way to sort of grab what your microbiome is like now and then as our interface gets better and as our data gets better that sample gets better but you can also compare it to future samples.

[Damien Blenkinsopp]: Right, so it is the same as genetics. Basically you will be able to re-examine that same sample and still be updated?

[Jessica Richman]: Exactly, but actually we store the data so we don’t need to re – we can resample it later if technology changes completely and we need to totally resample it we can do that. but we also have the data from that sample and let’s say you sample now and you are like, ‘Oh, that’s interesting, my bacteria are fine.’ But then six months from now you want to make a radical change in your diet and you said, you know, maybe I need to cut out dairy, I don’t know, and you try that. Then we can sample afterwards and we can show you the difference between those two things. And we will have the earlier sample so we will know what it was like before.

[Damien Blenkinsopp]: Right, so you are talking about things that influence it and I guess it is quite an important point to mention that your microbiome can change. There is a lot of emphasis on the gut these days. that is the one they talk about most in the press and stuff so i guess it is the one with the most research?

[Jessica Richman]: It is, it is the one with the most research and it is also the one with the most – it is the richest environment for bacteria and that is why the most research is done there, because it has the most bacteria of any site in your body. And also obviously because that is where you process food and waste, and it has the most biological activity relating to all parts of your body. So they found really interesting connections between that and the brain, for example, that are not what you would expect. There are really interesting relations between the microbiome and depression or autism or things that you might not expect, but they don’t say that, for example, about the nose microbiome because that is just less likely.

[Damien Blenkinsopp]: Right, so in terms of you just mentioned a few diseases and conditions – there were things like obesity mentioned, diabetes, acne, allergies. There is quite a range which are now linked in some research to the microbiome. How far along do you think that is? Do you think that has got quite a long way to go or do you think it is interesting for someone to say, who has one of these conditions, to get their microbiome done?

[Jessica Richman]: I think it is not that far off, and I probably think that because this is our field and what we are working on and we know the possibilities, that things can happen quite quickly. I think it is not that far off because we’re collecting all this information that can be useful in actually doing something about it. At the moment this is a consumer product and it is not intended to treat health conditions or diagnose health conditions, but we will have the information and when we do find something interesting we can then pursue the proper channels in making sure that it is available to people who have health conditions and need it.

[Damien Blenkinsopp]: Yeah, so I mean, you stepped on the 23&Me landmine.

[Jessica Richman]: Exactly. Well, we didn’t step on it. We were collateral damage or something.

[Damien Blenkinsopp]: So you said something very important there, it is a consumer and not a medical product. How is that evolving? Are there things that you have to do or are there limits? Can you give us an idea of how you are going to go over that?

[Jessica Richman]: We try to be really careful. And we try to be careful because we don’t want to get into the trouble that they got into, but also because there is sort of a really important public health responsibility to not give people information that is dangerous, poorly understood, that will lead them to do things that are bad for them without understanding why or mistakenly thinking they understand why. I think it is really important to do that. So we are careful to – we are sort of pursuing a two-prong strategy.

One is for things that involve diet, wellness, health, and people’s curiosity about science that is fairly safe in my view. And then things that involve serious health conditions, we are being much more careful with that and we want to make sure we have much more validated information and that we go through the right channels and that people have expert consultation with their doctors or even at the very least with clinicians doing research to share that information. I think it is just a matter of trying to be conscious. And there aren’t any written rules. There is nowhere that we can say, ‘Oh here is where the line is, let’s be careful to make sure that we are on the right side of it.’ But we are just kind of using our judgement at this point to make sure that we are thinking through the issues and trying to be responsible about how we give people information.

[Damien Blenkinsopp]: Yeah, good to hear you are thinking ahead. So we talked a little bit about things that can affect it. Do you know of any clinicians that are starting to either take this themselves or maybe send their patients to give them an idea? A lot of clinicians are trying to tackle things which aren’t very well treated or documented, like dysbiosis and IBD, all of these kind of gut issues, which at the moment is hard to find some clinicians who can say this is the exact approach to fix this. It is not coded and it is more of an art to say the least.

[Jessica Richman]: Right, there is no standard care for a lot of things. And that is difficult because patients are then left without a good answer, even though he went to the doctor to try to get help. I think what we’re doing at the moment is that this is not a diagnostic test. It can’t be used by a clinician, and I sort of want to underscore that. But we haven’t evolved in clinical research, so if a doctor wants to put together a research study of their patients or the participants that they solicit, we partner with them and we provide them basically with a consumer produc. But since they are a clinical researcher they can have a study and they can sort of design this study the way that they want and then communicate with their participants the way they want, which is a way to sort of frame it experimentally so that it is not basing a diagnosis on it or giving medical advice based on the test, but they can use it to learn things about the entire population of people that they are working with.

