Oxaloacetate is an important metabolic intermediate in the energy pathway of the mitochondria. Recent case studies support the use of oxaloacetate as a nutritional supplement to help regulate blood glucose levels, potentially support longevity and protect the brain.

Can you get similar beneficial results from a nutritional supplement as you can from a water fast (previously discussed in episode 16 and episode 28)? Oxaloacetate supplements (also discussed in this episode with Bob Troia) are currently being studied for their use in improving blood sugar regulation and potential anti-aging properties.

…through the clinical trial that was done. We know that 100mg [of oxaloacetate] was effective in reducing fasting glucose levels in diabetics.
– Alan Cash

Alan Cash is a physicist who has spent years researching the effects of oxaloacetate. Through his efforts and travels he has seen great success for terminally ill patients and more who use oxaloacetate to supplement their health. Cash helped stabilize the molecule so that it could be used as a nutritional supplement and continues to advocate and study its use so that more research and clinical trials can continue to support its use.

In this interview we get into the nuts and bolts of how oxaloacetate works, the current studies underway, and some different ways you can use it depending on what benefits you are seeking.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • The implementation of a calorie restriction diet may work to consistently increase your lifespan and reduce any age related diseases (6:19).
  • Calorie restriction seems to affect the energy pathway of the cell (9:20).
  • We can essentially “bio-hack” our systems by tricking the cells into thinking that the NAD to NADH ratio is high so that fat production is reduced (12:50).
  • Human trials have shown that calorie restriction reduces fasting glucose levels and atherosclerosis (13:46).
  • Reducing age related diseases will increase the average lifespan and increase the maximum lifespan for every cell in the body (14:32).
  • Oxaloacetate is an important metabolite involved in one of the energy pathways in the mitochondria, the power house of a cell (16:20).
  • Oxaloacetate is used in the Kreb’s cycle to oxidize NADH to NAD (17:09).
  • A human clinical trial in the 60’s demonstrated that the use of oxaloacetate as a nutritional supplement reduced Type 2 Diabetes symptoms (20:00).
  • As the dosage increases from the minimum 100 mg other system processes occur, such as the reduction of high glutamate levels, which is one of the damaging factors for closed head injury/stroke victims (22:33).
  • A medical food called CRONaxal contains a large dose of oxaloacetate which, when used in conjunction with chemotherapy, can reduce tumor size and sometimes stop tumor growth completely in patients with brain cancer (26:07).
  • Fasting/a calorie restricted diet is another technique that has been shown to slow brain tumor growth (27:53).
  • Some cancer patients have already seen results with oxaloacetate supplementation and calorie restriction diets, however these are just individual cases and not clinical trials (28:46).
  • Recently, clinical trials have begun to study oxaloacetate as a treatment for different conditions such as mitochondrial dysfunction, Parkinson’s disease, and Alzheimer’s disease (30:13).
  • Oxaloacetate may also work well to reduce inflammation and increase neurogenesis in the brain (32:30).
  • Oxaloacetate may also become an important supplement for athletes who encounter severe head injuries during their sport (34:30).
  • Long term potentiation, the restoration of the ability to learn, may improve for patients after a stroke or closed head injury if oxaloacetate is used in combination with acetyl-l-carnitine (36:18).
  • Alan Cash spent years proving to the FDA that there do not seem to be any negative effects found with taking large doses of oxaloacetate (38:35).
  • So overall, oxaloacetate has an immediate pharmacological effect on the glutamate in the brain and a long term genomic effect on the mitochondria (46:30).
  • When trying your own experiment, take a daily fasting glucose level for a couple weeks to see the normal variability and then follow with oxaloacetate supplementation along with daily reading of your glucose levels (48:06).
  • The biomarkers Alan Cash tracks on a routine basis to monitor and improve his health, longevity and performance (55:29)
  • Alan Cash’s one biggest recommendation on using body data to improve your health, longevity and performance (58:49).

Alan Cash

  • Terra Biological: Alan Cash’s company which produces the stable form of oxaloacetate.
  • Oxaloacetate supplementation increases lifespan of C. elegans: The original study published by Alan Cash on PubMed.
  • : you can contact Alan Cash with questions using this email address.

Tools & Tactics

Supplements & Drugs

Oxaloacetate is available in a few versions in the market today – all of these come from Alan Cash’s company since he developed the proprietary method to thermally stabilize it and as such make it usable. A number of studies on Oxaloacetate were mentioned in this interview – see the complete PubMed list here.

  • benaGene Oxaloacetate: The nutritional supplement (100mg) version of Oxaloacetate to promote longevity and glucose regulation.
  • CRONaxal Oxaloacetate: This version of oxaloacetate is a medical food (containing oxaloacetate) which, when used with other treatments such as chemotherapy, has been shown to significantly improve outcomes and quality of life for cancer patients.
  • Aging Formula Oxaloacetate: Dave Asprey’s supplement is the same as the benaGene version of Oxaloacetate.
  • Acetyl-l-Carnitine: Mentioned with respect to a study where a combination of oxaloacetate and acetyl-l-carnitine reduced long term potentiation impairment in rats.
  • Metformin: A drug which is used to improve blood sugar regulation in diabetes. Researchers are looking at its wider applications as a knock on effect from improving blood sugar regulation to cancer and aging.

Diet & Nutrition

  • Calorie restriction: this dietary regimen involves a significant decrease in daily calorie intake and has been shown to slow the aging process as described in this review article. You can learn more about the potential benefits and the arguments against the anti-aging benefits of calorie restriction in episode 14 with Aubrey De Grey.
  • Fasting: The fasts referred to in this episode were complete water fasts that were also being used in combination with oxaloacetate in order to attempt to “stack” the effects and get better outcomes. The examples given were case studies of cancer patients (no clinical trials have been completed as yet). For more information on fasting as a possible cancer treatment see episode 16, and episode 28 on our water fasting self-experiment.
  • Calorie Restricted Ketogenic Diets: In a similar light to above, the anecdotal cases discussed for cancer were patients use of ketogenic diets (that put you into ketone metabolism, by restricting carbs and protein, and emphasizing fat) which were also calorie restricted. This involves stacking two nutritional strategies: ketogenic diets have been shown to be therapeutic for some conditions like alzheimers and blood sugar regulation related problems as has calorie restriction in general. Then some of these cases were also combining the use of oxaloacetate, again to try to stack the effects from these three tactics to further improve outcomes. See episode 7 for complete details on using ketogenic diets as a tactic to improve health.

Tracking

Biomarkers

  • Blood Glucose Levels (mg/dL): A measure of the level of glucose in the blood at one point in time. Fasting blood glucose levels are specifically taken when you have not eaten for at least 8 hours and optimally would be between 75 and 85 mg/dL. Health concerns with blood sugar regulation such as diabetes risk start to rise over 92 mg/dL. After taking oxaloacetate for many weeks Alan Cash suggests that your fasting blood glucose should vary less when compared with any control levels. These levels can be measured at home using a glucose monitor and glucose testing strips (an explanation for the use of glucose monitors can be found in this episode).

Other People, Books & Resources

People

  • Hans Adolf Krebs: Krebs is best known for his discovery of the citric acid cycle, or Kreb’s cycle, which is the main energy pathway of a cell.
  • Dominic D’Agostino: Well known for his work with ketogenic diets and performance.

Organizations

  • Calorie Restriction Society: This organization is dedicated to the understanding of the calorie restriction diet by researching, advocating, and promoting the diet through regular conferences, research studies, and forums.

Other

  • Kreb’s Cycle: oxaloacetate is one of the components involved in this energy pathway in the mitochondria of a cell.
  • NAD/NADH: the effects of oxaloacetate in the Kreb’s cycle changes the ratio of NAD and NADH in the mitochondria which in turn affects the energy available to the cell.
  • Orphan Drug Act: This law passed in the US in 1983 has provided more opportunities for researchers and physicians to pursue drug development for rare, or “orphan”, disorders.
  • Calorie restriction PubMed results

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp]:Alan, thank you so much for joining the show today.

[Alan Cash]: Oh, thanks. It’s always a thrill to talk about oxaloacetate.

[Damien Blenkinsopp]: First of all, I’d just like to get a bit of background story as to why you got interested in this at first. What’s the story, basically, behind how you got interested in oxaloacetate, and started getting involved with it?

[Alan Cash]: That’s a pretty weird story.

It turns out I had a brain condition where nerves sometimes grow very close to arteries. I had an artery that wrapped around my nerve. Every time my heart beat it acted like a little saw and eventually cut in through the myelin sheath that surrounds the nerve and protects the nerve, and went directly into a nerve bundle that was a major nerve bundle in my neck. And the result was instantaneous pain.

I found out that I was very lucky; I was able to get it corrected. They just went into the back of my head and followed the nerve until they could find where it crossed over, and they untangled it and put in a piece of Teflon. So now I don’t stick, but the pain is 100% gone, which is really nice. A miracle of modern science, because it was pretty terrible.

In looking up this condition, I found that it was really a condition of aging. As we grow older, your arteries get about 10 to 15 percent longer, even though we’re not getting 10 to 15 percent longer. So they have to fold over, go someplace, and it was just bad luck that it folded over next to this nerve.

As a physicist I thought I’d look into aging and see, whats the current state of what we can do about aging. And thankfully at that time there was a lot going on with the basic fundamentals of aging and trying to understand this, and looking at all the data that’s out there. That’s what physicists do; we take a huge amount of data and see where the kernels of truth are. We try to think of E=MC2, or F=MA, how much that describes about the universe.

And looking at the aging literature, the thing that stood out the most is almost nothing works, which is disappointing. The one thing we did find that worked consistently throughout the animal kingdom was calorie restriction. That was discovered back in 1934 in Cornell University.

It’s not just the diet. It’s essentially establishing a baseline of what you’d eat if you had all the food available, and then backing off that baseline anywhere from 25 to 40 percent. And when you do that consistently over a long period of time, we see several things. One, we see an increase in lifespan. Not just average lifespan of the group, but the maximal lifespan is also increased.

For small animals that live short times, that could be anywhere from 25 to 50 percent increases. In primates, we’ve seen an increase in lifespan of about 10 to 18 percent, depending upon the test. So we’re thinking in humans, we’ll probably see something in that range if you calorie restrict your whole life.

The other things we see though are a reduction in age related diseases, such as cancer. Our animal models indicate that incidence of cancer is 55 percent less in animals that calorie restrict. And that’s one of the most effective methods we have of preventing cancer, that we know of.

Incidence of neurodegenerative diseases such as Parkinson’s and Alzheimer’s are either reduced or greatly delayed. Incidences of any kind of autoimmune type issue, or inflammation issues. So it’s very, very powerful this concept of calorie restriction, and it wasn’t until just recently that we figured out molecular pathways of why it’s working.

[Damien Blenkinsopp]: So, in terms of the actual mechanisms for what’s going on in the body when we calorie restrict, what happens? What is it that creates these benefits and these changes in our biology, versus disease, and longevity in general?

[Alan Cash]: We’ve been looking at that for a long time as a question, and some of the things that we looked at were does it matter if it’s the calorie restriction with fats, or does it matter if it’s just carbohydrates or proteins. And what we’ve seen is it’s pretty much across the board ‘calories’.

There are various diets out there – there’s a new diet every week it seems like – that looks at restricting one form or another of calories, or fats, or proteins, or even specific components of proteins. But what we’ve seen in general in calorie restriction is it’s the number of calories.

So, based on that it seems like it’s an energy proposition, and looking at the energy pathways there’s been focus on the ratio of two compounds that are pretty much the same. Nicotinamide adenine dinucleotide, or NAD, and it’s reduced version NADH. So that ratio, which is also known as the redox of the cell, is looking at the energy of the cell. And when we have a very high NAD to NADH ratio, we see effects very similar to calorie restriction.

[Damien Blenkinsopp]: So in terms of what that’s actually doing, do we understand why the changes in NADH create this change in our biology?

[Alan Cash]: You know we’ve been able to trace this, and what we see is increasing the NAD to NADH ratio – and you can do that through a variety of ways – but that increase is measured by a protein called AMP protein-activated kinase, or AMPK. What AMPK does is it monitors, essentially, the NAD and NADH ratio, or the redox of the cell.

Think of it as a see-saw, so with AMPK as the fulcrum of the see-saw and NAD on one side and NADH on the other side. When the see-saw is in one position, AMPK will then act with other proteins that translate to the nucleus and turn on genes. When the see-saw is in a different position, AMPK will work with other proteins that translate to the nucleus and turn on different genes.

So let me give you a specific example. If you’ve had a lot to eat, your NAD to NADH ratio will be low. And AMPK will turn on genes that help with fat storage and production, because you’ve got all this extra energy, so hey let’s store some of it. So it will actually start producing proteins that deal with fat storage and synthesis.

On the other hand, if the see-saw is in the different position, if you haven’t had a lot to eat, there’s no point in storing fat. And so your genes will not be making these proteins that assist in making fat production. So how can we use that information?

For instance, when we trick the cells into thinking that the NAD to NADH ratio is high – or that the animal hasn’t had a lot to eat even if it has – we can slow down the rate of fat production, which could be interesting for people on diets. What we see is that you still gain some fat, but you just don’t gain it as fast.

So, biochemically, there are reasons why when you go on a diet and you lose all that weight, and you stop the diet and you rebound back very quickly. We can slow down the rate of rebound if we can keep the NAD to NADH ratio up high, because then the genes that are produced that create and store fat aren’t being produced. So there’s some really neat tricks that we can use to bio-hack into our systems that are existing systems.

[Damien Blenkinsopp]: Yeah, yeah. There are quite a few potential benefits to calorie restriction. We’ve come across some of these before. We’ve spoken with Dr. Thomas Seyfried about purposefully doing fasting for this kind of work as well.

What are kind of list the main big areas which people have seen this impact, like diabetes. What have you seen in your area, areas where people are meaningfully impacting this area with calorific restriction?

[Alan Cash]: We’ve actually done human trials in calorie restriction, and what we see is a reduction in fasting glucose levels. We also see a reduction in atherosclerosis, which, considering heart disease is the number one killer in America, if we can reduce that you’re going to have people living longer. That alone is huge.

[Damien Blenkinsopp]: So that just begs the question, when people are doing these estimates of longevity, is it because you’re reducing the risk of many of the kind of diseases that kill us – like cancer and neurological disorders, and heart disease – that people are living longer, and therefore you’re getting a higher longevity score? Or are they kind of separate topics?

[Alan Cash]: It’s both, actually.

Reducing these diseases is going to bring up the average increase in survival. So that would give you your average increase in lifespan. But there are certain people who don’t get these diseases, and they live a long time. But calorie restriction has been able to increase the maximal amount of lifespan. So that’s making every cell in your body live longer.

And we see that in our animal tests. For instance we started off working with these little worms called C elegans, which are used a lot in research because we understand, somewhat, the genetics of them. And one of the interesting things about these worms is once they go into adulthood, they don’t produce any more cells. That’s it.

They only live for about 30 days, but they live with the cells that they have. So if we can extend their lifespan, it means that we’re allowing each of their cells to live longer, and to be functional for longer. And when we increase the NAD to NADH ratio in C elegens, we see up to a 50 percent increase in lifespan.

So, as I said, it’s both. It’s eliminating a lot of these diseases that are associated with aging. I mean, think of all the diseases that you get when your old that you don’t get when you’re seven years old.

[Damien Blenkinsopp]: So, I’m sure you’re aware of Aubrey de Grey? We had him on the podcast previously talking about his seven areas of aging, which are basically diseases of aging. So he’s looking at it from that perspective. So, in terms of oxaloacetate, which is the mechanism you were using to generate that, where does it actually come from? What is it?

[Alan Cash]: Well, it’s a human metabolite. It’s in something called the Krebs cycle, which is what gives us power in our little mitochondria. So, mitochondria can be thought of like a little power plant. Glucose is the fuel for the power plant.

So the more mitochondria you have, the more power plants you have, but you have to also have the fuel, the glucose, to up-regulate that. So oxaloacetate is one of those critical components within the mitochondria. So it’s in every cell of your body already.

Now, when we give it to animals, the reason we started looking at oxaloacetate is in looking at our energy pathways, oxaloacetate can break down into malate, which is another metabolite. It’s found in excess in apples. And as part of that reaction, it takes NADH and turns it into NAD.

[Damien Blenkinsopp]: So it takes it from reduced into the oxidized form?

[Alan Cash]: Yes, and so in doing that, because you’re taking something from the denominator and putting it in the numerator, it changes the ratio very rapidly. The first person who measured this ratio change was Krebs himself, back in the 60’s. He added oxaloacetate to the cells and he saw a 900 percent increase in the NAD to NADH ratio in two minutes. So, huge changes with this human metabolite oxaloacetate.

Now, oxaloacetate has got some problems. It’s not very stable, it’s highly energetic. Commercially it’s available through chemical suppliers, but you have to store it at -20 degrees Celsius. If you want to make popsicles out of it, you could probably do that. But putting it into a usable supplement has been very difficult, and that’s why you don’t see it very often.

We came up with a method to thermally stabilize it so that it can be stored at room temperature for a period of up to two years without degrading. And that’s how we were able to introduce this into the market.

[Damien Blenkinsopp]: Great. So, in terms of where it comes from, in my understanding it’s also something that is part of foods. So there are foods which have oxaloacetate in it, so it’s basically a nutrient that’s found in the environment?

[Alan Cash]: Yes. Absolutely. Although it’s only found in very, very small amounts. There are some foods that have higher amounts of oxaloacetate, and these are foods that typically have higher amounts of mitochondria.