[Damien Blenkinsopp]: Right, and it can better inform the doctors instead of guesstimating all the time.

[Jessica Richman]: Exactly, right, And it can also press for publishable research. Some of the doctors are doing really cutting edge things and they want to add this to the repertoire and say oh, this is really interesting when i compare patient group X to patient group Y I notice X has this interesting thing, their microbiome, that is publishable research. So we are contributing to science through clinicians who were doing clinical research. A lot of the doctors that are sort of on the cutting edge also do research as well as treat patients, so they can kind of wear both hats.

[Damien Blenkinsopp]: Great, right. I know that this kind of connects with the topic that you are a big fan of, the citizen science?

[Jessica Richman]: Yes, don’t get me started!

[Damien Blenkinsopp]: We will definitely put a link to your TED Talk on that for background, but briefly, what is citizen science? What is that about?

[Jessica Richman]: Sure, so citizen science is a word for non-scientists, non-PhD researchers who work in academic labs. Sometimes they are people who have PhDs but aren’t researchers. They are contributing to science in some way. It started with – and actually, it is really interesting. So Susan Science, that term and the use of that concept, was started by ornithologists, who study birds. And there aren’t enough ornithologists who gather data about all the birds. So there are a lot of amateur birdwatchers who contribute to the science ornithology by spotting birds in various areas or by reporting on the things that they have seen.

So it started out there but this concept of involving the public in research is really just a type of crowd sourcing. So the term we use for uBiome now is crowd science, because I think it sort of communicates the fact that this is not about their citizenship or what country you are part of or whatever, but the idea that the whole crowd can be a part of science. And not just data collection, as in bird watching, but also hypothesis generation, funding of science, evaluation of science. We haven’t done all these things yet, but we really want to.

[Damien Blenkinsopp]: That is interesting because uBiome is basically – you just brought up a whole bunch of things. And that is what uBiome is.

[Jessica Richman]: Exactly. So our goal is to use the fact that people are interested in the microbiome, that it affects all of us, that we all sort of are potential research subjects because we have a microbiome and that we do think that change, to allow us to change the way science is done and to have people fund science, evaluate science, learn about their bodies, and contribute that knowledge to help others, and i think that it is really a change in the way science, which is this very institutional system, it is very much like the change from only four broadcast channels to like YouTube.

[Damien Blenkinsopp]: Right, that is a perfect analogy. It is about – this is taken from your talk, but it makes perfect sense. It is like participation – a good example I thought you gave also there, I mean, obviously YouTube allows anyone to participate and everyone sees people putting forth innovation, innovative content, and that then goes to TV and other places, which is a good analogy. If TV was science, now and again they will find something in the crowd which is useful and they will integrate it, so it is kind of like taking that participation.

[Jessica Richman]: Exactly, and then it makes it something everyone can do. I mean, YouTube is full of teenagers covering pop songs or something that would never have even been possible to be shared before because you would never waste your really expensive broadcast spectrum on something like that. But you don’t know who is going to be the next pop sensation and you can find that. And it is kind of a trivial example, but you can see that in the world of science and you don’t know who will come up with a really interesting discovery. And this was part of the theme of that talk, that I think it is not – a researcher who is paid to study an area is obviously passionate about their work and is an expert and what they are doing is really valuable. But a person who is suffering from that condition is also really valuable and I feel like they have been totally excluded from the system at this point and integrating in their own knowledge about themselves can add so much.

This is an example that I didn’t give in the talk but I think is really interesting. A friend of mine is a spinal cord researcher and she told me – I should probably verify this a little bit better. What she told me was really interesting. She said that the field of spinal cord research changed really dramatically when – most spinal cord researchers are not spinal cord patients. Most of them are not – they kept on working on trying to get people to walk. What they finally realized after there was a researcher who was a spinal cord injury patient who did a survey to say, ‘What do you actually want us to be researching?’ And it turned out that most spinal cord injury patients have accepted the fact that they are not going to walk, and that is sort of just the way it is. But what they want to be able to do is all the things we do. They want to be able to get around easily, they want to be able to sit comfortably. They want to be able to socialize, they want to be able to go to the bathroom comfortable.

They want all the things that we take for granted. And that is actually what they care about, not learning to walk again. That would be nice, but that is not affecting their lives as much as just basic quality of life now. And that really touched me because I thought, ‘How much time and money is spent researching the wrong things that patients don’t actually care about?’ Because it sounds really good. We are going to make them walk again. It just sounds like you are the great savior that is going to come in and solve all their problems. But maybe they want totally different problems solved.