So, for example, pigeon breast has a lot of oxaloacetate in it because you need tremendous amounts of mitochondria to power flight. That’s what one of the most energy intensive things out there, is flying around. But you need about 18 to 20 pigeons breast to get the amount of oxaloacetate that we see as the minimum for seeing some of the gene expression changes we want to accomplish. So it takes a lot of pigeons.

[Damien Blenkinsopp]: So you’ve determined the minimum effective dose, which is around how much?

[Alan Cash]: So far – and this is from a human clinical trial – one of the side effects of calorie restriction in primates is it eliminates Type 2 diabetes, which is a good thing. And it turns out they, in trying to mimic calorie restriction – which is what we’re trying to do is turn on the same molecular pathways – we looked at oxaloacetate, and there was a clinical trial that was done back in the 60’s in Japan.

This was published, and it showed that oxaloacetate reduced fasting glucose levels in diabetics. So, we knew that this is one of the side effects of the calorie restricted metabolic state, and we could look at, in humans, what is the most effective dose.

And what we found is they did a range in this clinical trial of 100mg to 1000mg. There were no side effects in the 45 day trial. 100 percent of the people saw a reduction in their fasting glucose levels, which was good because they were all diabetics. We couldn’t understand why this wasn’t commercialized back in the 60’s.

So I actually flew to Japan to interview the department that was responsible for this clinical trial. The conversation went something like this, “Hi. I’m Alan Cash, your department produced this paper on oxaloacetate working in diabetics to reduce fasting glucose levels. Where’s the follow-on work?”

They said, “Well there is no follow-on work.” And I said, “Well why not?” They said, “Well because it’s a natural ingredient.” And I said, “Yeah it’s not only natural, it’s a human ingredient. So toxicity is extremely low.” And they said, “Yes, but we can’t get a patent on it.” And that was pretty much the end of the conversation.

So, as far as knowing the dosing and what’s effective, we already have a clinical trial showing where the minimum effect is, which is 100mg, which is where we set our sights to put out a nutritional supplement.

[Damien Blenkinsopp]: Yeah.

So, was there any advantage for the people, if we take the most extreme example, the people taking 1000mg in that study, was there any advantage to it? Did it impact blood sugar regulation differently?

[Alan Cash]: Yeah, well actually, as the dosage increases, we start looking at other reactions that oxaloacetate are involved in. And one of the main other reactions is the combination of oxaloacetate with glutamate. So, oxaloacetate and glutamate link together and that reduces glutamate levels in the brain.

Now that can be important for certain people. For instance, in a closed head injury, 20 percent of the damage to your brain is caused by the actual strike to the head, the damage to the tissue. 80 percent of the damage is caused by the aftereffects. And those after effects are in your brain it releases something called a glutamate storm.

Glutamate is one of those essential brain chemicals that you need to function properly, but if you get too much of it it excites the neurons to the point where they die. So this glutamate storm is responsible for about 80 percent of the damage.

And what they’ve been able to show now with oxaloacetate is primarily in tests over in Europe – the Weizmann institute out of Israel is doing a lot of this work, and there’s also some people in Hungary and Spain that are doing quite a bit of work with oxaloacetate. But they’re able to show that oxaloacetate, if you can get it to a stroke victim or a closed head injury victim within two hours, 80 percent of the damage is eliminated.

[Damien Blenkinsopp]: Wow. What, do they just take a small dose, or what does it have to be?

[Alan Cash]: No, you’ve got to take a lot, because you have to get it into your bloodstream, and if you take, let’s say, two 100mg capsules of oxaloacetate we’ve seen the data in the bloodsteam, only about five percent gets through. The rest of it is used up in the liver and intestines. That’s not a bad thing, because you want to keep those things healthy. But to get it so that it starts reducing glutamate levels in the brain you want to increase it’s supply in the bloodstream, and so you’ve got to take a lot.

[Damien Blenkinsopp]: So, basically after that is it always five percent? If I take 1000mg, is it just going to be 15mg?

[Alan Cash]: We don’t know. There may be a point where you start overloading the liver and more passes through. I can tell you that we have a medical food that is directed towards people with brain cancer, because if we can reduce the glutamate levels in the brain we see better results.

[Damien Blenkinsopp]: Because people, just to get back to it, is it that people with brain cancer tend to die from glutamate toxicity? Is that one of the main mechanism for their death? Or is it acting on other dimensions?

[Alan Cash]: Well, one of the main predictors of survival is the amount of glutamate that’s produced because what the tumor does is it produces tremendous amounts of glutamate, and it kills the surrounding tissues so that the tumor can grow into that area. So, if you can stop that, you don’t kill the tumor, you just stop it growing.

And this is essentially what we’re seeing with the product called CRONaxal, which is a medical food [that] is a high, high dosage oxaloacetate. So you may take the equivalent of 30 to 60 capsules of the nutritional supplement per day, and we’re seeing in animal tests a 237 percent increase in survival.

So FDA gave us an Orphan Drug designation for oxaloacetate for brain cancer. In the actual human work, we’re just doing case studies right now, but in the 17 case studies that we have MRI data on, the oxaloacetate was in conjunction with chemotherapy. So you use them together, it was able to stop tumor growth, or reduce tumor size, in 88 percent of those patients.

[Damien Blenkinsopp]: Wow, so that’s pretty great statistics there.

[Alan Cash]: Yeah, considering some of these people with glioblastoma, their tumors were growing at a rate of 80 percent per month. You can do the math there, it’s not a great equation.

And we were able to bring that growth rate to, in one guy’s case – he was 42 years old, two kids, a nice guy – we were able to bring that growth rate to zero for eight months. That’s very significant when chemotherapy alone only increases survival by a month and a half.

[Damien Blenkinsopp]: Wow, right. So, you were also saying earlier, we were just discussing you looking at combining oxaloacetate with fasting. We spoke to Dr. Thomas Seyfried about this recently, and you may be seeing potentially better results with that? Or it might be–

[Alan Cash]: Well what we’ve seen so far, fasting is one of the techniques used in brain cancer to slow or retard the growth of the tumor. It’s one of the few things that has been shown to work, especially a calorie restricted ketogenic diet, where you eat more fats.

And the thinking behind that is that you reduce glucose levels tremendously with the ketogenic diet, and glucose is one of the things that feed the tumor. Now, the other thing that feeds the tumor, according to Dr. Seyfried, could be glutamate. And so if we can reduce glutamate levels also with oxaloacetate, we may see some impressive results.

And we’re already starting to see that in anecdotal cases in patients. We had one young man who had a slow growing brain tumor that’s been able to stop it’s growth with a combination of calorie restriction and oxaloacetate supplementation with our CRONaxal product for a period of two years now.

[Damien Blenkinsopp]: Wow. And so is he taking around 6000…

[Alan Cash]: No, his tumor is slower growing, so he’s taking about the equivalent of 10 capsules a day.

We’ve also had recently a woman with Stage 4 breast cancer. Her latest report from her PET scan and her MRI data, they can no longer find the tumor, or tumors; she had like four of them. And all she was doing was calorie restriction and about 10 capsules of oxaloacetate.

There’s some real promise here, but it’s very early on. We don’t have the clinical trial data that supports this in a statistically significant manner, we just have individual cases. Although those individual cases are stunning, it would not be prudent to rely upon those cases.

[Damien Blenkinsopp]: Right. Well, have you got any plans to have any clinical trials? Was that something that might be occurring soon in that area?

[Alan Cash]: Yeah, well we’re actually in clinical trial for a variety of conditions. One is mitochondrial dysfunction. There are certain people that are born with genetic defects that affect the mitochondria.

We have one infant that’s been on oxaloacetate now for nine months that is showing normal development, whereas normally with this type of defect we would expect the infant to have passed away six months ago. So that’s pretty interesting.

We’re also in clinical trial for Parkinson’s disease because anecdotally we’ve seen some interesting cases where the oxaloacetate has reduced the symptoms of Parkinson’s disease. And lastly, we’re in clinical trial for Alzheimer’s disease, so we’ll see how those all play out.

We’re getting ready to start some clinical trial work in pediatric brain cancer, because if we can get away from doing chemotherapy, it’s just a whole better quality of life.

[Damien Blenkinsopp]: It sounds like one of the main mechanisms. So if you’re looking at Alzheimer’s disease, they also use ketogenic diets, and so it’s obvious that the glutamate is helping, but do you think it’s also the aspect of improving blood sugar regulation is potentially helping in all these diseases as well? Is that one of the factors?

[Alan Cash]: It certainly could be a factor. We just published a paper in human molecular genetics that showed that oxaloacetate increased the amount of glucose that the cells could uptake in the brain, it increased the number of mitochondria in the brain. So we not only built more power plants, but we’re now having a way to fuel those power plants.

The interesting thing is that oxaloacetate is also a ketone. So you don’t necessarily need glucose to fire off all those neurons in the brain, you can actually use oxaloacetate as a power source. So, the other things we’ve seen with oxaloacetate in the brain in animal models is a reduction in inflammation, and probably most exciting is we’ve seen a doubling of the number of new neurons that are produced.

Ten years ago we used to think that the number of brain cells you have is static, that those brain cells that you lost in college are forever gone by imbibing in too much alcohol, but now what we’re seeing is that there’s an area of the brain called the hippocampus which continues to produce new neurons. And as we age, this function decreases. So our ability to repair our brains decreases.

Well oxaloacetate in animal models doubled that rate of production, and not only did it double the rate of new neurons, but the length of the connections between the neurons was also doubled. So, if you think about, well if a neuron can connect to a neuron that’s further away you get more interesting connections, more interesting abilities to have different variables.

It makes your brain more plastic, is what we say. And oxaloacetate has been able to show both that increase in neurons and the length of the neurons. So it’s pretty exciting work.

[Damien Blenkinsopp]: Yeah, so brain injuries – you were talking about brain injuries before – I guess a lot of us think about brain injuries as a big thing, like maybe a car crash or something, you have a big serious brain injury. But now they are also looking at athletes, for instance in football where they’ve been heading the ball and areas like that, and they’re seeing there’s a lot of damage.

So could this potentially be a tool for sports? If you’re playing in football, would it make sense to be taking this stuff whenever you’re going to a match, or something like that, to reduce the kind of damage you’re getting each time you’re heading the ball, and so on?

[Alan Cash]: I think so. I mean, my daughters play volleyball at a very high level – one’s at Pepperdine, and the other is going to be at Hofstra next year – and occasionally they get hit in the head with a volleyball. They’re middle blockers, they go up, and they just get slammed in the face. So I always have a bottle of oxaloacetate in their gym bag, and if they get hit in the head they’re told to take 10 capsules right away and to continue taking 10 capsules for the next week or so.

I don’t want to suggest that you should use oxaloacetate for any kind of disease. Mostly it’s a nutritional supplement, there is the medical food also that’s specific for brain cancer. And I just want to make that clarification that the work really hasn’t been done in clinical trial.

Now, over in Europe they are working on that. They’ve done a lot of animal studies, and the interesting thing they’ve found is that if they can get oxaloacetate into these animals that have been hit on the head with a hammer within two hours, it reduces the amount of brain damage they experience by 80 percent. They’re looking at a lot of things in Europe, and it’s very, very exciting work.

[Damien Blenkinsopp]: Yeah, it seems like this is a really interesting molecule, because it seems to be having an impact in a lot of different things. Of course, it’s all early stages of research, like you say, but it seems to have quite a lot of potential.

I saw another study where they had combined oxaloacetate with acetyl-l-carnitine and they were looking at that. Could you talk a little bit about that? I believe it was long-term potentiation it was impacting.

[Alan Cash]: Yeah, long-term potentiation is a measure of how plastic your brain is, how well you can still learn. And when they go into the brain of animal models and give them a stroke, an artificial stroke, and then measure long term potentiation, the levels drop significantly.

When they use oxaloacetate or a combination of oxaloacetate and acetyl-l-carnitine, they saw 100 percent restoration of the brain’s ability to learn again, in very short order. And this could be very important for people with stroke, closed head injuries, that type of thing.

But again, this is early work, it’s been done in animals, it’s been very successful in animals. And both oxaloacetate and acetyl-l-carnitine have very low toxicity profiles, so the risks are low there, but we still need to do this in clinical trial and make sure that there are no unexpected results in humans.

[Damien Blenkinsopp]: Right. Yeah, so ALCAR or acetyl-l-carnitine, a lot of people I know have been taking it for a very long time. So in terms of toxicity for oxaloacetate, as you said there was the trials where you had 1000mg per day. Has anything above that been tested? Because it sounds like with some people you’re actually giving 10,000 or more in specific cases.

So, in terms of toxicity, is there any evidence to say that it could be harmful in any way if someone overdoses, or potentially someone in a specific situation?

One thing I was just thinking about while you were talking was in terms of glutamate, you say it helps to deactivate glutamate. In some people who are normal and have normal levels of glutamate, could that impact them in any way in terms of their brain performance, memory, things like that?

[Alan Cash]: That was a multiple question, and let me address them one at a time.

[Damien Blenkinsopp]: I’m sorry.

[Alan Cash]: As far as toxicity, in order to bring the supplement into the United States we had to prove to the FDA safety because this is considered a new dietary ingredient, even though it’s in just about every food we eat but not at the levels that we’re giving it to people at. So we had to prove safety, and we spent quite a bit of money and three years of my life proving safety to the FDA.

One of the things we had to do is feed animals as much oxaloacetate as we could stuff into them to see at what point in time 50 percent of the animals would die. And what we found out is we got up to about 5000mg per kilogram of body weight in animals, and we still couldn’t get any of them to die.

[Damien Blenkinsopp]: Did you get any negative reaction at all?

[Alan Cash]: We couldn’t find one. Now, what we are seeing in humans, especially in some of these people with brain cancer that are taking the equivalent of about 60 capsules a day, we do see an increase in burping.

[Damien Blenkinsopp]: That’s interesting. It’s kind of random.

[Alan Cash]: Yeah, well it relaxes the upper sphincter muscle in the stomach, and we see an increase in burping in some of the people.

[Damien Blenkinsopp]: That’s interesting.

[Alan Cash]: But that’s about all we’ve seen so far. So, from a toxicity standpoint, this appears to be a very safe molecule.

[Damien Blenkinsopp]: Well, that’s great. Do you remember the multi-part question, or shall I repeat it?

[Alan Cash]: Yeah, the second part was what if you take a lot of this and you’re just a normal person, what would you expect to see? Some of the things we’ve seen are really interesting.

We have an R&D project where we’ve developed an oxaloacetate tablet that goes under your tongue. And so we deliver a lot more oxaloacetate to the bloodstream, which preferentially reacts with glutamate. And what we see with that tablet is an increase in the ability to [unclear 40:04] because if you can turn down glutamate levels a little bit in your brain, you don’t have some of that repetitive cycling of questions, you’re able to focus more, you’re able to pay attention better.

It’s kind of like, the way I can explain it, it’s like you’ve been meditating for a half an hour, so you have this incredible focus but it’s not jittery. Like if you have 10 cups of coffee you can also have more attention, but your whole body is shaky. This is more, you’re very relaxed, and you just have that increased ability to focus. It’s pretty cool.

[Damien Blenkinsopp]: It sounds like you’ve been testing it yourself.

[Alan Cash]: Yeah I test it always on myself, because if I’m ever going to give it to somebody else you’ve got to feel confident enough in it’s effects to try it on yourself first.

[Damien Blenkinsopp]: Yeah. You know, it would be nice to hear, how do you use oxaloacetate yourself? Do you have some kind of routine, or what do you do with it?

[Alan Cash]: Yes, I use it primarily for anti-aging, because I’m after that [00:41:11 – 00:41:14:17 audio error repeated “we see an increase in burping in some of the people.”] I take like three caps a day, which is a little bit more than our recommended one cap a day, but I get it for free, so what the heck, right.

I’ve also started working with this sublingual dose whenever I’m tired. Like if I have to drive somewhere and it’s late I take one and immediately I’m awake and my focus is there. Or if I’m in a conference and its 4 o’clock on the third day of the conference I find that it helps quite a bit. So that’s how I use it.

A lot of athletes are using this now because we’ve been able to measure a decrease in fatigue and an increase in endurance. We don’t see an increase in strength, just an increase in endurance. So a lot of endurance sport people take one to two capsules about 15 minutes before competition, with about 100 to 200 calories.

[Damien Blenkinsopp]: So it sounds very quick acting, in terms of you’ve take it in and within a very short period it’s going to have that impact. Are you talking about it feeding the mitochondria, basically?

I mean, you spoke earlier about it basically being like a ketone. Do you think that’s the mechanism there, or is it because it’s stimulating the mitochondria somehow?

[Alan Cash]: Well there’s been some work out of UCSD showing that oxaloacetate activates pyruvate decarboxylase and allows the citric acid cycle to process faster. So you get more ATP production, which would tie with the endurance effect.

We’ve been able to measure the endurance effect almost immediately, and we published that in the Journal of Sports Medicine. We saw about a 10 percent increase in endurance. And you think, you know, 10 percent is not all that much, but in a lot of athletic competitions 10 percent is huge.

So that’s the short term effect, and that actually only lasts about two hours. And then if you want it again, you have to reapply.

[Damien Blenkinsopp]: Yeah. So a marathon runner would be dosing every couple of hours?

[Alan Cash]: Yeah, about every two hours.

The second effect though is longer term. We’ve seen that oxaloacetate supplementation increases the number of mitochondria, or the mitochondrial density in the cell. So it produces more of the power plants so that when you feed it more glucose, you can turn it into fuel faster.

But that takes typically, you know, anywhere from two to six weeks to see the effect on that. And you have to take it daily. What we’re doing is we’re increasing that NAD to NADH ratio, which then activates AMPK, and chronic AMPK activation has been shown to start the process of mitochondrial biogenesis, or producing more mitochondria.

[Damien Blenkinsopp]: Is there any reason we want that activated? Anything you know of like in the research, where it says like chronic activation of AMPK could lead to any downsides?

I have another question, just to kind of give you a bit of context to that. Is it worth cycling oxaloacetate? So having a month on, or a couple of months on, a couple of months off, or anything like that?

[Alan Cash]: Yeah, a lot of supplements that deal with stressing your cells in order to get an effect they work better if you cycle them. For instance, echinacea. Echinacea works because it’s an irritant. So you turn on your stress response and get a response, but if you take it all the time, your body gets used to it.

Oxaloacetate doesn’t work as a stresser, it works to turn on genes and turn on the development of more mitochondria. So no you want to take it all the time.

[Damien Blenkinsopp]: Great, and so we were discussing earlier, I was just asking you about potentially doing a lot of experiments with oxaloacetate, and you were saying that for most of the effects it’s really this aggregated, this cumulative effect.

We want to be using it for between two and six weeks before we see the effects. And then, if we stop it’s probably going to take that amount of time before those effects disappear. But they will disappear, so it’s something that you really kind of have to take on an on-going basis.

[Alan Cash]: Yeah, yeah. Because it’s, well there are two effects. One is a pharmacological effect, like for instance the reduction of glutamate in the brain. That happens almost immediately, so some people when they take this they get that feeling of peace because they’re just reducing their excitatory chemical in their brain.

But the other effect is a genomic effect, and while your genes start producing these proteins right away it takes a while for the proteins to be enough in number that we see measurable effects. We can see those effects in typically four to six weeks.

For instance, blood glucose levels would be one that we’ve been able to trace that down to activating AMPK, which is the same thing that the diabetic drug Metformin does but through a different pathway, and the up-regulation of a gene called FOXO3A, which deals with glucose stability. But that takes time, it takes usually four to six weeks.

[Damien Blenkinsopp]: So, for the people at home, if they were going to design their own little experiment, it would be basically measuring blood glucose stability, is that the main, is it the variant which is reduced, or is it actually lowered in general?

[Alan Cash]: One experiment that they could try is start off with a baseline. Go to the drugstore, get a glucose meter and some little paper strips, and take your fasting glucose levels for maybe a couple of weeks. You see the variability, because even in fasting glucose levels, you’re going to see the levels bounce all over the place.

And then start oxaloacetate supplementation, one or two capsules a day for a month, and take your daily glucose levels. You won’t see much change for about three weeks, and then what we typically see is a slight reduction – in non-diabetics – in fasting glucose levels.

And more importantly, a reduction in the swing. So you don’t see as high a high, and as low a low. And that reduction is typically on the order of 50 to 60 percent, so you have better glucose regulation. And in normal people, that’s not a bad thing.

[Damien Blenkinsopp]: Right. Just if we’re talking in terms of performance, just throughout the day I think people’s performance goes up and down. Some of the reasons people try new diets such as Paleo and Ketogenic and so on is to try and even out their blood sugar a bit more so they don’t have these typical dips people get after lunch when they need another shot of caffeine to get through the afternoon.

So I’m sure probably you can see how that could impact their performance in that way. That would be interesting.

[Alan Cash]: Yeah. Absolutely.

[Damien Blenkinsopp]: So how would you recommend someone takes oxaloacetate? Would it just be 100mg one capsule? Would it be in the morning, once daily?

What would be the recommended way to try this out, for someone who is just normal and healthy, and they’re just more interested in the long term benefits, and so on.

[Alan Cash]: For the long term benefits, we looked at the minimum amount that you could take – I believe in small measures for big effects – the minimum amount over time, and we know that through the clinical trial that was done. We know that 100mg was effective in reducing fasting glucose levels in diabetics. We’re turning on those genes that we want to turn on.

So, one capsule a day. It doesn’t matter if you take it in the morning or the evening, what does matter is that you take it every day, because we’re trying to increase that NAD to NADH ratio and keep it pretty steady, so that we continuously activate AMPK. And that continual activation is what turns on the genes and gives us the gene expression that we want to see to see extended lifespans.

[Damien Blenkinsopp]: Great, great, thank you. Are there any situations where you would recommended people – because you’re taking 300mg yourself, and obviously you don’t have the costs that other people would have – but are there other situations where you would think it would be interesting for people to take a slightly larger dose?

[Alan Cash]: Yeah, but I really can’t recommend that, as I’m not a physician, I’m a physicist.

[Damien Blenkinsopp]: Right, right. We’re getting outside of the nutritional realm again.

[Alan Cash]: Yeah, and that [can] be a dangerous thing for us to do.

[Damien Blenkinsopp]: Absolutely.

[Alan Cash]: Definitely our CRONaxal medical food for [treating] cancer, they would take a lot more oxaloacetate.

[Damien Blenkinsopp]: Great, great. If someone wanted to learn more about the topic of caloric restriction and oxaloacetate, where would you say, are there any books or presentations or is there any other resources people could look up that would help them to learn more about this?

[Alan Cash]: Absolutely. There’s quite a bit in PubMed, so they could go to www.pubmed.com, or .gov, and just type in ‘oxaloacetate’ and ‘calorie restriction’. We’ve got some papers in there that we’ve published.

And they can also look at oxaloacetate and other things like Parkinson’s, Alzheimer’s, cancer, you know, if they’re interested in that, and see what animal data there is out there right now. There’s not a lot of human clinical work done yet.

We’re in the middle of some of that ourselves. They can also email me. My email address is acash@benagene.org. I typically get back to people in a couple of days with questions.

[Damien Blenkinsopp]: Great, and I can attest to that, because we’ve been in contact before and I know you make yourself very much available, and that’s really appreciated.

Are there other ways that people could connect with you? I don’t know if you are on Twitter. You have a website, of course, which is benagene.com?

[Alan Cash]: Yeah, we have a website benagene.com. There’s not a lot of information on that because the FDA discourages that. For instance, we can’t legally put any animal data on our site, even though I consider humans animals. I think it’s relevant, but the FDA does not.

[Damien Blenkinsopp]: Right, right. Of course. So, is there anyone besides yourself that you’d recommend to learn about this topic? I don’t know, calorie restriction, longevity. Is there any interesting stuff you’ve read over the years, or have you referred people’s work?

[Alan Cash]: There’s tremendous amounts of data on calorie restriction. And there’s a society, the Calorie Restriction Society, where these people have been restricting their own calories for years, seeing tremendous results, especially in reducing atherosclerosis. In human clinical trial we’ve seen a major drop in atherosclerosis and blood pressure.

[Damien Blenkinsopp]: Do you know if that’s reflected by the CRP? The C-reactive Protein biomarker? Because you spoke about inflammation earlier, I wasn’t sure if that was that marker or another one.

[Alan Cash]: I’ve seen a decrease in inflammation in our studies really through the M4 pathway. I don’t know if C-reactive protein levels are down. We did have a case where due to a genetic dysfunction an 11 year old girl, she was in critical care, her CRP levels were up around 20,000.

[Damien Blenkinsopp]: Wow.

[Alan Cash]: Yeah, yeah. She was…

[Damien Blenkinsopp]: That’s insane.

[Alan Cash]: Yeah. Yeah. She was eating herself alive, essentially. And she was in critical care. They tried just about everything. And this was work done out of University of California San Diego Mitochondria Dysfunction Department. They’re doing some breakthrough work there.

They ended up giving her some oxaloacetate and in two days her CRP levels dropped to zero, and she was released from the hospital and went home. Once again, that’s a case of one person and specific genetic anomaly.

[Damien Blenkinsopp]: Yeah, yeah. Interesting. That’s pretty impressive.

In terms of your own personal approach to data and body data – because we’re always talking about data on this show in terms of our biologies and so on – do you track any metrics or biomarkers for your own body on a routine basis?

[Alan Cash]: Glucose levels. And for a guy, I’m 57 years old, my blood glucose levels are typically in the low 80s, which is pretty good. That’s about the only thing I track regularly. I mean I track my weight, which is very stable. I don’t count the number of hours I exercise or anything like that. I should.

[Damien Blenkinsopp]: I guess. Have you tracked your blood sugar over time? Before you started taking oxaloacetate, or is it since, so you probably wouldn’t see the effects? I’m just wondering if it would be a cumulative effect from you having taking it, I assume, for years now.

[Alan Cash]: I have been taking it since about 2007, which is when we introduced it into the Canadian market. Basically it just dropped. Initially I was up in the upper 80s to low 90s, and over time I’m just pretty much consistently in the low 80s now.

[Damien Blenkinsopp]: So you have seen some kind of steady decline, or did it decline when the genes turned on and then it stayed there?

[Alan Cash]: It pretty much declined when the genes turned on and stayed there, yeah.

Now there’s ways to lower it even further if I went to a ketogenic diet. I know some people who have been doing this, like Dominic D’Agostino. I think his blood glucose levels are down in the 40s.

[Damien Blenkinsopp]: Wow.

[Alan Cash]: Yeah. But he does a very strict ketogenic diet, and he’s feeding his cells with ketones instead of glucose.

[Damien Blenkinsopp]: Yeah, so I was interested – just before we started the interview – also in just cancer prevention, so we had Thomas Seyfried on here and he recommended a five day water fast twice a year.

So it would be interesting to combine that with the oxaloacetate. It might have a potentially beneficial upside, you know, combining those two rather than doing them separately.

[Alan Cash]: Yeah, we’re seeing that in patients now. Hopefully we’ll be able to get some funding for some clinical trials to combine calorie restriction with oxaloacetate in some of these patients. To take the science from our animal data, which is very promising, but it’s not human data. And so hopefully we can continue our research and help some people here.

[Damien Blenkinsopp]: Yeah. I’m guessing it takes quite a while to get these clinical trials going. Would you expect this to be done over the next 10 years? Is there anything that could help you with that, in terms of getting funders, or what could help to push that along faster?

[Alan Cash]: We’ve taken the unusual step in brain cancer of making oxaloacetate available for a disease through the Orphan Drug Act in the US. So this allows for various medical conditions that have scientific basis to be used for a specific disease. In this case, we’re using it for brain cancer, which is an orphan disease.

So that’s helping get the word out, get some anecdotal cases, which I’ve discussed with you a little bit, and increase the interest in getting a clinical trial out there. We’ll see how that all evolves.

[Damien Blenkinsopp]: Great, great. Thank you. Well, one last question Alan. What would be your number one recommendation to someone trying to use data, in some way, to make better decisions about their health and performance, or their longevity?

[Alan Cash]: I think that’s a great place to start. You know the benefits of calorie restriction, and so just counting calories and reducing calories where you can would be one strategy of using data to improve your health. If you keep track of that information.

Keeping track of blood glucose levels, because having lower glucose levels rather than higher glucose levels is going to positively affect your health. The amount of time you exercise.

One of the ways we’ve seen to increase the NAD to NADH ratio is chronic exercise. So calorie restriction is one way, chronic exercise is another way. A drug such as Metformin can increase your NAD to NADH ratio, or activating AMPK anyway.

And oxaloacetate as a nutritional supplement over the long term. So there are quite a few ways that you can use data and monitor your data to positively affect your health.

[Damien Blenkinsopp]: Alan, thank you so much for your time today. It’s been really amazing having you on the show with all of these interesting stories about these case studies about the work that you’ve been doing.

[Alan Cash]: Yes, and just as, again, as a disclaimer, we don’t want to recommend this nutritional supplement, which we manufacture, called Benagene, which you can get at www.benagene.com, for any disease.

Not to diagnose, treat, prevent, or cure any disease. It’s primarily, we developed this to keep healthy people healthy.

[Damien Blenkinsopp]: Great. And I take it myself too, so I’m kind of following in your footsteps there.

Well Alan thanks again for your time today, and I look forward to talking to you again soon.

[Alan Cash]: Alright, thank you very much.

Leave a Reply

Mitochondria, the power plants of our body, get damaged through aging and other stressors. Lipid Replacement Therapy (LRT) is a tool being used to repair part of this damage to mitochondrial membranes, and can help people recover and optimize their energy levels.

The mitochondria is often described as the “powerhouse” of the cell and it supplies the energy the body needs to function properly and efficiently.

Previously, we have discussed mitochondria as related to cancer, in episode 16 with Dr. Thomas Seyfried and in episode 3 where Dr. Terry Wahls described mitochondrial health and the link to autoimmune disorders.

This episode will focus on mitochondrial function and the symptoms we experience when our mitochondria have sustained damage from either environmental factors, natural aging, or other exposures. Often this leads to general fatigue, cognitive decline, or physical decline and the effects can be seen in patients who suffer from chronic fatigue illnesses, neurodegenerative disorders, cancer and various other diseases.

Lipid Replacement Therapy (LRT) has been shown to repair the mitochondrial membrane damage and improve symptoms for many patients suffering from these chronic diseases and other natural aging symptoms.

One of the things we’ve done with the aging process is we’ve taken people that were fatigued, 90 years old plus, we’ve improved their mitochondrial function to a 30 year old. And they’ve gained all kinds of function in the process. Mental function, physical function, you name it.
– Garth Nicolson PhD

Today’s guest is Dr. Garth Nicolson who is an extremely accomplished research scientist best known for his work with Gulf War Syndrome, and Lipid Replacement Therapy (LRT). He is the president, founder, chief scientific officer, and researcher at The Institute for Molecular Medicine in Huntington Beach, CA where he conducts most of his current research.

He was the leading authority serving the United States House of Representatives on the study of the cause, treatment and prevention of Gulf War Syndrome on suspicion of biological warfare. For his service he was conferred honorary Colonel of the US Army Special Forces and honorary US Navy SEAL.

He has published over 600 peer reviewed research papers and served on the editorial boards of 30 scientific journals. In 2003 he introduced LRT and its benefits for the first time, shedding light on the importance of mitochondrial function and repair of damaged membranes and its benefits for aging, cancer and chronic disease states.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • Mitochondrial function decline is the underlying problem in many chronic diseases (6:43).
  • Mitochondria are the powerhouse of the cell providing energy – like a battery – which fuels the cell’s function (7:43).
  • Oxidative damage to the lipid membrane of the mitochondria is the most universal cause of damage (8:38).
  • Damage to the lipid membrane harms the phospholipid molecules causing “leakiness” across the membrane (11:30).
  • If you don’t produce enough energy in a cell, you lose the function of that cell (13:15).
  • Damage to the energy process in a system can occur during aging, chronic illness, viral/bacterial infection, toxic exposure, etc. (13:55).
  • Some patients have restored their endocrine systems by repairing their mitochondria in some way (15:53).
  • Chronic fatigue illnesses (chronic fatigue syndrome, fibromyalgia, etc.) are directly related to loss of mitochondrial function, which is mostly true for many other diseases as well, such as cancer and neurodegenerative disorders (16:45).
  • Much of the mitochondrial function decline occurs because of the natural aging process (18:46).
  • For instance, improving the function of a 90 year old, fatigued patient greatly improves mental and physical functions for the patient (19:01).
  • Repairing the mitochondrial function for patients who have any of these diseases is not a cure-all, however it is a step in the right direction and definitely supports the overall recovery for the patient (21:21).
  • Dr. Nicolson discusses the importance of lipid replacement therapy (LRT) as a way to replace damaged membrane phospholipids to improve mitochondrial function (22:48).
  • LRT also functions to detox and repair chemically damaged cells as the lipids delivered to the system can soak any chemicals out from the membranes and remove them from the body (27:11).
  • Dr. Nicolson works with populations who have had particular exposures however everyone has been exposed to various chemicals throughout their lifetime (31:05).
  • Using both LRT and infrared saunas can speed up the long, slow process of detoxification and recovery (32:47).
  • LRT can reduce the symptoms of detoxification and recovery; for example LRT used in conjunction with chemotherapy for cancer patients helps the patient manage the side effects of the cancer treatments (34:50).
  • Patients generally see improvement of symptoms between 10 days and 3 months after the start of LRT but when therapy is removed the mitochondrial function declines again and symptoms return (36:39).
  • Mitochondrial function can be measured directly by testing the mitochondrial membranes in the white blood cells (38:38).
  • LRT is becoming more popular especially with naturopathic doctors and individual people as you do not need a prescription to obtain these natural supplements (40:37).
  • An increased dose of lipids is crucial for patients with severe chemical damage or mitochondrial damage so luckily no one has reported negative side effects yet as lipids are natural substances of the body anyways (44:37)!
  • Cholesterol markers and homocysteine levels have been shown to improve when using LRT (45:48).
  • LRT is proving to be effective as an anti-aging treatment, a therapy for various diseases processes, and as a co-treatment option for cancer patients to reduce negative side effects and fatigue related to traditional therapies (46:29).
  • LRT works well at improving energy systems however dosages, etc. do have to be optimized to work with each person’s unique system (50:26).
  • LRT is a lifelong solution and a long term treatment because we are constantly exposed to new toxins, infections, and traumas throughout our lives (52:17).
  • The minimum supplement needed for LRT is NT factor lipids. (55:32).