[Damien Blenkinsopp]: Yeah, and you see a lot of communities which get kind of negative and fed up with the way things are being tackled and they are also the most motivated as well as all the passion and motivation because obviously it is effecting their lives. So if we could harness that motivation and passion that could obviously help push things forward. But it seems like citizen science, what it needs and what you spoke about is basically helping to organize and structure this crowdsourcing because obviously if everyone just goes off in their different directions and it is not controlled that is just a mess.

[Jessica Richman]: Yeah, I think so. And I think our role is to sort of create the infrastructure that makes it easy for people to study things. And that is what we want to do that helps us business wise and it also just helps us make that change in the world happened have the average person be able to have access to these cutting-edge DNA sequencing technologies that most people don’t have access to just by making it as simple as you buy a kit, you answer some questions, and then you get some results.

So I hope to see this in other areas too because I think there are so many things that are sort of very disorganized in the approach of patients who have them or even just subjects of interest, or things that people are just curious about and that greater scientific establishment is not super concerned with, whether [inaudible 00:25:28] is good for you, or something like that. Nobody cares about that because they obviously have much more important things to worry about in terms of public health but it is interesting to people. And I think people should be able to fund the research that they either desperately need or that they just are curious about, and I think that should be open to everybody.

[Damien Blenkinsopp]: I think that another analogy is that if you look at businesses as entities and the way they have evolved over time. It used to be from top down they would design products and push them on the consumers and that wouldn’t work so well but they have become these marketing – they are a lot more integrated, they look at customer feedback and in a way you are talking about applying that same concept to science as well, having this feedback mechanism which helps to direct the research also from the end user or the end benefitter.

[Jessica Richman]: Exactly. I think that is true. I mean, it is sort of changing from the sort of theory of the firm and having this institution that broadcast things out to people, to this network where people can interact in a much flatter environment. And I think that is very beneficial for innovation because it will help us, the best ideas. This was something we were talking about, we work with some researchers and they were saying the best ideas are not the ones in our building because you can’t hire everybody in the world who is thinking about your problem. The best ideas are out there in the crowd somewhere and the idea is to bring them in.

[Damien Blenkinsopp]: Well, it is very exciting. I hope you help to push that movement forward, obviously.

[Jessica Richman]: I hope so, too. It is something I care a lot about.

[Damien Blenkinsopp]: Well, it is these kinds of things which really change. It is a revolution rather than just an evolution. So that needs to be given efforts. So the other thing I wanted to touch on is obviously there are a lot of different things that can affect the microbiome. Some of the things we have spoken about so far is diet, right? Everyone kind of understands that diet can impact it. And we look at things like probiotics, prebiotics, dietary fiber, high-fat versus low-fat diet, artificial sweeteners have been in the news recently. How do you kind of look at the diet influence and how far – how much understanding we have? Is it a big impact? Is it a major impact? Do we have to look broader than that?

[Jessica Richman]: That’s a good question. So it is a major impact but the questions are teasing. it is a very complex impact. So the question is – and this our science team, is trying to figure out teasing apart those different effects, people who eat very healthy diets also tend to exercise a lot and be young and healthy otherwise, and sort of have this cluster of things that is sort of separating out what is the effect of diet. What is the effect of exercise?

And we are lucky with the microbiome – it is sort of a great feature, the microbiome, that changes over time in response to a change – we can say, ‘Okay, you are not much older and you are still equally healthy but you have changed your diet and here is how your microbiome changed in response.’ And we can see those differences. That is very interesting, but there are a lot of effects to tease out. We definitely see huge differences. Now that we have looked at thousands of these we can say, ‘That is a vegetarian,’ because you can just kind of tell by looking at the microbiome. Which is really kind of fun, actually.

[Damien Blenkinsopp]: My results are actually kind of weird, like compared to everyone’s.

[Jessica Richman]: Oh tell me more, interesting.

[Damien Blenkinsopp]: I have got very high, very low [inaudible 00:28:25] and very high [inaudible 00:28:30], so like 78%.

[Jessica Richman]: Interesting.

[Damien Blenkinsopp]: Yeah, so I was actually looking at the American –

[Jessica Richman]: The American Gut.

[Damien Blenkinsopp]: Right, the American Gut and Jeff Leach and what he is doing in Tanzania with the hunter-gatherers. Could you give your perspective on that? I am sure you are aware of that more than I am.

[Jessica Richman]: It is very interesting. Their scientific project out of the University of Colorado that is working on some similar things, and I think are differences that were not just America and not just the gut, so I said that was sort of a very easy comparison to make in that way. And also they are non-profit and part of an academic research project and we are for-profit. But I think there are also some technical differences in terms of the sample, collection techniques, lab extraction techniques that are really technical, but suffice to say there isn’t a standard microbiome extraction method and we both used well-documented, very much validated research methods, they are just different methods.