Garth Nicolson PhD

Tools & Tactics

Interventions

  • Lipid Replacement Therapy (LRT): Used to restore and repair mitochondria function by replacing damaged lipids in the membrane and restoring the mitochondria’s ability to produce energy for the cell. (See relevant lipid supplements below).
  • Infrared Sauna: Used to remove fat soluble toxins in particular from the body. Garth Nicolson recommends using this along side LRT to help with the removal of chemicals from the cells, which tends to improve results.

Supplements

  • NT Factor EnergyLipids: NT Factor is the lipid based supplement that is the main component used in LRT. There are a variety of products including this one, which contain NT Factor. Read more about these on NTFactor.com, as recommended for use by Dr. Nicolson.
  • NT Factor Energy Wafers: The specific NT Factor product that is “child friendly”, as the wafers easily dissolve in the mouth and do not need to be swallowed.
  • ATP Fuel: In addition to NT Factor, this supplement also contains NADH and coenzyme Q10 which also aid in the energy production cycle in a cell.

Tracking

Biomarkers

  • Cholesterol: A cholesterol panel covers a number of markers related to lipoproteins (such as HDL and LDL) in the blood. LDL and HDL are standard markers used to track cardiovascular risk. Dr. Nicolson has seen LDL drop and HDL increase with use of LRT – which typically indicates improvement and lower cardiovascular risk.
  • Homocysteine: A marker often used to assess cardiovascular risk. Higher values relate to increase cardio risk. This marker is often related to methylation SNPs like MTHFR as discussed in episode 5 with Ben Lynch. Dr. Nicolson has seen homocysteine levels drop with LRT also.
  • Mitochondrial Membrane Potential: An approach to assessing the health and functioning of a cell’s mitochondria by looking at it’s potential or voltage. In the same way as with a battery, if it is functioning, the outer membrane of mitochondria has an electric output and thus a voltage.

Lab Tests, Devices and Apps

  • Inner Mitochondrial Membrane Potential via Rhodamine 123: The status and functioning of the mitochondria are assessed via analysis of mitochondria inside white blood cells with the dye rhodamine 123 and a fluorescence microscope (see study here). The test provides a quantitative fluorescence value indicating the health of the mitochondria and integrity of the membrane. This test is not easily accessible and is used for research purposes.

Other People, Books & Resources

Organizations

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: Garth, thank you so much for joining us on the show.

[Garth Nicolson]: Well it’s a pleasure to be on your program.

[Damien Blenkinsopp]: To start off with, I was really interested to find out how you first started working with mitochondrial function. Where it first came up for you, and you started taking an interest in it.

[Garth Nicolson]: Well this really goes back to our work on Gulf War veterans. And from that we did work on civilians with Chronic Fatigue Syndrome, Fibromyalgia Syndrome and related fatiguing illnesses. And one of the underlying problems in all of these – and it turns out any chronic disease – is mitochondrial function. There’s just not enough energy around to provide all the necessary high energy molecules in a cell to perform all the functions necessary.

Then you get into energy deficits, and if the energy deficits are systemic, well you can have a chronic condition with lack of energy, lack of mental alertness, all kinds of other additional problems. Because basically every cell requires energy to perform. And some cells, such as the nervous system, require a lot of it – six times what most cells require – and so they’re particularly sensitive to losses in energy function.

[Damien Blenkinsopp]: It sounds like there’s a wide variety of symptoms that could be reflecting some kind of mitochondrial function damage, or interruption. Is that the case? Is it quite a wide variety of symptoms?

[Garth Nicolson]: There are a wide variety of symptoms associated with loss of mitochondrial function. And as I mentioned before, the mitochondria provide energy to your cells. In fact, almost all the energy is provided by mitochondrial function in our cells.

If you’re breathing oxygen, you’re using that oxygen to provide it to mitochondria, so they can convert it to energy, along with other molecules that they use in the process called Electron Transport System. And it’s a complicated conversion system which converts, essentially, stores that you have in your cells to high energy molecules that you need for doing a number of different functions.

Now in different clinical conditions, we find that these people have given signs and symptoms, but often they’re also related to mitochondrial function, because a lot of these problems arise when there isn’t enough energy left for cells to perform their functions necessary, and consequently this can have profound effects.

[Damien Blenkinsopp]: Right, and what kinds of damage can interfere with mitochondrial function?

[Garth Nicolson]: Well there are a variety of different types of damage. We’ve concentrated on damage to the lipid membrane of the mitochondria, because this turns out to be the most sensitive form of damage, or the most universal form of damage that we find in mitochondria. They’re particularly sensitive to oxidative damage.

And oxidative damage can occur, for example, during infection, during high performance issues, if you get run down – for example, physically, mentally, you name it – or because of infections or other damages, disease associated damages, mitochondrial function suffers. And in order to recover from all of these, you do have to have mitochondrial function available, because you can’t repair and recover without it.

[Damien Blenkinsopp]: So are we all constantly repairing the lipid membranes, as you are talking about? Is this a constant? Because when you mentioned, for instance, high performance, could that be someone like an athlete, or someone who’s heavily into fitness? Are they constantly causing this type of damage with oxidative stress, which then has to be repaired?

[Garth Nicolson]: Well, that’s true, but it’s also true during aging, for example, where our membranes normally get damaged during aging processes. And mitochondrial membranes are particularly sensitive to aging, and as we age, they get more damaged. And so if you look at a 90 year old, many of these 90 plus year old people have lost almost half their mitochondrial function.

And a lot of that is due to accumulated damage in the mitochondria, and a lot of the damage is due to the damage to the mitochondrial membrane. And the inner mitochondrial membrane is integral to our production of energy, and if that’s damaged, they become leaky, and lose function, and they can’t maintain the trans-membrane potential, the electrical potential across the inner mitochondrial membrane, which is absolutely necessary to produce high energy molecules.

[Damien Blenkinsopp]: Right, right. Well to take a step back, when you’re talking about trans-membrane, what’s the function of the membrane in terms of generating electricity? Because basically the mitochondria are a bit like our power cells, you know our batteries, which feed our cells and the rest of our body with energy. But how do they do that, and what’s the role of the membrane in that process?

[Garth Nicolson]: Well I always liken mitochondria to the little batteries inside our cells. And like any battery, it has to be insulated to selectively permit a trans-membrane potential across different membranes in our mitochondria. It’s a biological membrane instead of a synthetic membrane that we have in batteries, but it provides the same kind of insulation necessary to separate electrical charges.

And so when this separation of electrical charges occurs, you can make a battery out of it. Essentially that battery drives the production of high energy molecules in the mitochondria just as it does in a normal battery.

[Damien Blenkinsopp]: Great. And what types of damage are we talking about when we’re talking about this membrane getting damaged?

[Garth Nicolson]: Well there’s certain molecules in the membrane. It can be the phospholipids that make up the matrix of the membrane. But when they’re damaged, there can be enhanced leakiness across the membrane. So it’s like you get a leakiness if you take the insulation off a battery it will leak, and you’ll lose the charge of the battery.

The same thing in the mitochondria. If they become leaky, and the inner membrane becomes leaky, you can lose the trans-membrane potential, and then you can’t form the high energy molecules. There are also some critical lipid molecules, like cardiolipin, that are exquisitely sensitive, in fact, to oxidative damage. And when they’re damaged, this results in loss of function. So these different types of things are very important, the direct function and the trans-membrane potential.

[Damien Blenkinsopp]: So these are different types of fat molecules that we need in the membrane for it to function optimally. And it’s kind of like holes have been punched in the surface of the membrane, and molecules have been knocked out of it? Is that a way to look at it?

[Garth Nicolson]: It’s a little more subtle than that. When oxidative damage occurs, think of the lipid chains that are going into the membrane, into the hydrophobic matrix of the membrane, you can think of kinks getting in those chains after they’ve been oxidatively damaged. And those kinks mean that the lipids can’t fit together as well, and there’s a certain rate of leakiness across the membrane.

[Damien Blenkinsopp]: Great. Is this something anyone should be concerned about, in terms of the type of damage? You just referred to a 90 year old, the damage that’s gone on to them.

What kind if symptoms could someone think of if, maybe they don’t have a chronic disease like some of the ones you referred to, but are there other indicators that potentially they have some aspect of mitochondrial damage, in terms of some symptoms they could look out for which might identify that?

You were referring to, like brain fog, or other symptoms. Are there obvious ones, or is it always very different, and it’s kind of difficult to differentiate this to other things that might be going on?

[Garth Nicolson]: Well, obviously a number of different factors can cause problems with your central nervous system, for example, your peripheral nerves and other systems of your cells, but one of the things that can happen is that if the energy systems inside the cells get run down, they don’t function as well. It’s as simple as that.

So if you don’t produce enough energy in your cells, your cells can’t function as well. So all the different functions that cells do, of course the nervous system, the function is to transmit nerve impulses, if they’re not functioning properly then the nerve impulses can’t be transmitted properly. And so that leads to a loss of function.

Now this can occur when people get run down. And they can get run down for a variety of reasons. They can lose their energy stores, for example, or they can have them damaged through the mitochondrial damage that I was talking about. Some of this occurs naturally, and it’s reversed by rebuilding things like the membrane as it’s damaged.

And if there’s some process that prevents that rebuilding of the membrane, then this will persist. For example, during infection we know that a variety of different types of infections – viral, bacterial and so on – cause an increase in the what are called reactive oxygen species, or ROS. And these damage the membranes of the cell, and in particular they can damage the inner mitochondrial membrane and cause loss of function.

So these are things that can happen. So it can happen during infection, it can happen during aging, it can happen during a chronic illness. It can happen when you get run down, for example, or you have exposures of various types that are toxic. So under a variety of different conditions you can have damage done to your mitochondria, which means loss of function, and your body cannot repair itself as well without that energy that’s necessary to do it.

[Damien Blenkinsopp]: Great. And I guess an important differentiation I just wanted to point out here is a lot of people talk about adrenal fatigue, and if one of the symptoms is fatigue, basically having low energy – which I guess would be one of the outputs of mitochondrial damage – how do you differentiate it, or is it possible to differentiate it, to something which someone would diagnose as adrenal fatigue? Or how do you look at that?

[Garth Nicolson]: Well they go hand in hand, because for the adrenal gland to function, it requires energy. So if there’s an energy deficit in the adrenal gland, then that’s not producing the correct hormones and everything that your body needs. Cytokines and so on. So this sends up the deficit, and this can cause a problem. So they’re inter-related.

[Damien Blenkinsopp]: Right, right. And it sounds like you’d think mitochondrial damage might be a pre-cursor to adrenal fatigue, often.

[Garth Nicolson]: It could be a pre-cursor to adrenal fatigue. And so we’ve seen people that have managed to repair their endocrine systems by repairing their mitochondria. So at least we know, and at least in some patients, that’s reversible.

Now in other patients they may have either genetic defects, or toxic exposures, or something like that, that’s damaging specifically those particular adrenal glands. So that’s a different issue. But we do know that these things are inter-related. If you don’t have the energy, you can’t repair.

[Damien Blenkinsopp]: So you’ve worked, in your clinical studies and your patient population, you’ve worked with Gulf War illness and Chronic Fatigue Syndrome and some others. Could you give us a brief explanation, for the audience, what are the issues that these people have? How critical are they, what kind of situation are they in? Before we talk about the lipid replacement therapy and what it was able to do.

[Garth Nicolson]: Well there’s quite a bit of variation on the signs and symptoms of people with chronic illnesses, and a variety of different sorts. We started working with what are called Fatiguing illnesses, because Chronic Fatigue is the hallmark of those illnesses, and that’s directly related to mitochondrial function. So that was a good place to start.

A lot of other diseases, mitochondrial function may be thought of as a side issue; although it’s important it may not be the primary clinical manifestation of the disease process. Nonetheless, it’s still important [for] practically any chronic illness.

If you take something like a neurodegenerative disease, for example, mitochondrial function is intimately tied up with neurodegeneration. You cannot repair your nervous system if you don’t have the energy available to do it. So if mitochondrial function goes down, you’re particularly susceptible to neural damage. And to have that process going on, it can exacerbate it.

So this is one of the things that we are trying to work with, how to improve mitochondrial function, how to help people with a variety of chronic illnesses.

So we started with the fatiguing illnesses, and Gulf War Illnesses are really one of the fatiguing illnesses, but Chronic Fatigue Syndrome is another one, Fibromyalgia syndrome is another. Fibromyalgia syndrome is a little different because it’s also characterized by widespread pain, in part, we think, that’s due to mitochondrial function problems as well. The nervous system not operating properly. But there are some other factors as well.

So all these issues have as an underlying commonality loss of mitochondrial function. In a variety of different diseases, that’s true. And it’s true in infections, it’s true in toxic exposures, it’s true in a wide variety of different diseases. Cancer, you name it, practically every disease you can think of has a problem with mitochondrial function. They can’t keep up the repair process.

[Damien Blenkinsopp]: Are there other, beyond the ones we’ve already discussed, are there other types of patient populations, or other use cases you’ve looked at for lipid replacement therapy? You mentioned anti-aging as well. Have you worked with people for that area also?

[Garth Nicolson]: Exactly. Well, anti-aging is probably the normal manifestation of mitochondrial functions. I mentioned as you age you lose mitochondrial function naturally. And there’s an increase in the oxidative damage that occurs in all of our cells, so we need to reverse that process.

And so, one of the things we’ve done with the aging process is we’ve taken people that were fatigued, 90 years old plus, we’ve improved their mitochondrial function to a 30 year old. And they’ve gained all kinds of function in the process. Mental function, physical function, you name it. Every system that seems to be important improves.

[Damien Blenkinsopp]: In terms of the studies you’ve done, are these all based on studies, or is some of this based on patient population, other studies? Because I’ve seen some of your presentations, looking at your studies and work on the fatigue cases and the Gulf War Syndrome. So are all of the studies basically based on those patient populations versus the anti-aging, or have you also done studies on anti-aging also?

[Garth Nicolson]: Well we’ve done some studies where we’ve included older people in our studies, and that’s where we see the anti-aging effect. So with those older cohorts of patients – well they really are, they’re subjects, not patients, because their main problem is they’re elderly and they have fatigue issues. So we can’t categorize them as a disease process, because it’s a natural process of aging.

So they are fatigue subjects. So they have chronic fatigue, but they don’t have a disease called Chronic Fatigue syndrome, or Myalgic Encephalopathy, or something like that. They have fatigue problems. So we work with people like that as well.

We’ve also worked with cancer patients, we’ve worked with people with chemical exposures, we’ve worked with people with infections. For example, there are a wide variety of chronic infections that we work with, like Lyme disease, mycoplasma infection, so on and so forth. Were, again, in the chronic disease process, it’s always an issue. Mitochondrial function is always an issue.

[Damien Blenkinsopp]: Right. Would you say it’s going to be helpful in most situations to have some kind of lipid replacement therapy as a support for your mitochondria? In terms of the disease process, to give an idea, what kind of results do you get from people? Can you get people back to resolution? Or is this basically managing symptoms, managing the damage of mitochondria, kind of therapy?

[Garth Nicolson]: Well it depends on the situation. If we take normal, healthy people that can get run down for one reason or another, yes we can bring them completely back by repairing their mitochondrial function.

If you take people that are in a disease process, usually these processes are much more complex than just mitochondrial function. Mitochondria being one part of the problem that they have. And we can repair that part, but there are other elements that have to be taken care of as well. For example, if you take somebody with a neurodegenerative disease, does just repairing their mitochondria reverse the process? No. There’s some other elements that are involved.

Does it help? Yes, it seems to help people with cognitive loss and so on and so forth. But it doesn’t reverse it or completely cure the problem. That would be a pretty simplistic approach to these complex, multi-factorial issues. But, we do know that this is an important element in all of these processes.

[Damien Blenkinsopp]: Do you feel like it provides a support to get people to recovery? That it’s an important ingredient in your practice? You feel like it helps people to recover by giving them that mitochondria energy, thus supporting things like the immune system, and other systems of the body?

[Garth Nicolson]: Absolutely. If you’re talking about the immune system, for example, it requires energy to function. So if your energy goes down, your system might be less capable. So, it’s absolutely important there.

And it’s absolutely important for any type of recovery, because what is recovery? Generally it’s repairing our cellular processes and our system processes, our organ processes, and that requires energy. That just doesn’t happen naturally without energy.

[Damien Blenkinsopp]: Okay, so let’s get kind of concrete here, for the audience listening at home. What is lipid replacement therapy? What does that actually involve, what do people do when they’re taking lipid replacement therapy?

[Garth Nicolson]: Well this is a particular type of lipid, this is not just the normal gross lipids that people might think of. These are very particular membrane lipids, so these are lipids that make up the membranes of all our cells. And of course as I mentioned before the membrane is an integral part of the mitochondria, but they’re also an integral part of other organelles within the cell.

Membranes, in fact, are absolutely essential for the function of all of our cells. And they get damaged, they get run down, we have to replace the molecules and the membrane occasionally. And some of the most sensitive molecules are the lipid molecules, because they’re very sensitive to oxidative damage, which can occur in any disease process, infection, or whatever.

So this is something that has to be replaced. And we came up with this idea, well we need to replace the membrane lipids, which are primarily a class of lipids called glycerophospholipids, that don’t need a lot of other things. That’s what we need to help repair the, more or less the matrix of the membrane.

So if we supply that in purified form, undamaged form – which is very important – then we should be able to help repair this process, because we have natural systems in our body to replace these lipids as they’re damaged. Because we evolved with the mechanism to help repair and replenish our membranes.
The problem is we can’t keep with the damage, and that’s when the disease process can occur. So to help it along, if we provide the lipids, well we can help that process.