[Damien Blenkinsopp]: Well just on that, because there was a little bit of controversy on that when someone published that. Could you talk a little bit about that? Is that because there are differences in samples? Are there differences in the approach? Because the two samples came back a little bit different from the two companies.

[Jessica Richman]: There are a number of differences. They came back a lot different and I think the reason is – there are a few things. We used a different sample collection technique so when you sample with the American Gut they take a swab and they rely on the swab drying out so that it doesn’t change in transit. Basically, you just send back a Q-tip, or a sterile swab, in the mail. And it isn’t preserved in any way and there is nothing to freeze the DNA at that point in time. So it leads to – there is an argument to be made that it leads to overgrowth because things are growing as you are transiting in the mail to their lab and before the sample is processed.

[Damien Blenkinsopp]: And maybe some things are dying as well?

[Jessica Richman]: Well, dying is okay, because they are there. When you look at the DNA, dying is okay but it is other things from the air landing on it, growing in it, and then you think that was what was in the gut, not what was actually – you don’t know what happened after the gut. And everything that is there you see is there. And they do some correction for that with bioinformatics, but it just leads to different results. The results are biased in different ways.

Then as far as the actual extraction technique, we both use slightly different – and this is too technical, but we use slightly different kits for the extraction of the DNA that leads to different results, but it seems to me to there is a reasonable way to translate between the two based on that part of it.

[Damien Blenkinsopp]: Right, and you had a blog post on that.

[Jessica Richman]: Yeah, we did a blog post on that.

[Damien Blenkinsopp]: If people are interested in the technical aspects of that.

[Jessica Richman]: Yeah, we did a blog post on that and I think going forward it would be – one of the things we are really interested in is having a more standardized method so that everyone is kind of on the same page about what that is. And I know there are some academic standards with this, but we would love to be involved in that and do some comparison studies and sort of see how they compare. Because it is in everyone’s interest to have a standard for how microbiomes are measured.

[Damien Blenkinsopp]: Right, and they have that now for DNA, right?

[Jessica Richman]: Exactly.

[Damien Blenkinsopp]: So you just have to do the work, the collaboration to get to the same point?

[Jessica Richman]: Well, everyone has to agree. And getting academics to agree on things is really an emerging field. I think this has happened in many emerging fields with their different standards and everyone thinks their standard is the best. So us being no exception to that. So I think we are a little ways from having a translation between the two methods. I think that will be much more important as we move towards clinical results, where you actually want to get the same result everywhere that you do it. Where as in academic research labs this is far from uncommon – only 10% of the studies in the biological sciences can be reproduced. So this is not something that has never happened before.

[Damien Blenkinsopp]: Yeah, and this is a common point that comes up in this podcast, whether it is blood samples or heart rate variability, there are different standards at the moment because a lot of this stuff is still new. So I guess the rule for consumers if you start with uBiome, stay with uBiome so that you can compare. If you start with American Gut, stay with American Gut because otherwise you can’t compare your results.

[Jessica Richman]: Exactly. And we wish they were more interoperable, but that is the current standard. I mean, the goal of American Gut is a little bit different too. Their goal is to map the American Gut, what is in it, which is a really interesting scientific goal and very laudable, but that is different than our goal, which is to give consumers valuable information about their own microbiome while contributing to science. So that is a very different goal because our main focus is on giving the individual what they want and then letting them have more control over science.

[Damien Blenkinsopp]: So going back to Tanzania and [inaudible 00:32:55] because what was interesting there is it is difficult for us to know what we are aiming for, what is good, what is bad in the microbiome. You are doing interesting stuff at uBiome because you have these categories which, if you don’t mind explaining quickly, what you do there.

[Jessica Richman]: Yeah, of course. So we compare – we sort of pick – so in our new version these will be much more flexible than they are right now, but what we did not for this first version is we have specific categories of people that have very different microbiomes from each other and you can compare yourself against them. And you can say here is my comparison against vegetarians, people on the paleo diet, people who have taken antibiotics recently, people who drink a lot – exactly, people who drink a lot of alcohol.

So we sort of compare against those categories and those are interesting ones that we sort of see a really dramatic difference right away, so it is very interesting for people to do that. Compared to hunter-gatherer tribes, it is really interesting. I was actually talking to someone and we do research projects for researchers also. I was looking at vaccines in the developing world and we usually come at this from such a totally different angle because people assume that people in the developing world had the perfect gut and if we could only go back to our hunter-gatherer ancestors we would all be so healthy.

And I suppose that is true for chronic diseases, diseases of civilizations, but it is not true when you are very sick with acute illness because your water isn’t clean and you want to be vaccinated against it, for example. So it was really funny to have this conversation with this vaccine researcher who was saying this is really interesting. You are assuming that the gut of people in the developing world is better, but maybe that isn’t true.

[Damien Blenkinsopp]: But yeah, it is just true. The whole point is they are looking at the [inaudible 00:34:36] and other people because supposedly haven’t changed much over time. I think the most interesting thing that I saw there was the diversity. How important do you think diversity is because the argument was that the [inaudible 00:34:45] have a much more diverse microbiome, so that is good. Is that true? Is that for sure?

[Jessica Richman]: That is such a good question. Many studies have shown – I will answer this a bit eventually. Many studies have shown that there are positive outcomes correlated with diverse microbiomes. For example, there have been studies in elderly patients that when they are sicker, when they have less diverse microbiomes, and perhaps that is part of the moving to a more institutional diet as you move into assisted care or assisted living facilities or something. Part of that is the microbiome becomes less diverse and that is worse for you. There has been a lot of research about how eating a variety of foods, sort of following [inaudible 00:35:28] food dictums will make you have a more diverse microbiome and that is associated with a lot of healthy outcomes. So there is a lot of research and I think that it makes a lot of sense that it would be healthier.

There is also research about that a lot of health conditions are because there is a cornerstone species you just can’t get rid of, for example, C. difficile infections are one species that has sort of taken over your microbiome and that makes you very sick. So I think the evidence is there and the diversity is good, but the scientist in me to some degree used to say this is good and this is bad because there is always some kind of exception to that.

[Damien Blenkinsopp]: Yeah, and like we said before it is very early stages. So it is just kind of indicators. So I guess an interesting thing when I am looking at your biome now and if I compare myself to people taking antibiotics. Antibiotics are known to kill of bacteria of course and part of your biome. So everyone can kind of see, yeah, that is not a good thing for your biome. I think that is kind of commonly accepted now. So that is one interesting thing you can do in your biome, and sort of compare yourself to people taking antibiotics. Am I more diverse, am I less diverse, or the same. And to give you a rough idea of how healthy you are?

[Jessica Richman]: Right, what we want to do – I wouldn’t make the claim that it makes you more healthy but we can definitely say that with antibiotics, how were you before you took them versus after you took them. I think that would be really interesting. So it is not just you to the population, it is you to yourself. And so you get a sample now, a sample after you take antibiotics, and and then see the difference between the two. And then sample a few months later and see if you have gone back to where you should.

Because most people bounce back to where they were, where they feel fine and it sort of looks like that microbiome is very similar, but maybe that is not true of you and it would sort of be the only way to tell. So there is a lot of really interesting stuff there in terms of tracking your own health and sort of having a baseline that you store now, so you find out, for example, that you have Lyme disease or some other health condition that makes you take chronic, long-term doses of antibiotics, you kind of know back where you were when you started.

[Damien Blenkinsopp]: Right, and then at least you are like okay, I was healthy at that point, maybe I should try to get back to where I was in terms of my microbiome. So at least you have –

[Jessica Richman]: And some of this is all in the future but the part that is not in the future is we can store the sample now and we can tell you what is in the now. And the part that is in the future is okay, how do we get you back to where you were and how do we know what is a good change and what is a bad change. Those are all the things we are working on really actively and we should have some answers, not in the next few months but in the near future. but there are just a lot of really interesting things we can do once we have the data stored then we can kind of have a basis for comparison.

[Damien Blenkinsopp]: So there are a whole bunch of people doing experiments right now, and I think we can call that citizen science or crowd science, right – there are people taking dietary fiber. I am quite amazed because I just got back to the US and I am going into like Whole Foods and places, and probiotics is huge. It has grown out of proportion and you see even in the drinks, like half of the drinks seem to be probiotic drinks now. So obviously that is really, really pushed but to some people, like clinicians like [inaudible 00:38:20] if you know him, and he is like well, there is evidence to say that probiotics don’t change your microbiome that much. So in terms of experiments, you might do one yourself or you might think are kind of interesting, what kind of things would you think?

[Jessica Richman]: Oh, this is so good. So one of the things that we would love to do and that we are sort of trying to set the infrastructure for is to test out different probiotics on different people. Well, we won’t test it on them – they will take it and then we will test them and you know, of course, this will be part of us researching the effects of the probiotics on the individual. This will be part of a study where we can compare like to like. Like people taking like probiotics and sort of their outcomes. I think it is really interesting.

There are a lot of studies that show that either probiotics are mixed or that they don’t work. But then there are a ton of anecdotes from people, and we hear from them all the time, who say this changed my life. This actually worked. And I don’t think that they are all making it up or they all – it is all the placebo effect. I think it really is having an effect on some people. But the question is who and under what conditions and how do you know and what is it doing. And these are all really good questions.