Now people say well, you can buy all kinds of different stuff at the store. Well, the reason it doesn’t do it is a lot of those lipids are already damaged, they’re already oxidized, they’re not the right kind of lipids, and so on. So they’re not very helpful. And even a lot of supplements that people buy in the store are not very helpful, because even if they have lipids they’re not the right kind of lipids, or they’re already damaged, or they’re damaged during the shelf-life.

These are very sensitive issues, which we’ve tried to overcome with the products that are designed to survive and provide our bodies with exactly the right lipids that we need to repair our membranes and restore function.

[Damien Blenkinsopp]: So, would it be correct to, because you provide these in pill form. So is it these are things we can get from food, but we get them in very low quantities, so it’s like having a very high dose of the reduced form? The active form versus the oxidized form of these lipids?

[Garth Nicolson]: Well that’s part of it, but a lot of the lipids are damaged already by the time we take then in in the foods, and unfortunately, our transport systems, they can’t readily acknowledge a damaged lipid from a properly pristine, undamaged lipid. And so a lot of these things might get transported in as well. Or at least they’re transported in, too much of it is transported in if it’s damaged.

So we kind of flood the system with undamaged lipids, and that helps the whole process move very smoothly. It also helps remove the damaged lipids, which is one thing we’re working on now, is how to take people who are chemically damaged – and I can talk about that later – help them remove those damaged chemicals from their bodies.

And it turns out that the replacement therapy can help do that, because it’s an energy driven process, so it helps provide energy, but it also is very dependent upon moving what we call hydrophobic molecules out of the cells. And the lipids that we provide have a very important part of their structure, a hydrophobic part of their structure, which helps remove these molecules.

So if they’re present in quite a bit of excess it can help remove these damaging chemicals from our system. And that’s one thing we’re working on right now.

[Damien Blenkinsopp]: That sounds very interesting. We’ve spoken about detoxification before. So, just to take a step back, when you say chemically damaged people, what kind of things has happened to these people?

[Garth Nicolson]: Well often people with chemical damage due to illness could be anything from herbicides, for example, to very industrial chemicals, and so on and so forth. Often damaging chemicals are chemicals that we would classify as hydrophobic chemicals. That is, they don’t like water. They like fat, essentially.

So they concentrate in our membranes, they concentrate in the fatty parts of our cells and lipid droplets, and so on. And they can remain there indefinitely. And they can bleed out very slowly and cause problems with the cellular mechanisms. So to get rid of these, we need a system to remove them.

But the system that we have for detoxification is an energy dependent system, at least one of the most important ones. So by providing mitochondrial energy, that helps in that process. But it also helps remove them because, it turns out, the lipids that we provide kind of soak up these molecules, because it will bind to the lipids and it helps them be excreted from our cells and from our system, so they naturally come out in the GI system.

[Damien Blenkinsopp]: So that sounds like the new molecules that you’re providing are basically replacing the ones which have absorbed the toxins, the chemicals, the fat soluble chemicals, and are thereby displacing them and allowing the body to remove them.

[Garth Nicolson]: Well that’s basically it, but it’s providing a different store, or different storehouse for these chemicals to move into, but a storehouse that we can eliminate. And that’s the important thing is to do that.

One of the mechanisms for moving chemicals that’s most important for these very damaging chemicals that concentrate in our cells is that there are enzymatic mechanisms, to conjugate the offending chemicals with other hydrophobic molecules within the cells, to make them more easily removable.

Well when that happens, if we have somebody’s undergoing lipid replacement therapy, there are a lot of these lipid droplets around and lipid carriers around, which could help soak these conjugated chemicals up and remove them from our systems.

So it’s a process, it’s a very slow and steady process of removal. It doesn’t, of course, happen over night, but it’s a natural system for removal of damaging offending chemicals from our bodies. And this just takes it to a maximum advantage by providing some of the things necessary for it to operate in the first place.

[Damien Blenkinsopp]: So out of interest, because we’ve spoken quite a bit about detoxification, and also the kinds of tests involved in measuring things like mercury, lead, and other toxins. Are you able to test these chemicals in fats and see the change, and how long does it take? Does it take a month, two months?

[Garth Nicolson]: Again, we’re not talking about heavy metals, because that’s a different process of removal. We’re talking about chemicals that partition themselves into the fatty portions of your cells. Well these chemicals, and they could be, for example, herbicides or any number of different chemicals.

[Garth Nicolson]: Yeah, a lot of the chemicals that damage our cells are very hydrophobic, and they partition into the fats of the cell, the fat systems and the membranes of the cell. They have to be removed or eventually they’ll interfere with the function. That removal process is slow. It does not happen over night.

So it’s a very slow process of bleeding them out and removing them from the stores, and so on and so forth. So one of the first things that you can see, for example, if you give somebody lipid replacement therapy, is you might actually see an increase in the number of these chemicals that are being excreted, that are being at least mobilized as well.

So there may be an increase in the blood levels of these, because they’re being brought out of the cells and being transported to the brush border cells in the intestines, and then secreted there. But again, there are a number of different mechanisms, this being just one of them.

[Damien Blenkinsopp]: I’m guessing this is a new area, it sounds like you’re more focused on this recently?

[Garth Nicolson]: This is a very new area of ours that we planned to get very focused on because it’s so important, so necessary to help these people, many of whom have been damaged for decades without much help at all.

[Damien Blenkinsopp]: So just out of interest, are there any specific exposures? And is it people working in factories, or is it people who have detoxification systems which aren’t functioning, or perhaps they have some methylation or other issues, which they’ve lived a pretty normal life, compared to most people. It’s not like they’ve been in any specific situation which could have exposed them to more chemicals.

What kind of populations are you dealing with here?

[Garth Nicolson]: We work with the populations that are sick in general, although a variety of different individuals may be exposed to chemicals, because they are all over the place in our modern environment. And people will have tremendous variation in their sensitivities to these chemicals.

So you may have somebody that’s been normally and naturally exposed who’s becoming sick because of it, and other people not at all. Because there’s such a range of sensitivities to these.

So we’ve worked with people who’ve had specific exposure. For example Vietnam war veterans who’ve had exposure to Agent Orange, which is a particularly nasty chemical that takes a long time to remove from the body. Or Gulf War veterans that are exposed to petrochemicals in the forms of fumes, and exhausts, and oil fires, and so on and so forth, during the first Gulf War, and some during the second Gulf War.

So these are people that have had chemical exposures above and beyond the normal types of exposures that we might see. But in the industrial environment that we’re in, there are a lot of people that get exposed to various chemicals.

If you work in the petrol-chemical industry, for example, you could be exposed fairly easily, and it may not cause any problems with you but there are other individuals who have severe problems because of it.

So again, there’s a wide range of different sensitivities to these different chemicals that are seemingly in our population.

[Damien Blenkinsopp]: Great. I just want to bring it up, because I know a lot of people talk about infrared saunas, and saunas in general when it comes to fat detoxing from the fat soluble toxins like the ones we’re talking about. So, do you have a viewpoint on that, on the effectiveness of infrared sauna? Is it something you’ve ever gotten involved with, and could you compare it to your process?

[Garth Nicolson]: We’ve looked a bit into that, and yes the use of infrared saunas to actually bring the chemicals out in your sweat, which is what it really does. But if you do these at least a minimum two times a week, you’ll slowly start to deplete some of the chemicals from your body.

What we found is if you add our lipid replacement therapy on top of that, you can accelerate the process of removing the chemicals from your body that way. So again, this can be an adjunct to a variety of very well established methods for detoxification.

[Damien Blenkinsopp]: Great. Have you seen complete recoveries, or to what degree have people recovered from their health? Because we’re talking about people that are quite sick.

[Garth Nicolson]: Well, we’re in the beginning process of this right now. So this long term goal of ours, but again, this is just the beginning, and we’re seeing some responses. We’re seeing people that are feeling better, getting better. But again, it’s a long, slow process for recovery.

And again, there may be other types of damage along the way that we discover that these individuals have. Most of these chronic illnesses are multi-factorial. There’s not just one problem, generally these people have a number of problems, this being one of them. But this is something that we can approach.

[Damien Blenkinsopp]: Absolutely. So it sounds like an on-going process of a year. We’re talking really long term, just to give people an idea.

[Garth Nicolson]: We’re talking long term. Particularly when it comes to removing offending chemicals from your body, it’s a long term process. Same thing with removal of heavy metals from your body, it’s not a short term process.

It can take years to remove heavy metals from your body, and the same thing is true with chemicals that build up in your body. It can take a long time to really get rid of them. And in fact, if you mobilize them too quickly, you can really make people feel sick in the process. So it’s better to do it naturally and slowly.

[Damien Blenkinsopp]: So, I’m glad you brought this up, because we’ve spoken about these kind of topics quite often on the podcast before. It’s nice to get that. Is there anything you have to do in terms of supporting them?

Because you mentioned that some people can get sick if it comes up too fast. Is there anything else that you do for them while you’re using the lipid replacement therapy to support detox, or as long as you go at a reasonable rate, which I imagine is a reasonable dose?

[Garth Nicolson]: What we have found is that lipid replacement therapy actually reduces the symptoms of detoxification, reduces the symptoms, for example, of cancer chemotherapy. So it is very significant in our studies with the cancer patients. They’ve showed really quite a dramatic decrease in the side effects due to chemotherapy, because it causes a lot of damage to our normal systems, and the lipid replacement therapy helps repair those normal systems.

So you get a reduction in the associate problems, very adverse events that occur during cancer therapies. So, you could figure that is, again, when you’re repairing the normal mechanisms of the cells, the tissues, and this helps the overall process.

[Damien Blenkinsopp]: Right, right. So you’re saying a lot of the symptoms people have when they’re going to a detoxification process, or, as you’re saying, chemotherapy or exposure to other toxins or when they’re ill, is due to mitochondrial damage, right?

So when you’re supporting the mitochondria with lipid replacement therapy, it helps to manage the symptoms as well in that process and reduce them, because there’s not as much damage going on.

[Garth Nicolson]: Well it does, and not only that, it helps accessory systems as well, because a lot of the signs and symptoms that we see that are associated with damage are release of chemical messengers like cytokines, that cause all kinds of problems in the body, and so on.

And damaged tissues can initiate this whole process. So if you reduce the damage, you can reduce these accessory damage response systems from exacerbating the signs and symptoms in these patients.

[Damien Blenkinsopp]: Great. One thing I wanted to kind of make clear to people, what kind of results, because when I was watching some of your clinical studies you were looking at. Over the few months you were giving lipid replacement therapy, could you talk about what kind of impacts it generally has on the people?

If we’re talking about say the chronic fatigue, or in the Gulf Syndrome cases, the ones I saw, what kind of time-lines did you walk through in your clinical studies? And also, it was interesting what happens when you stopped the therapy.

[Garth Nicolson]: This is a process that takes time. You don’t repair your mitochondria overnight. It takes days to weeks. The process can begin fairly soon after you take the lipid replacement, but it takes time to fully repair the mitochondria.

And we’ve seen, again, that it can take, depending upon the different formulations of lipids, anywhere from 10 days to three months, depending on the formulation, depending on the patient type, to reach an equilibrium of repair. And these people see a maximum benefit in that time. But they do see benefit fairly, fairly soon.

[Damien Blenkinsopp]: And then what happens when you stop the therapy? Depending on the condition. So when it’s in a chronic condition, like Chronic Fatigue Syndrome, or Gulf Syndrome, where they have some kind of infection or some underlying cause, then what happens when you stop the therapy?

[Garth Nicolson]: Well then it slowly returns back. As the mitochondria get damaged again, it will slowly go back to the way it was before you started the therapy. And one of the trials that we did was called a cross-over trial, where we take patients, and they’re on part placebo and part the lipid replacement therapy, but they don’t know when they get it.

And what we found was when they get the lipid replacement therapy, they improved. They had reductions in fatigue with 35 to 45%, enhancement of mitochondrial function was a little bit less than that in terms of percentage, but very significant. But when we switched them to placebo, it slowly started to go back again.

[Damien Blenkinsopp]: Yeah.

[Garth Nicolson]: And they wondered what was going on, because it wasn’t having the same effect. So we could prove that it was in fact the lipid replacement therapy that was giving them the benefit, not a placebo effect.

[Damien Blenkinsopp]: Great, thank you very much for that. And so, what were you using to assess mitochondrial function in terms of tests?

[Garth Nicolson]: Well what we do is we take a blood sample from patients, we isolate the white blood cells which have mitochondria – the red blood cells do not have mitochondria – and we can measure the mitochondrial function directly.

And what we’ve done actually, more recently, is we’ve measured the membrane potential of the inner mitochondrial membrane using a special redox dye, called rhodamine 123, and see that fluorescent dye in the mitochondria. If the mitochondria are fully functioning, they will reduce that dye and it will fluoresce.

And if they’re not functioning, they can’t reduce it, and the mitochondria won’t fluoresce. So you can see it visually in a microscope and you can quantitate the fluorescence so we can get a quantitative value.

[Damien Blenkinsopp]: Great, great. So this is your own lab tests that you developed for this purpose?

[Garth Nicolson]: Well other people really developed the tests, we just adapted it to what we were doing.

[Damien Blenkinsopp]: Great. Well I guess what I wanted to say is it’s a pretty unique [test], like we wouldn’t expect to find it outside of research, apart from potentially your practice, and some other specific areas.

[Garth Nicolson]: This is a very specific research type of test, and you won’t find it in your normal doctors office, that’s for sure. Because it requires some complicated machinery, like a cell sorter and fluorescent tools, fluorescent light sources, and so on and so forth. So, it’s a bit complicated, but it works in a research environment.

[Damien Blenkinsopp]: So it’s not something you use on your patient population, I guess it’s cost prohibitive. It sounds like quite complex.

[Garth Nicolson]: Well it is, and speed is very important. So you have to have a very fresh sample. Often if you’re not doing the test immediately or soon, you could get variable results. So to get the best results, speed is very important. So, generally you have to have this complicated equipment on hand to do it. And the technical expertise to do it.

[Damien Blenkinsopp]: So, how well accepted is lipid replacement therapy? We’ve spoken with functional medicine doctors here, and we’ve looked at functional medicine quite a bit, contemporary medicine is there of course also, and in the research studies.

Is there a lot of support for it right now, or is it still something quite niche that basically there’s not very many people using?

[Garth Nicolson]: Well more and more are using it, because more and more people are finding out about it. And we published some 28 papers on this process. So, it’s well-known in the literature. We published a number of reviews on it now.

Less known in the general population of physicians, more in the naturopathic medicine areas, mainly because I get around and talk to these people, and then they get informed that way, through conferences and so on. So it’s becoming more and more well-known, and even people outside the medical area will find out about it through broadcasts like yours, for example.

They can buy this stuff over the counter, it’s not something they need their physician’s prescription for. These are natural supplements. It’s the lipids that are in our membranes all along. So, it’s not a drug, it’s not anything but what’s there. We just have to provide it in a way that’s not damaged.

[Damien Blenkinsopp]: Well so I’ve got to ask you the question, are you using lipid replacement therapy yourself?

[Garth Nicolson]: Absolutely.

[Damien Blenkinsopp]: Okay. How long have you been using it?

[Garth Nicolson]: Well, I’ve been using it for years now. It was very effective for me in terms of reduction of fatigue. And for example, recently I got an influenza virus, unfortunately. It kind of knocked me down, and this helped the repair process. I recovered much more quickly than normal, and so I think it’s very useful for that.

[Damien Blenkinsopp]: What kind of dose are you taking? Let’s talk about practicals here. Because I’m taking ATP Fuel, for example, because I’ve had my own issues and it was recommended to me. And your research was recommended to me, so that’s kind of where I came into it.

So I’ve been taking that for a while, the ATP Fuel. And you have the NT Factor, which is a part of that. Is that actually your company who supplies that, or is that another company?

[Garth Nicolson]: I’m in a non-profit organization. We’re not really a company, but we do consult with companies like Researched Nutritionals that makes the ATP Fuel, [and] Nutritional Therapeutics in New York which makes the NT Factor, the lipids.

In fact, the Researched Nutritionals uses the NT factor product in their own product. They add some other things as well. So, ATP Fuel is an excellent product for these chemical exposure patients. In fact, I’ve just been going back and forth with the President of Research Nutritionals because we need to increase the amount of NT Factor, which is the lipids, to that product to really help these individuals.

So what we found is that more of the NT Factor is actually better. You might want to supplement your ATP Fuel with some NT Factor Lipid Wafers. By the way this is an excellent product.

We use these with children, for example, that have autism spectrum disorders, and these children have mitochondrial function problems. They readily take these wafers, and they don’t take pills. You can’t get them to take a pill.

[Damien Blenkinsopp]: Right, right.

[Garth Nicolson]: But these wafers are very tasty, and they’re creamy, they melt in your mouth because they’re lipids. So they like these creamy things, and so we have no problem with the compliance, even with difficult cases like these autistic children.

These are things that we work with on a daily basis, and we’re trying to improve our products as we go. Recently we found that although ATP Fuel is a really good product, I’m saying for the chemically exposed individuals that we need to increase the amount of NT Factor with the lipids in that product.

[Damien Blenkinsopp]: So just for the audience, the ATP Fuel has co-enzyme 10 and NADH added to it. Obviously, say that the dose of the lipids, which you say is the most important, this is kind of the innovation here, the lipid replacement therapy.

[Garth Nicolson]: That seems to be the most important thing because if you leave that out, it’s not very effective. If you put it in, it’s very effective. So it is a combination, but it’s a critical part of that combination.