[Damien Blenkinsopp]: Yeah, I guess from what we know it is not actually affecting the microbiome it is affecting something else. I mean, you call it the microbiome but maybe it is not the bacteria or who knows.

[Jessica Richman]: Right, maybe it is not the bacteria. I mean, it is an ecosystem there, right? So it could be –

[Damien Blenkinsopp]: Maybe it is protecting you from the yeast overgrowth. Or who knows?

[Jessica Richman]: It could be, right? Exactly. Maybe what you want is not the presence of that bacteria but the absence of something else. I think that part is probably the easiest. I think if it is doing something there is some mechanism, right? So that part we can figure out later. I think it was the most immediately useful to people who have questions or problems and want to take something but don’t know what or don’t know if it is worth it for them to do it. It is just to see what probiotics have what effects on what people. I think that would be really valuable.

[Damien Blenkinsopp]: I think it is really interesting in these areas where people are spending a lot of money. It is obvious to me that people are now spending a lot of money on probiotics and they are starting to spend a lot of money on prebiotics and you see all the supplements now and the people talking about resistant starch. If people are spending money on these things, I think it will be really useful when data actually starts coming out to prove it. The marketing always goes way faster, the hype goes way faster than any of this stuff really, and who knows – it is anecdotal. For myself, I think i do better with [keffir 00:40:33]. When I come to the US I love the [Keffir 00:40:36] so I will drink that and I tend to feel way better with that. But I have heard other people say that but who knows why or what that is about.

[Jessica Richman]: So don’t you want to – I mean, don’t have you have this natural drive to be like, why, why me? Who, and who else?

[Damien Blenkinsopp]: I will be doing another sampling of uBiome this month to see if that has change anything because I have doing more of that lately.

[Jessica Richman]: So I started eating – I don’t know if you ever eat Quest Bars, which have prebiotic fiber and it is [inaudible 00:41:02] invasively so they are indigestible fiber that is not supposed to count as carbohydrates. I feel differently when I eat them versus bars that have maltodextrin or something in them, and it is sort of obvious, digestible carbohydrate. So it is really interesting and we get to do a lot of experiments around here and just sort of see what the difference is.

[Damien Blenkinsopp]: So Jeff Leach is arguing that dietary fiber has a bigger impact on changing your microbiome based on his self tests. And what do you think of that?

[Jessica Richman]: So that is interesting. There are a lot of things you could say about that. And one, there are all those sorts of things. So I think the answer to all these thing is sort of more research. That is interesting, and a lot of things have been discovered by scientists looking at themselves and saying, ‘Huh, that’s interesting. I wonder why that happens.’ Or when I do X, Y happens, but I think you really do need – and what the crowd science lets you do and what the power of the internet lets you do is say okay, that is an interesting hypothesis. Now let’s have a thousand people test that and see what happens. Then you can find an answer to it. So I think that is the goal, and that is what is great about crowd science. It is not my opinion versus his opinion, it is his hypothesis versus the data that we see.

[Damien Blenkinsopp]: Right. I guess a good principle for the people at home is before you do anything get your microbiome done so that if you are going to take probiotics or you are going to take resistant starch or prebiotics. At least you can see what has changed, if anything has changed, especially if it has any health impact. Especially a negative one, and you want to kind of go potentially back to it in order to reverse that.

[Jessica Richman]: Right, exactly. Or even just to have it banked so that then in the future you will be able to win the science of therapeutics and diagnostics is caught up to the science of just processing the samples and the data will be there exactly.

[Damien Blenkinsopp]: So on that point, basically how stable do you see the microbiome in terms of we often talk about how often is it worthwhile and it adds value to track the data? Because it is not that expensive now, microbiomes, but it is relatively cheap and I assume eventually it will be even cheaper. But how quickly does the data change? We know that the microbiome changes but how long is it worthwhile?

[Jessica Richman]: We haven’t done the study. It would be really cool to just test everyone’s microbiome for a day, test 100 people’s microbiome for a day. And we haven’t done the study every day for like two weeks. We haven’t done the study yet but we have talked with certain partners about doing this. And we may be launching something about this. But there are research studies that have been done on this and there is sort of a change every two weeks for if you make a major change, if you change your diet you will see it within two weeks. Antibiotics of course act much more quickly but if you have a dietary change or a habit change you will see it within two weeks.

[Damien Blenkinsopp]: When you say a habit, what could that mean?

[Jessica Richman]: Let’s say you start running marathons or something. You start training for a marathon –

[Damien Blenkinsopp]: Exercise, or –

[Jessica Richman]: You exercise, you move, you travel to a different country and eat completely different food. I suppose that is a dietary change too, but you drink different water and it may not be that consciously you are changing your diet but you are in a totally different place.

[Damien Blenkinsopp]: We are still talking about diet a lot, but actually just if I am living in another country, it is the fact that I am touching things, if I am living in a different environment where the bacteria could potentially be different, or if I am living with a new partner, for example.

[Jessica Richman]: Right, well probably not your gut microbiome but definitely the oral microbiome changes when people start kissing a new person. So that makes sense.

[Damien Blenkinsopp]: Yeah, and the genital microbiome I assume, too.

[Jessica Richman]: Exactly, the genital microbiome as well. We do collect genital samples and we do ask questions about that, and it is really interesting. We are adding data insights for the other sites as we do for the gut microbiome, and it is really interesting.

[Damien Blenkinsopp]: I guess there are less people doing genitals because it is a bit more of a politically sensitive topic.

[Jessica Richman]: Yes, that is sort of it. Also, we sell it in a pack with the other sites. So yeah, I think there are definitely less people doing it but it is still kind of interesting, the kind of insights that you can come up with because you kind of see how people’s habits – and it may not even have entirely to do with sex, it may have to do with women after menopause, how is your microbiome different? Or different parts of your menstrual cycle, or in men if you are circumcised or not. Or if – you know, just sort of other things that are not directly related to sexual activity but have to do with your own body and how it changes over time.

[Damien Blenkinsopp]: Yeah, this is a fantastic subject. I would like to ask you –

[Jessica Richman]: It is always great to have genitals and mouths on the podcast.

[Damien Blenkinsopp]: For my next workup I want to get the whole thing but whatever, I would like to find it all out. I am not bothered about political sensitivities. So what do you think will happen in the next five or ten years in this area?

[Jessica Richman]: Gosh, I think it is going to be really exciting.

[Damien Blenkinsopp]: What are you excited about?

[Jessica Richman]: Oh, there is so much I am excited about. So I think there is going to be a real explosion of therapeutics, the proper word for this, but let’s describe that in a little more detail. I think that a real explosion of drugs, probiotics, diagnostic tests, and just really taking this data and doing something useful with it that helps out specific groups of people either with serious health conditions or even very minor health conditions like acne or athlete’s foot. I think there will just be this explosion of valuable products that come out of this kind of data. And I am really excited about that because I think there are a lot of really amazing problems we all have.

[Damien Blenkinsopp]: So out of interest, how would a product develop or work with you?

[Jessica Richman]: We do work with researchers that are doing this kind of thing and basically what we do are really big studies about specific questions. These really big study about specific questions, someone is looking at dandruff or if they are looking at athlete’s foot or they are looking at heart disease or autism or something, sort of a major – something with much more important consequences. We designed a study with them and then we partnered with them and they use our research techniques. And depending on the type of study, they will often just use our kits where we handle the whole study process for them. And they basically give the participant the uBiome product and then they also share the data so that they can use it for academic purposes to publish a paper about it.

[Damien Blenkinsopp]: That feels like a great model. That is real crowd science.

[Jessica Richman]: It is crowd science, exactly. And what is unique and what I really like is that in almost all cases the participant gets their own data too, which is really unusual in scientific studies. Usually you participate and maybe you even get paid to participate but you never get your own data. And I have never heard of a study where you get your own data. But here the participant gets to do their own study also at the same time. Their data is banked and they can access it later. They can do whatever they want with it and at the same time they are contributing to a scientific study that they find interesting.

[Damien Blenkinsopp]: The other exciting news for you guys is you have joined Y Combinator with [Anderson and Co. 00:47:52] and you have obviously got big investments now in terms of microbiome project and you are by far the biggest investment. And so correct me if I am wrong, but what does that mean for you and where you can take the company now?

[Jessica Richman]: So what we can do is we can scale up and we can make sure that the experience is as good as possible for the user, so revamping our website, revamping our boxes, and making customer service better. Like, all those sorts of things are just sort of making the experience better for people. But we could also be able to analyze the data in more detail and come up with really interesting insights for the participants so they could get valuable information. That is what that money is for, to sort of give us the resources to make things better much faster.

[Damien Blenkinsopp]: And a couple of personal questions before we finish, that would be great. What kind of data metrics do you track for your own body? Anything like the microbiome, anything else on a routine basis?

[Jessica Richman]: That is a good question. I track all my food in My Fitness Pal, me and like 25 million other people or something. It has got every food – you know, if you travel to China there is like the fast food chains that are in there too. It is sort of like every possible food.

[Damien Blenkinsopp]: So are you taking photos? Or how are you doing that?

[Jessica Richman]: No, I just enter everything.