[Damien Blenkinsopp]: Let’s just talk downsides here. Are there any downsides you know to this, and are there any safety issues? I just want to make that clear in terms of, maybe if you overdose it. You’re talking about increasing a dose for chemically exposed people. Is there any downside or risk to taking a lot of this?

[Garth Nicolson]: We’ve never seen any safety issues with the NT Factor lipids. As a matter of fact, we’ve given approximately 40,000,000 doses of this to patients without any recorded evidence of a real side effect.

And the reason for that is these are natural molecules that are in our cells and our systems all along. So we’re not giving our systems anything that’s different. We’re not giving them a drug, we’re not giving them something that they don’t see all the time anyway. I don’t know that it has any toxicity.

There are some studies that had been done in animals, where they’ve been given tremendous doses, without any effect at all. And we’ve had patients that have been on, oh, up to several grams per day of the NT Factor lipids without any [negative], as a matter of fact more positive effects. Their blood lipids had more normalized, they’ve had a lot of really positive things happen to them.

[Damien Blenkinsopp]: So that’s interesting. What kind of quantitative changes have you seen in terms of, are you talking about cholesterol markers?

[Garth Nicolson]: Yes.

[Damien Blenkinsopp]: Have those changed as well?

[Garth Nicolson]: Cholesterol markers and bad and good lipids. For example, lipoproteins, we’ve seen a move in the right direction. We’ve seen reductions in a product that’s associated with Heart Disease, homocysteine.

We’ve seen in elderly patients a reduction over time in homocysteine levels, which are directly related to coronary, artery disease and heart attack. So these are some of the beneficial things that we’ve seen in patients taking this long term.

[Damien Blenkinsopp]: Great, great, thank you for that. So, are there things that you’re looking for in the next five or ten years, where you think there’s going to be some more changes or innovation? Or is there anything you’re kind of excited about the opportunity of this, to help more people or to improve it?

[Garth Nicolson]: Well we’re doing an anti-aging study right now, which I’m very excited about. It’s actually going on in Uruguay. A colleague of mine who is there is a specialist on sperm function, and he takes care of men with fertility problems. But as we age, our sperm function declines, and that’s what I’m interested in as a test model for anti-aging.

So far what we’ve seen is that even in vitro, if you take sperm they have a certain lifetime. So if you take older men they have less of a lifetime, that is they can be for a while, but then they start losing motility more rapidly than younger men. But if we put in the NT Factor in it, we can help restore the function of the sperm even from older men.

So the next step is that we’re going to go from these in vitro experiments, which are very interesting, sperm motility, to in vivo experiments where we look at actual men with fertility problems that have functional problems with their sperm motility, and see if we can help repair that process.

But in terms of it’s anti-aging, which is what I’m really looking for, long range, this is an interesting model to look at. So whenever we have systems that undergo slow degeneration, like sperm function over time, if we can reverse that process, that means that we’re having an anti-aging effect, and it’s very clear, it’s very specific, and very quantitative effect. And so that’s one of the systems that we’re looking at, and I’m very excited about.

And we also have a number of different diseases processes that we’re very interested in, and we’re trying to intervene and see if we can help. Neurodegenerative diseases is one thing I’m very interested in. That’s obviously a very long term and slow process to eventually recruit patients in that area.

Another thing is reducing the adverse effects of cancer in cancer therapy. So there are two aspects of this. If some person has cancer, often they have what’s known as cancer associated fatigue, in the absence of any therapy. And of course the NT Factor will help patients with that.

We’ve seen a 30% reduction in that fatigue with patients with long-term cancer, that have had cancer associated fatigue. But it’s really reducing the side effects of cancer therapy that is most interesting, because we’ve seen reductions in side effects to chemotherapy that are really dramatic. So there’s reductions, for example, not only in fatigue but in vomiting, and malaise, and a number of other side effects – headaches, for example, and so on – associated with chemotherapy.

I think the reason for that is we’re helping repair the normal systems very rapidly in these patients after their burst of chemotherapy. So you might ask, well does this interfere with the therapy? And the answer is no, because it turns out there’s a window of therapy which is very short for the cancer, but it’s very long for the normal systems.

So these chemotherapeutic drugs attack the cancer very quickly, but then they have lingering effects on our normal systems for months, literally, after the therapy is over. So, what this does is the NT Factor helps reverse that process of damage after the therapy.

[Damien Blenkinsopp]: It sounds like you’re saying that there’s no risk of them providing a protective effect to the cancer cells themselves, provided that you introduce a timing?

[Garth Nicolson]: Well what we do is we put it in after the therapy. Because we know the damage to the cancer cells occurs very quickly. Generally, within hours after the therapy is administered. Whereas the damage to the normal systems occurs for weeks, or even months later. So we allow the therapy to occur and then next day, the following day, we start the lipid replacement to help repair the normal systems.

[Damien Blenkinsopp]: This is really interesting work. You must be really excited about all of these projects you’ve been working on.

[Garth Nicolson]: There’s something new every day!

[Damien Blenkinsopp]: And luckily you have lipid replacement therapy to keep your energy up, so you can keep focused on them all.

[Garth Nicolson]: Well I’m taking it, and so far it’s been a real help. I know that personally. But every individual will have to see what’s optimal for them. Some people will find they have to take a bit more of the lipid replacement than other people, and that may have to do with their transport systems that bring these lipids into their bodies and cells, and everybody’s different in that regard as well.

So, the same thing with detoxification. We have systems in place to help detoxify us, but it’s working so poorly for most people, or their systems are swamped out with these dangerous chemicals and they can’t keep up with the damage, and so this helps accelerate the removal of chemicals.

And also, we know that’s an energy dependent process. So it helps rebuild the energy systems that are necessary for detoxification. Because detoxification just doesn’t occur naturally, it requires energy.

So if you don’t have the cellular energy necessary, you can give them all kinds of different things, and you’re not going to see much improvement, or at least you could see much better improvement if you repair their energy systems at the same time. So I think for any detoxification, mitochondrial repair is really important, because it really helps accelerate the detoxification process.

[Damien Blenkinsopp]: Great, great, thank you. There is a cost side of this kind of therapy.

So, in terms of monitoring, how do you assess whether someone should remain on the treatment? Is it purely based on symptoms resolution, or whatever they’re trying to achieve, or do you have any markers? You brought up the homocysteine, for example. So if they had raised homocysteine and it leveled out, you could say, okay now I can take you off the therapy, because you’ve got to that critical [point].

[Garth Nicolson]: Well, actually, here’s the problem that we have in the modern environment. We don’t stop people from being exposed. We don’t stop people from getting sick, we don’t stop people from getting into automobile accidents, or whatever. We can’t do that, but what we can help them do is repair once it occurs.

We can help repair and accelerate the healing process due to trauma. We can help the healing process due to infection. We can help the process due to long term treatment of a chronic condition. All of that means that this is a long term solution, not a quick fix. And that’s why I’m taking this for the rest of my life.

And I put my father on it when he was 92, and he had much better cognition, he had less fatigue issues, and was more ambulatory, and clearer thinking, and so on and so forth. And he lived another eight or nine years. He was a coronary patient and he was on his last legs when he started.

So I think it’s never too soon. Just like it’s never too soon to stop smoking, it’s never too soon to start taking lipid replacement therapy. And yes, you may have to take it for the rest of your life if you want the benefit.

[Damien Blenkinsopp]: Well, I think I’m certainly going to stay on it. And I’m very glad to have you on the show to spread the information about this. It’s been very useful to me.

In terms of other people who, besides yourself, you would recommend to talk to about mitochondria, or lipid replacement therapy. Is there anyone else who’s done work which you would reference which is interesting, that have done a lot of work in this area?

[Garth Nicolson]: People can go to our publications, because they can see what we’ve cited in terms of the references, and the groups, and so on. Yes, there are other people working on different aspects of it. For example, there are some groups in Europe that are using intravenous lipids – similar type but not the same – and they’re getting very good results with that.

We prefer the oral supplements because obviously you can’t go in every day for an intravenous lipid replacement therapy. So, we prefer people take it orally, because we know we have the mechanism in our brush border cells lining our guts to bring these lipids in naturally, because they’re essential lipids. So, this is a very natural process that we’re supplementing, essentially.

And I think people need to find out about this. The ATP Fuel that you mentioned is primarily available through physicians and naturopaths, and professional health people, but there are also a lot of people out there maybe listening that want to know where can I get this stuff on my own.

And there’s a website called NTFactor.com, where they can buy all these products over the counter, because they’re just natural supplements. And so, that’s where they can go, NTfactor.com to find these lipids replacement therapy products, and find out more about it. And they can go to our website, the Institute for Molecular Medicine, which is www.immed.org. It’s like a media .org, and they can see the scientific results and the clinical trials.

[Damien Blenkinsopp]: Great, thank you so much. We’re going to put all of this in the show notes so people have all the references to everything we’ve spoken about today. Would you recommend they take the straight version of NT Factor? Because there’s these different combinations of things.

[Garth Nicolson]: Well it depends on what people want to do, and it also depends in a lot of cases on what people could afford if they’re buying supplements and stuff. The minimum thing they need is the NT Factor lipids.

Now, the more complex formulations like the one you’re taking cost more because they have a lot of other ingredients that are very costly. But if they want the initial punch, they need to take at a minimum the NT Factor lipids.

[Damien Blenkinsopp]: I see, that sounds like the big lever.

So Garth, thank you so much for your time today. Just on a personal note, are there any data metrics that you track for yourself? Either on a routine basis or a once yearly basis for your health, longevity, or performance?

[Garth Nicolson]: Well of course we look routinely at membrane lipids, for example, in our blood. We look at things like homocysteine and so on – and my levels are very low. I find that I feel better on NT Factor and, by the way, I have gone on a trip recently and I forgot to take it along, and I suffered because of it.

[Damien Blenkinsopp]: Oh no.

[Garth Nicolson ]: I feel very strongly about taking it on a daily basis. So I’ve seen it in myself. I mean I know that I can recover much faster from travel associated problems, for example, from illnesses and so on and so forth if I take the NT Factor.

And that’s what other people reported back to us as well, it’s not just my own personal results. We get a lot of feedback from a lot of people who are taking this, and now tens of millions of doses have been given to patients and subjects and so on, in various forms, and so far we haven’t had any complaints. And that’s a good news.

[Damien Blenkinsopp]: Its great news, it’s amazing news. Thank you very much for your time today, Garth. Its been great to have you on the show.

[Garth Nicolson]: Sure. Thanks for having me.

Leave a Reply

A walk-through of the 5-day water fast with the tracked results (ketones, glucose, weight) and the practical do’s and don’ts to make the most of the experience.

I’m not a fan of cancer. The only people I’ve lost in memory – my grandfather and other close family – it was cancer that took them. NOT putting an end to the fun of life because of cancer has been a part of my plan since my early 20s.

So after my discussion with Dr. Thomas Seyfried in episode 16 I was looking forward to put his 5 day water fast “cancer insurance policy” to work.

As I read into the details to start planning my prolonged fast what I found convinced me even more this was something I had to do soon.

Maybe what I discovered would inspire you to try a 5 day fast soon too?

Fasting for Reasons Beyond Cancer

Since getting bitten by a tick in Phuket, Thailand a few years ago I’ve been fighting some chronic health issues.

I discovered that it’s probable that these are at least in some part due to lyme disease and babesiosis infections I only got documented earlier this year (and thus had never been treated for). It bears mentioning, since there’s a fair amount of non-rigorous and dubious material on the internet on the subject of lyme disease in particular, that this was documented via the IgM/ IgG labs, and met CDC criteria.

What does this have to do with fasting?

It comes down to this: Having a stronger immune system gives you a better chance of eliminating lyme. Since in cases like mine where it was not treated in the early stages it seems to be relatively tricky and long-winded to get rid of. I’ve made it a rule to collect and put into practice anything that improves the odds of a quicker recovery.

And… fasting is a potential new tool to speed up recovery.

Valter Longo, Director of the USC Longevity Institute, has published a large number of studies on fasting and caloric restriction and their application to treat disease and enhance aging and longevity. Some of his recent work showed that prolonged fasts (e.g. 3 to 5 days, of a similar format recommended by Seyfried) can regenerate up to 30% of the immune system.

Or in other words, a fast can eliminate old tired (and most probably damaged and dysfunctional) white blood cells and replace them with more effective shining new ones.

I’ll admit this got me excited. It was definitely something I wanted to add into the “war plan” my integrative doctor and I had put in place against lyme and babesiosis.

(Note: Before planning this fast I ran it and Longo’s research papers by my doctor to get it signed off by him. If you have any chronic health issue and are undergoing any treatments you should do the same.)

As you’ll see below, the 5 day water fast (and other prolonged fasting configurations) has many potential upsides.

After having gone through the experience and seeing the quantified results, I can say it’s something I will use as a tool frequently going forward. Most likely once per month, or once per quarter.

The Upside: Reasons to Do a 5 Day Water Fast

Beyond the potential health and longevity upsides there were also a couple of others I was particularly interested in.

    First, the health benefits:

  1. Reduce future cancer risk or as a tool for those with cancer to combat it (details in this episode with Dr. Seyfried)
  2. Promote longevity and slow aging (via similar mechanisms to caloric restriction)
  3. Multi-system regeneration providing potential improvements in the immune system and mental performance (Valter Longo’s work – this 2015 paper has some highlights)
  4. Reduce diabetes risk and cardiovascular disease risk and improve blood sugar regulation
  5. The non-health benefits are perhaps more personal to me:

  6. Building greater mental resilience through the process of overcoming the challenge of a fast? The stoics used hard life experiences to learn to deal with the mental ups and downs of life more easily.

    As an entrepreneur, where ups and downs are pretty much routine, I’ve grown to value this ability immensely. Exposing yourself to more extreme hard challenges numbs you to the emotional pain and you find you become more indifferent to life’s ups and downs (read less reactive). You can read up on this in the book The Obstacle is the Way by Ryan Holiday (which I must have listened to 8+ times), or articles on the philosophy of stoicism on Tim Ferriss’ blog.

    A 5 day fast struck me as exactly the type of “safe but challenging experience” that builds mental resilience more generally. Once the fast is done, you realize it’s absolutely not a big deal. And other life challenges also seem to dim in their intensity and importance.

  7. A new life experience: What would it feel like to fast for 5 days? How would it effect my body? physically? mentally? We should all experience the extremes of the human experience provided they are within the limits of safety and healthy. It’s an important tool to learn about ourselves, our limitations, strengths and weakneesses – self awareness is a skill that can be learned. Going to the extremes to get a real feel for the breadth of life is part of living a life well lived.

itunes quantified body

The 5 Day Water Fast Results

Big Metabolic Changes Kick Start on Day 3

My metabolism switched from glucose to ketones (and fatty acids) by the end of the 3rd day, which fits with what is generally expected based on the standard biochemistry literature.

On typical non-fasting days I’ll hit between 1 and 2 mmol/L ketones (see my baseline data in appendix here) because I eat a reasonably high fat diet. It wasn’t till day 3 till I broke the 2 mmol/L threshold and went beyond, eventually peaking at nearly 7 mmol/L blood ketones. At the same time my blood glucose hit a stable low of just under 60mg/dL.

Overall, I felt less mentally sharp and found the fast hardest between the end of day 1 till around beginning of day 3. Is this ‘harder part’ of the fast a rough period of adaptation to using ketone and fatty acids as the main fuel source? Perhaps. In my case the switch in the blood results follows closely the ease of the experience for me – once blood ketones and glucose inverted the experience was easier.

fast-glucose-ketones

Seyfried recommends the use of a Glucose-Ketone Index for monitoring the therapeutic value of the fast against cancer. The goal is to have your value of this index below 1 which is considered the ‘therapeutic zone’.

67 hours into the fast my index dove below 1, and it bottomed out around 90 hours, from then on hovering between 0.5 to 0.6. So I was in the therapeutic zone for all of days 4 and 5.

fast-gki

Exactly on plan: My blood glucose, ketone and GKIC markers settled into the expected ranges Seyfried outlines in his book for the fast. That’s between 50 to 60mg/dL for blood glucose, and between 6 and 7 mmol/L for ketones.

Lagging Metabolism Adjustment at End of Fast

When I hit the 120 hour (end of 5 day) mark I dug into a couple of big bowls of bone broth. Quickly full and satisfied seemingly as if the fast had never taken place.

The next day I had a higher carb than usual breakfast. We’re not talking crazy, just some blueberries and yacon syrup (for the gut, will talk about this soon in another episode) with bulletproof coffee (ghee, MCT oil and coffee). Despite this my ketones stayed high and actually hit their peak of the whole experiment (6.8 mmol/L) nearly 24 hours after the fast had ended.

This makes sense. It’s normal to see a lag of response of the blood readings the first 3 days of the fast while you adapt to ketones/ fatty acid metabolism. So it follows that there would be a lag in the switch back to primarily glucose metabolism.

Was Weight Loss Permanent? or Just Momentary?

Interested in the fast to lose weight also?

Cycling into 5 day fasts say once per month, could be quite effect based on my data (~loss of 1 lb per day in terms of permanent weight loss, not just momentary during the fast).

If weight loss isn’t desirable, which is my case, you’ll need to compensate to regain lost muscle weight post fast.