[Damien Blenkinsopp]: Have you got a special app or anything that you like?

[Jessica Richman]: I use my fitness pal, which is the most popular one. I am probably in there six times a day logging everything I eat. And then I also do lots of little experiments with myself in terms of how much protein I am eating, how much fat I am eating, and I just started using [keto sticks 00:49:22] recently, and I had never used those before.

[Damien Blenkinsopp]: Yeah, oh, I just got – do you know the ketonics? I just did an interview, the last interview, but anyway the ketonics allow a slightly better correlated – because it measures your breath which is more correlated with the blood levels.

[Jessica Richman]: Awesome – I was looking at the blood kits also and they have those.

[Damien Blenkinsopp]: They are very expensive.

[Jessica Richman]: Yeah, they are very expensive. maybe that could be a business expense, I don’t know. Anyways, I am starting with the sticks and just sort of sampling and seeing how it can correlate how I feel with ketosis. If I feel warm and tired, then that is probably because I –

[Damien Blenkinsopp]: Are you going to be trying intermittent fasting or anything like that?

[Jessica Richman]: I might. I gained the startup 30 so I think I am trying various things. So we will see, intermittent fasting is really interesting and I don’t think I will do the warrior diet because that is the one where you eat once a day and I feel like I would just sort of keel over. But it is really interesting and I like that our users are generally people who are interested in these kinds of things and I like that we can bond over our various weird potions that we are eating and trackign about ourselves.

[Damien Blenkinsopp]: So what has been the biggest insight that you have learned about your biology through doing some kind of tracking or –

[Jessica Richman]: That is a good question. That is a really good question. I think in terms of the microbiome, I think I have sort of – my cofounder is a lifelong vegetarian who has never eaten meat in his entire life. And his parents were vegetarians and he hasn’t eaten meat. So his microbiome is very different than mine because I have sort of been an omnivore my whole life and it is really interesting to see the differences between people who share a lot of environments in common but eating very different foods, so I think that was a really interesting insight. As far as tracking myself over time, I think I am lucky and that I don’t have a health condition that sort of gives me an unusual microbiome. Mine is very normal so that hasn’t really shown up very much in the things that I am doing. I am tracking a lot of these dietary changes, which I just started doing, so we will see how they go.

[Damien Blenkinsopp]: Well, that is a good point you bring up. Someone could have a microbiome done and then if they fit straight in the middle of the road, then it is probably not a bad thing.

[Jessica Richman]: Exactly, it is a very good thing.

[Damien Blenkinsopp]: It also just depends on how extreme the experiments you are doing on yourself are.

[Jessica Richman]: Right, exactly. And I think I am just sort of dipping my toe in the water of cool things people can do to track their health, but there are definitely users who do much more interesting things and sort of want to see the effects of them.

[Damien Blenkinsopp]: Right, so what would be your number one recommendation to someone trying to use some form of data to make a better decision about their body’s health and performance?

[Jessica Richman]: I think there is sort of advanced versus not advanced. So I think the very basic thing is tracking what your food and exercise, it really changes your behavior dramatically. And I have noticed this and it is a very obvious thing and advanced quantified self people are going to be like, ‘Ha ha, I have been doing that for 20 years.’ But for the average person I think it really makes a big difference because you just start seeing – you don’t want to eat junky food when you know you are going to record it. And you start seeing how good you feel when you eat certain foods versus other ones and I think it is really motivating and it is really disciplining.

So I think that is sort of the basic recommendation. I think advanced recommendation is sort of don’t be afraid of scientific literature. Working with scientists and as a scientist, you see what goes into scientific research and you see that it is this really messy field where people are trying different things and sometimes they work and sometimes they can’t be reproduced. So don’t be afraid to delve into literature and see what is there for you and then try to make it work for you. And don’t sort of take it as received wisdom, that it has to be exactly right.

[Damien Blenkinsopp]: Yeah, that is a great point. Thank you, both of those are great point like the psychological benefits and accountability. I think that is probably one of the biggest things that is happening right now with all the devices and everything, just reinforcing behvaiors.

[Jessica Richman]: Yeah, I think it can’t hurt and it takes a little bit of attention, but I think it is attention well spent because it helps people learn to track themselves better and learn to understand what is going on when they feel a certain way, what is likely to be causing it. And I think it is really beneficial.

[Damien Blenkinsopp]: Jessica, thank you so much for your time today. I know you are very, very busy at the moment so it has been great that you have made the time for the show.

[Jessica Richman]: This was so fun, I am so glad. Thanks for taking the time to talk with me. This is really great.

[Damien Blenkinsopp]: Thank you very much.

[Jessica Richman]: Awesome, I will talk to you later. Bye.


Leave a Reply