Within a few days I had recovered one third (3 lbs) of the 9 lbs I’d lost during the fast. I consciously made an effort to eat as per usual to see if it the weight would naturally come back on. Two weeks later after the end of the fast (day 19) it’s still stabilized at 6 lbs down. Actively compensating for this in between future fasts will require consciously eating to gain weight.

fast-weight

HRV, Muse Calm and Mental Performance

I also tracked my HRV with the ithlete app, my daily meditation sessions with the Muse Calm and my mental performance via reaction tests at Quantifed Mind.

These weren’t my main focus for this fast, so the data isn’t extensive enough to make any big conclusions. However, looking at what I collected, I plan to take a closer look at mental performance and HRV in future fasts.

First thing in the morning HRV dipped at the start of the fast (day 1 and 2) and go back to my normal range from then on. This is a pretty good fit with how I felt during the fast. The first two days were a little rough as I had a headache, but from then on I felt more ‘euphoric’ and productive than usual.

This time round I haven’t seen any noticeable increase in HRV post-fast (potentially a bit more of the opposite) whereas intermittent fasting typically raises HRV. Something to keep an eye on for future fasts especially as I have to deal with my own personal variable – adrenal fatigue.

Adrenal Fatigue Confounder? I have documented adrenal fatigue currently (low cortisol output as a knock on effect of the chronic stress from lyme disease and babesiosis infections). I suspect the adrenal fatigue would be the cause of any negative HRV impact, and would be personal to me (if you’ve tracked HRV during a fast let me know your experience in the comments).

This may have been behind or contributed to my less consistent sleep and shorter duration sleep as noted before.

It is very common (even fashionable) to fast on meditation retreats. The idea the retreats promote is that fasting helps to calm the mind.

Although I got my best Muse Calm score to date on one morning (80% calm), I didn’t notice any real difference between fasting and my normal scores.

The 5-Day Fast Experience

Two of my fellow entrepreneur buddies (Patrick Stiles and Patrick Kelly (@pjkmedia)) recently also did the 5 day water fast so we caught up to share notes on our experiences. Our experiences turned out to be pretty different in some areas. You can listen to our full note swapping discussion in this episode.

Here’s the brief highlights of my experience from the discussion:

  • Day 1 and day 2 were a little challenging in terms of hunger but not that noticeably (I put this down to my previous experience with intermittent fasting and ketogenic diets)
  • A headache from the end of day 1 to the beginning of day 3 (potentially linked to the switch in brain from glucose to ketone use)
  • On day 4 and 5 the physical weakness was a lot more noticeable and there was some slight dizzyness when standing up at times.
  • Undercover bad breath: I wasn’t actually aware of this during the fast. My sister mentioned afterwards that she feared for her 1 year old son’s wellbeing when I was playing up close with him towards the end of the fast. Given the high ketone levels, this would mostly be due to high acetone levels in the breath.
  • Rash of spots on chest: I believe this is very much personal to me and my current situation. Fasting tends to lead to detoxification, and potentially stress your detoxification system, as you break down body fat including accumulated fat-soluble toxins and process them. While dealing with lyme these have occurred from time to time (added lyme biotoxin burden causing overload), so it’s unsurprising that adding broken down fat-soluble toxins would lead to this currently. I took activated charcoal daily to help bind and clear any toxins from my system.
  • After a couple of nights of good sleep at beginning of the fast it got progressively less deep as the fast went on whereby I was sleeping between 4 and 6 hours compared to a normal 6.5 to 7.5.

What’s Next? Fasting as a Routine Tool.

The experience during and after the fast has been so positive that I’m planning to do this on a once per month or once per quarter basis. Which one I go with will depend on how my body responds.

As more research comes out on the specifics of Fast Mimicking Diets (FMDs) I’ll also want to test that out, to see if the same benefits can be achieved (or better) with less discomfort.

Immune System Reboot – Any Evidence?

It’s only 2 weeks since the end of the fast so it’s early to tell just through tracking symptoms of my chronic infections (lyme, babesiosis). Nonetheless it’s looking positive from that anecdotal basis. After a first rough work post-fast, it’s been up and up. Meaning more exercise, more activity and generally feeling better with less symptoms.

I’m cautiously positive because lyme and babesiosis are both cyclical in symptoms presentation. I’ll update this section at a later date. The real solution to understand the immune reboot potential or impact of course is more data…

What I’ll Track Next Time

I’ve already begun contacting labs and working out how to dig deeper into the fast on a few levels:

  • Further validating the immune system reboot side by tracking IGF-1 which is one of the main markers used in Longo’s paper.
  • Is this sustainable for me? Is it beneficial as a monthly routine or would that have some negative blowback? I’m looking into tracking Cortisol vis-a-vis monitoring my adrenal fatigue status, and will track weight with future fasts.
  • What’s the downside in terms of productivity for the 5 days fasted? While I didn’t feel like there was much negative impact this time (it felt more positive) it’s something that I’d like to confirm with some short mental performance tests done during next fasting round.

In Practice: How to Do this at Home

For my tracking I took readings 4 times per day for my blood glucose and ketones.

However, I recommend to reduce cost (ketone strips are expensive) and to make it more convenient, you can simply track your blood ketones and glucose once per day in the morning. This will give you meaningful results, and tell you if you’re hitting the same milestones based on Seyfried’s work like I did.

Tracking this way, for a ten day tracking (5 days as control, 5 days of fast) you’ll be looking at a budget of around $80 to $100 all in (versus the ~$500 I spent).

Step 1: Get Your Tracking Gear

  • Combined glucose/ ketone monitor: Abbott is behind the best value for money units, the Precision Xtra Blood Glucose and Ketone Monitoring System in the U.S. and the Freestyle Optium Neo Glucose & Ketone meter in the UK (the one I used).
  • Glucose strips: the latest format that work with Precision Xtra and Freestyle Optium devices.
  • Ketone strips: Purple colored strips for measuring blood ketones (Beta-hydroxybutyrate). These work with both Precision Xtra and Freestyle Optium (Ketone Strips – Note: These are ~$4.50/ unit, I managed to get these at a lower cost per unit in the UK of $1.97. If you know where to source these cheaper let us know in the comments)
  • Lancets: It’s good practice to use a new lancet each day to prick your finger with. These Lancets are the latest format and work with Precision Xtra and Freestyle Optium devices, but are cheaper.

Note: Make sure to buy adequate strip and lancet supplies. I ran out of ketone strips the day after my fast otherwise I would’ve tracked more post-fast data. You lose some strips unavoidably in my experience through a bad reading on the device where for instance you didn’t provide insufficient blood. Make sure to have a buffer of 10% or so to account for this.

Step 2: Track Some Control Data & Learn to Take Readings

This is one of those situations where a video walkthrough is better than 1000s of words. This walkthrough is with the Freestyle Optium Neo, which is identical in use to the Precision Xtra).

I used my control data week (charts in appendix here) to work through any slip ups in taking readings.

You’ll want to get some control days where you take some baseline data eating your standard diet so that you can compare it to your fast. Blood sugar and ketosis metabolism are very personal aspects of our biology as we learned from Jimmy Moore in episode 7.

So the relative change in your measurements (normal diet, fasted states) could be as insightful as the absolute numbers.

Step 3: Schedule in Your Fast

The experience of a fast is highly variable depending on your personal situation as you’ll have noticed from the discussion in this episode with the two Patricks.

There is a risk that you’ll feel pretty rough and weak, and may be a danger to yourself and others (e.g. no driving or other similar ‘responsible’ activities please).

So I recommend you plan ahead and schedule it in for a time when you can quietly do some mental type work, study or rest at home. If you’re able to do more, so much the better, but plan for not being able to do anything.

Step 4: The Fast

Pretty straightforward. Stop eating at your scheduled time (after an evening meal is when most people do it) and start taking readings as set time intervals.

I used a standard iPhone timer alarm to notify me to take readings every 4 hours while awake. If you’re just taking one reading per day, it’s simple enough to make it part of your first thing in the morning routine.

It’s also useful to keep a diary of anything interesting or unusual you notice during the fast. Items I found useful to note down were hours sleep and sleep quality, physical weakness, any fatigue, mood, and other symptoms like headaches or dizzyness. This way you can relate them back to the data afterwards for more insights.

Step 5: Finishing the Fast Points

Boom, you’re done! You’ll be feeling great if it was anything like my fast. There are a few things you may want to keep in mind at this point.

I was advised by friends, and some long term ‘fasting experimenters’ to reintroduce food slowly. The idea behind this is that your body needs a little time to restart enzyme and stomach acid production. Some people experience gut symptoms or/ and bouts of ‘disaster pants’ if they jump straight back into their usual diet (or a ravenous version of this).

In my case, I prepared a bone broth ahead of time so that my first meal was mostly liquid and ate as normal from the next meal onwards. No discomfort or adverse gut symptoms. Straight back to business as usual as if the fast had never happened.

In future I’ll be tracking data for a few days post-fast since this experiment showed that my metabolism took a while to return to normal despite refeeding with a vengence!

Tracking

Biomarkers

  • Blood Ketones (Beta-Hydroxybutyrate / β-hydroxybutyrate): Blood ketones are the gold standard for measuring your state of ketosis. During the fast, ketones are expected to peak in the range of between 6 and 7 mmol/L based on Seyfried’s work and experience. In episode 7 Jimmy Moore notes that values over 1.0 on your blood ketone monitor give you the benefits of ketosis, and there is no need to go over 2.0. Tim Ferriss also prefers this range, noting that his best mental performance is typically with values between 1.1 and 1.7 mmol/L.
  • Blood Glucose (mg/dl): A measure of the level of glucose in the blood at one point in time. Dr. Seyfried’s therapies target reduction of blood glucose levels to limit cancer cell growth, and according to his theories high blood glucose is a biomarker of increased cancer risk. For the fast he notes values between 50mg/dL to 60mg/dL are standard. Non-fasting values should be below 80mg/dL ideally, and at least 92mg/dL.
  • Glucose-Ketone Index (GKI): The ratio between the concentration of glucose in the blood to ketone bodies in the blood. The calculation is Glucose (mmol)/ Ketone (mmol). Dr. Seyfried created the index as a better way to assess metabolic status. Therapeutic efficacy is considered best with index values approaching 1.0 or below. Patients with chronic disease like cancer have consistent index values of 50 or more.
  • Weight (lbs): Standard scales measurement of weight in morning without clothes (to avoid biases).

Lab Tests, Devices and Apps

  • Blood Ketone/ Glucose Monitors: The Precision Xtra in the U.S. or Freestyle Optium Neo in the UK are the current recommended monitors. You’ll need lancets, ketone strips and glucose strips also.
  • Damien’s Routine Tracking Devices : Some of Damien’s daily use apps featured in this experiment including the Muse Calm for meditation, the iThlete Pro app for HRV, and Quantified Mind for mental performance.
  • Healbe GoBe: Damien mentioned that he’s been testing this device, and that the tracking of hours slept works quite well – but that other functions of the device make it hard to use consistently.
  • uBiome: Damien mentioned as a side note on another experiment he’s working on to shift his whole biome to a more positive balance of bacteria.
  • Functional Adrenal Stress Profile (BioHealth): Mentioned by Damien in relation to testing for adrenal fatigue.

Tools & Tactics

Interventions

  • 3 to 5 day Water Fast: The fast featured in this episode. Recommended by Dr. Seyfried as a potential tactic against cancer (reduce risk, or fight cancer disease). More details in Seyfried’s interview. Also used to promote stem cell regeneration of the immune system as per Valter Longo’s work. These fasts are often referred to as Prolonged Fasts in the literature.
  • Ketogenic Diet: The term given to low carb-high fat diets that put your metabolism into a state of ketosis (using ketones for fuel). Damien’s day to day diet shown in the baseline results is at times ketogenic.
  • Fast Mimicking Diet (FMD): FMDs have been covered increasingly in the research and there are two papers covering human clinical trials expected to be published on them in 2015 by Valter Longo’s group. With the FMD you fast 5 days each month by restricting certain proteins and keeping calories below a specific range each day. The goal is to reduce fasting discomfort and downsides while accessing the same upsides as the fast.
  • Intermittent Fasting: A form of fasting where you fast for part of or full days. The most popular formats are using eating windows of 4 to 8 hours each day. Bob Troia discussed his results from intermittent fasting in episode 22.
  • Slow Carb Diet: Patrick 1 mentioned that he’s primarily on this diet from Ferriss’ The 4-Hour Body.

Supplements

  • Activated Charcoal: The only thing I did beyond restricting myself to filtered water and black coffee (total of 3 cups in whole fast), was to take activated charcoal once a day to aid in clearing toxins from my system. I took a handful, around 8 to 10 capsules per day.
  • Brain Octane: Damien takes brain octane every morning in coffee to help raise his ketones.

Other People, Books & Resources

People

Books

  • The 4-Hour Body: Contains a once per week intermittent fasting format that got Damien started with fasting in 2010.

Additional Charts and Data

Click Here for Additional Charts

Pre-Fast Control Data Eating My Standard Diet

Blood Glucose & Ketone Levels at Different Times of Day

control-glucose-ketones

Glucose-Ketone Index at Different Times of Day

Control-GKI

Leave a Reply

Have you been using Dual-N-Back or other braining tools? A look at failed brain training experiments and how to assess real mental performance improvement with Dr. Adrian Owen.

In today’s fast paced, technologically advanced world strong mental performance is of utmost importance. From our abilities in the work place to our interactions in social situations we are expected, and constantly asked, to be able to perform with the highest level of mental function. Therefore, it is important that we both protect and improve our minds in order to get the most out of life and increase our overall satisfaction.

In the last few years, brain training apps, such as Lumosity and Dual-N-Back, have become increasingly popular as a way to improve cognitive performance and working memory abilities over time.

However, there is a bit of controversy surrounding the use of these apps:

Does brain training improve mental performance?

This episode addresses this question and more as we discuss some of the research that has been conducted to try and assess our mental performance. Whether it is brain training, diet changes or just sleeping better, these tools might help us decide if we are actually getting the bang for our buck so we can make a positive impact on our lives and mental performance.

Just because a lot of people believe in it and are sure that it is true, if it hasn’t been scientifically proven, then it’s very likely not the case…I think that the commercial brain training is a very good example of that
– Dr. Adrian Owen

Today’s guest is Dr. Adrian Owen who has looked specifically at the effectiveness of brain training on a broad population to see if it is actually having an impact on our mental capabilities. Currently, he works as the Canada Excellence Research Chair in cognitive neuroscience and imaging at the Brain and Mind Institute, University of Western Ontario, Canada. Previously, he worked at the Cognition and Brain Sciences Unit at Cambridge, UK and has published more than 200 peer-reviewed scientific papers over time.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • The Cambridge Brain Sciences was set up to research and assess brain training tools (06:59).
  • Previously, brain function was researched by testing brain damaged participants (10:30).
  • In the 1990’s brain imaging techniques (PET scans and fMRIs) became important tools for brain assessment (11:40).
  • Dr. Owen explains further the definitions of fluid intelligence and crystalised intelligence (17:56).
  • Research using these brain training tasks, games, exercises, etc. usually focuses on fluid intelligence (20:22).
  • Dr. Owen describes further the brain-based tests used by Cambridge Brain Sciences (20:52).
  • Damien and Dr. Owen discuss the use of these cognitive tests to assess your own brain performance on a regular basis (22:43).
  • Cambridge Brain Sciences is hoping to encourage people to use their tools to assess whether brain training and interventions (such as coffee, etc.) can affect their own cognitive performance (25:12).
  • If you are going to run your own “experiments” to test the training or interventions, be your own scientist and carefully employ “good” research techniques (26:16).
  • Remember, what works for you may not always work for another (27:24).
  • Dr. Owen begins discussing “transfer” of training: to improve upon many aspects, not just the one (29:06).
  • The Cambridge Brain Sciences study also compared the lifestyles of the participants as related to their performance on the different tests analyzed in the study (36:18).
  • Damien and Dr. Owen discuss the damage that occurs to the brain from aging, injury, etc. and the fact that these cognitive declines are specific to each individual person (41:07).
  • Neuroplasticity is defined and discussed as a “change in the brain” following the learning process (45:04).
  • Dr. Owen discusses the use of EEG, a cheaper alternative, to analyze aspects such as consciousness that have previously been assessed with an fMRI, a more expensive machine (51:51).
  • Dr. Owen shares his thoughts for the future of cognitive performance including brain training and a short description of neuroenhancers, often called “smart drugs” (55:00).
  • Dr. Adrian Owen’s one biggest recommendation on using body data to improve your health, longevity and performance (1:00:10).

Thank Dr. Adrian Owen on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Dr. Adrian Owen

Tracking

Biomarkers

  • Electrical activity: is assessed by electroencephalogram (EEG). When enough concurrent electrical activity is generated by neurons firing, simple periodic waveforms are distinguishable. Rhythms generated by electrical activity are measured by their frequency and amplitude. Frequency is expressed in the unit Hertz (Hz) while amplitude is recorded in microvolts (μV).

Labs and Tests

Tools & Tactics

Interventions

  • Brain Training: This episode is all about evaluating the effects of brain training, and more specifically the daily effects that may occur after the use of cognitive games. There is an incredible variety of these types of exercises available, produced by a number of companies and organizations.

Other People, Books & Resources

People

  • Jessica Richman: Dr. Richman studies citizen science and crowd sourcing. She did a podcast about the microbiome and crowd science with The Quantified Body which can be found here.
  • Aubrey de Grey: A scientist, author, and activist who was featured on a recent episode on The Quantified Body where he discussed longevity and anti-aging techniques.
  • Randy Engle: A research scientist known for his work with brain training.
  • Barbara Sahakian: Dr. Sahakian is a researcher who studies “smart drugs” and neuroenhancers.

Other

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp]: Adrian, thanks so much for joining us on the show.

[Dr. Adrian Owen]: Thanks for having me.

[Damien Blenkinsopp]: Excellent. How did you yourself get into this whole of area cognitive science—assessing performance, Brain Training and all these areas? What was the thing that first stimulated you to get interested in this area?

[Dr. Adrian Owen]: Actually I’ve been interested in cognitive assessments since my PhD. Back in the late 80’s, I was working on assessing frontal lobe function. In those days, it was pre-brain imaging; we just used to test patients who’d had part of their brain removed and then designed cognitive tests to try and work out what it is that they couldn’t do, so I’ve been in the area of assessing cognition for 25 years now.

The move into Brain Training actually came much more recently, in about 2009, I got very interested in the amount of attention that was being paid by the general public to whether Brain Training could make you smarter and I got in involved with a study with the BBC to test that.

[Damien Blenkinsopp]: Well, give us a quick overview of that so that everyone can hear about it because it was quite a big project at the time.

[Dr. Adrian Owen]: It was. It started because the BBC came to me and said, “Well we want to do a programme, we’d like to do a huge study to promote public understanding of science. Could we get a lot of people involved in this, and obviously Brain Training works, right?” I stuttered, “Well hold on, stop. What do you mean ‘Obviously Brain Training works’? Let’s talk about that,” and they said, “Well, this company or that company have sold a 100,000,000 units this year, the whole world is training their brains,” and I said, “Well, is the whole world getting smarter?” I was very intrigued by this idea because I thought it’s funny, out there in the world we’ve got perhaps one of the largest public science experiments running right now—at the time I was living in London, England, and there were people sitting on trains with their handheld devices all training their brains and I thought, “Well, I haven’t seen any evidence that any of them are getting any smarter,” and certainly looking around among my friends, it wasn’t the case that those who were super smart would say, “Well, it’s because I’ve been using this device.” So I thought, “Well there is something interesting in there that a lot of people believe it and trusted in it and it would be a fun thing to try and test.”

So we set up a BBC programme called Bang Goes the Theory. We advertised this as a way of assessing whether Brain Training worked. We got people to log into a specific website that we’d set up; the website had a lot of training games on it.

[Damien Blenkinsopp]: So is this the current website that is up today or is it different to the Cambridge Brain Sciences website?

[Dr. Adrian Owen]: That is actually entirely different but did feature in that study. What we use Cambridge Brain Sciences for, was to assess whether the training had worked because we wanted something truly independent to look at pre-imposed testing scores. Cambridge Brain Sciences is not a training site; it’s a cognitive assessment site that I’ve set up with one of my colleagues out of Hampshire. We got everybody to log into Cambridge Brain Sciences to get a sense of their cognitive performance before they started training and then everybody would log into one of the BBC sites.

I split them into three groups, basically. There was a group who trained specifically on reasoning tests, things to improve your ability to reason and think through the solutions to problems. Another group, a second group, which were randomly assigned obviously, would log in and do memory tests and attention tasks, things that emphasised other aspects of cognition that weren’t necessarily problem solving and reasoning. The third group, basically, just had to do a simple exercise that involved using a computer for about the same amount of time. They would look up the answers to complicated questions on the web and that was just to make sure that the control group used the computer for the same period of time over the six-week training period. We had people log in several times a week for at least ten minutes per session for six weeks, and a lot of people took the challenge. We had tens of thousands of people logged in; only about eleven and a half thousand people survived, did the distance, did the pre-testing and the six weeks of training and the post-testing, but nevertheless, twelve thousand was a fantastic result and an enormous uptake.

[Damien Blenkinsopp]: So we have discussed a bit previously on this show about crowd sourcing of science, like crowd science and citizen science, so this is basically like an early example of you leveraging the crowd to get some science done and some validation.

[Dr. Adrian Owen]: It was great. Actually it was a lot easier than I thought it would be. We’ve used the same method subsequently to connect a number of scientific studies. The secret I think really is if you can engage people in something that they are actually interested in, and clearly there was a lot of public interest in Brain Training and whether it worked. Having the BBC, obviously, was enormously helpful because it was a popular science programme and they used it as a vehicle to promote this, but I think it’s great if you get people interested and they feel like they are part of something and they’re helping to answer a question.

[Damien Blenkinsopp]: We had Jessica Richman—I don’t know if you know her work? She is really into citizen science and crowd sourcing of science. She gets up in presentations and talks about that. A new biomes project looking at the microbiome: they are getting lots of data from lots of different people around the world and feeding into that to try and start understanding the microbiome.

We discussed it and seems like it’s going to be an exciting time for crowd science. It’s already started; it’s the internet; it’s also that people, as you said, are interested in these things now—whether it comes to cognitive performance, which is a big thing when it comes to everything in our lives; if you think about it, it’s your work, your relationships, everything.

Just to take a step back, how would you look at our brains and what areas would you split it into in terms of performance? It’s also been a little while since you did that study, what do you see as the important aspects of performance for us cognitively in our lives?

[Dr. Adrian Owen]: I think that’s a really great question and actually, it speaks to a much bigger question about how psychology and brain science have evolved over the last fifty years. When I started working in this area, doing my PhD, 25 years ago, we didn’t have any direct ways of accessing brain function. We would basically assess behaviour, and as a consequence, we had many so-called cognitive models that were based on things that we all think we can do. We know that we can remember stuff, so we would have memory models; we know that we can attend to different things and some of us can attend to multiple things at the same time, so we would have models of attention. The only way we had of actually testing these models in terms of the brain, was to assess patients who had damage to one or more of the modules that were assumed to be involved in these models. So we would test brain damaged subjects, participants who had had tumours removed from their brains, for example, and a bit of healthy tissue had gone at the same time and we could try and work out whether the model really worked. Looking back, it’s a rather awkward way of investigating brain function because you are continually looking at people who are impaired in order to try and work out how the rest of us actually work.

In the late 1990’s, brain imaging really took off. In the beginning it was a technique known as positron emission tomography, or PET, and that soon gave way to FMRI or Functional Magnetic Resonance Imagining, which has absolutely exploded and is really the tool of choice for many now-called cognitive neuroscientists. Many psychologists now think of themselves as being what we call cognitive neuroscientists because they take brain-based models on board as well as cognitive models.

Brain imagining has allowed us to access the brain in a different type of way, which is principally to look at the brains of healthy participants. So now, instead of trying to work out how healthy brains work based on how unhealthy brains work, we can actually look at healthy brains doing their thing, and what this has done has changed, in many ways, how we think about behaviour and how we think about cognitive functions. Certainly, in my lab, a guiding rule has really been, “Well, let’s only really start to stress about this or fret about this if this is biologically plausible.” Even if there are things that we feel that we have in life and we can achieve in life, if it’s not something that by looking at the brain you could see how that could be accomplished, then my first guess is usually that we are barking up the wrong tree.

[Damien Blenkinsopp]: Could you give an example just to clarify that? It seems like something a little bit harder to visualise.

[Dr. Adrian Owen]: Well, unfortunately most of the examples I would give you would be things that I don’t work on and I don’t work on them because they are good examples of this. I suppose an illustration of the sorts of thing I’m talking about is that there are many things that people have attempted to look at with brain imaging that I think probably are not easily explained in terms of networks within the brain, like how we fall in love or why we trust each other or where do we get a sense of justice from, these big, squishy, emotional things that are not easily reduced down into measurable components within the brain. Whereas memory, how is it that we lay down memories for words or how is it that we acquire language, or how is that that I can attend to two things at the same time, these are things that are much more easily thought about in terms of what we know about the structure of the brain and networks within the brain. Not everybody agrees with me: there are certainly a lot of people out there that think we are going to solve the riddles of love by using brain imaging, but that’s not the way I work.

So, this is a very long-winded answer to your original question, but it’s just to really tell you about how we tend to think about cognition now, and it’s almost a bottom-up approach, we use the brain: we use the brain; we look at the brain and we say, “Let’s look at different areas within the brain and try and work out what they are doing,” rather than trying to explain what it is we are able to do in the world in terms of areas of the brain. That is an interesting approach because it turns out that the brain isn’t really organised how we imagined it would be organised. There isn’t a bit of the brain that lays down your memories, so spending a lot of time looking for that area of the brain isn’t a very rewarding thing to do. There are certainly many areas of the brain that are involved in laying down memories, and they work together as a network, and they play really quite different roles and some of those roles are overlapping. As you have probably guessed, it’s really complicated.

[Damien Blenkinsopp]: It’s a lot more complicated than some of the jargon we have learnt. When we think about cognitive performance and the standardised testing and also some of the apps like Dual N-Back, which was the brain training app that we’ll come back to which was supposed to increase working memory and so on. So we have things like working memory, fluid intelligence versus crystalised intelligence; for you, do those things still exist today? Are they still effective ways of explaining our performance in the real world—Whether it’s work or whether it’s problem solving?

This world is getting more and more complex and faster and faster and, obviously, some people are pushing the edge, some people are taking new tropics or they are trying to do all sorts of things to stay on top of where they are in performance, in their jobs, and everything. Are these still terms that we can think about or is it moving away from that? Because we’ve taken the lid off the brain and we realise that it is much more complex that we thought and we can’t really reduce it to these ideas anymore.

[Dr. Adrian Owen]: The answer is yes and no. To take your question backwards, we definitely can’t reduce the brain in terms of those ideas anymore. I don’t think that thinking about the brain in terms of fluid intelligence is a very sensible way to go about it.

We actually had our most recent large-scale study, which we published in a journal called Neuron at the end of 2012, that involved 44,000 members of the public, and there we specifically addressed this question. We got everybody to do a fairly large number of cognitive tests online and then we tried to look at whether we could estimate people’s fluid intelligence, or IQ as it’s often referred to, using these different, specific cognitive tests. It turns out that you cannot explain the variance; you cannot actually explain everybody’s performance in terms of a single factor. Whichever way we cut up the data, there was no way of explaining or reducing people’s data to a single factor, say an IQ factor or fluid intelligence factor. It turns out that there are at least three different components in performance, I’m sure it’s not just three but there are at least three.

That paper was really designed to take a swipe at the community who are still looking for evidence of fluid intelligence or IQ in the brain, because we accompanied it with a brain imaging study that produced exactly the same results. It said that if there is something like IQ, there is a way of comparing one person to another person in terms of a single measure then we should be able to find evidence of it in the brain somewhere, but actually we weren’t able to do that.

[Damien Blenkinsopp]: So it’s really the dynamic relationship between different parts of the brain, so just focusing on developing and aspect—if we can actually do that—is potentially erroneous.

I just wanted to make sure that people at home understood the difference between fluid intelligence, IQ and crystallized intelligence and how it relates to their lives. Can you just give a quick overview of what that means when people are talking about that?

[Dr. Adrian Owen]: I’m certainly not an IQ expert and I think maybe the best way to think about this is that these are measures that are out there in the world that clearly measure something, but they measure something in the same way as having a driving test measures something: you take a driving test and you pass or you fail, but you probably get a score on it as well. That score means something but it doesn’t tell you everything about somebody’s ability to drive. If I got a 94 and you got a 96, how much would that really tell us about the likelihood of you causing a collision on the road or me causing a collision? That doesn’t mean it’s useless having a driving test; it’s a measure that we have constructed to measure something out there in the world that, an aspect of people’s abilities, and we use it for a purpose, which is to determine whether people should be allowed out on the road in a dangerous vehicle or not. IQ is a little bit like that. It is a measure that has been around for many years. It’s often divided into two components: crystallized intelligence and fluid intelligence. Crystallized is really the stuff that you’ve learnt, the stuff that you have acquired since your childhood, stuff you know.

[Damien Blenkinsopp]: So is it that the harder you studied the more you tend to have?

[Dr. Adrian Owen]: Well, that may be true; it may be that the more of it you had to start with the harder you study, I don’t know. But fluid intelligence is more related to problem solving, reasoning, our ability to work through problems, plan for the future; that is assumed to be something that is not necessarily as related to what we have learnt and the knowledge that we have acquired over time, but it’s—I’m going to choose my words very carefully here—something that many people think of being an innate ability that some people have a very high fluid intelligence, an ability to reason their way out of problems, and other people have a rather lower fluid intelligence.

The whole concept of IQ is often divided into those two things. I think for obvious reasons, most people are more interested in fluid intelligence than they are in crystallized intelligence because fluid intelligence gets wrapped up in arguments about genetics and whether one person is better than another person. It’s not just because they have had more education, it’s because they’re somehow inherently smarter. All these arguments about brain training and smartness and how intelligent you are, are actually usually referring to some measure of fluid intelligence, rather than crystallized intelligence.

[Damien Blenkinsopp]: That is the thing people tend to work on. These brain training aspects are trying to change that because we already know that crystallized intelligence can be changed.

[Dr. Adrian Owen]: Exactly, you can learn more stuff.

[Damien Blenkinsopp]: Yes, exactly. So to look at what you did at Cambridge Brain Sciences, what were you actually looking at in terms of assessing people there? Was it relating to these concepts we have been talking about?

[Dr. Adrian Owen]: You mean the study with the 44,000 people?

[Damien Blenkinsopp]: Yes, what is the assessment that Cambridge Brain Sciences does when you take that test or when they did it?

[Dr. Adrian Owen]: I think what’s interesting about Cambridge Brain Sciences, and is perhaps a little bit different to many other online testing studies, is that, basically, it’s brain based. These are all tests that we’ve either devised or have been based on tests that other neuroscientists have devised to assess specific brain functions; these aren’t tests that are set up to assess a cognitive ability. We don’t have a memory suite thats designed to test your memory; we have essentially groups of tests that are assigned to assess specific brain functions. Most of these tests now have a 25-year history of being used in my lab and in other labs around the world. A lot of them were based on patient studies that we did in the late 80s and early 90s, or on non-human studies that other neuroscientists have conducted to look at how the brains of monkeys perhaps compare with the brains of humans. So all of these tests have been used in many neuroscientific studies, so they are genuine scientific tools, if you like. We’ve dressed them up slightly to make them a little bit more appealing to the person in the street, but basically, what they are testing is something that addresses a specific scientific question about the role of particular brain regions’ in cognition. In that context, I think they are very useful for trying to understand how different people’s brains function compared to one another.

[Damien Blenkinsopp]: Before we spoke—I took the test about a year ago—so I just wanted to revise it and I took it again today, and was horribly disappointed to see that one of the areas had declined quite specifically.

[Dr. Adrian Owen]: Well, you are obviously getting a bit older, you are just going to have to deal with this.

[Damien Blenkinsopp]: Does that actually mean that my cognitive… sometimes will it be an off day? Let’s talk about practice first; what would you suggest people use these for? From my own perspective, if I’m hoping, as you just brought up, not to have an aged brain, you know a brain that’s aging too rapidly, I might want to do it once a quarter, once every six months, just to check where things are. Is that a reasonable use of that?

[Dr. Adrian Owen]: It’s perfectly reasonable use of it. I think it’s a very good way of assessing your current cognitive performance based on using the same tools that cognitive neuroscientists are using these days. I think you have to be very careful, there obviously is variance. We try and take account of practice effects by making sure that novel problems are served up each time. So in all of those tests, you won’t have seen exactly the same things that you saw a year ago, they’ll be different and there are algorithms built into that to make it infinite; you could test yourself as many times as you want and you won’t encounter the same problems. But saying that, there is obviously an initial practice effect. The first time you sit down and do them, the entire concept is novel. You’re sitting and doing an online test you’ve never seen before, you’re trying to work out where the instructions are, so there is going to be a difference between your very first time and your second time. We generally suggest that people have a go once and then start testing themselves once they are familiar with the environment.

[Damien Blenkinsopp]: I think I’ll just put my bad score today down to that then.

[Dr. Adrian Owen]: I think that would be entirely reasonable; that’s something that we can deal with. But people also need to be careful about the circumstances in which they test themselves: if you didn’t get any sleep last night, then the chances are that your cognition is going to take a hit. You’re going to be less attentive, less able to focus, your memory might be slightly impaired. In some senses, the downside of having people test themselves at home is that they could be intoxicated, they could have had a few beers beforehand, there are all sorts of things that might have affected.

[Damien Blenkinsopp]: Or you could be a bit under the weather, as you said not having slept. I actually experienced that with another tool, Lumosity; I don’t know how similar it is to Cambridge Brain Sciences, or if you are up-to-date on that, but it is a brain training tool that is quite widely used.

[Dr. Adrian Owen]: It is. Lumosity is actually very different to Cambridge Brain Sciences, in that they have gone much further in trying to turn things into games and entertainment, and of course their focus is on training. Although you can use Cambridge Brain Sciences to train, we’ve never made any claims about training, we are not encouraging people to try and train their brains using Cambridge Brain Sciences; we are trying to encourage people to use it to assess whether training works or assess whether any form of intervention works. If somebody wants to know whether a cup of coffee in the morning makes an effect, take Cambridge Brain Sciences twice, once before your coffee and once after and see if there has been a change.

[Damien Blenkinsopp]: So you think it could be useful for those small interventions? A lot of people are taking nootropics or coffee—you’ve heard of bulletproof coffee, where you put butter in it? All sorts of people are trying different things at the moment, including myself. If we have a standardised tool to assess ourselves and you think it can make the difference between one… could we test ourselves once each day at the same time? Are there are a lot of things we have to control for if we were going to run our own little experiments, in terms of getting realistic information out?

[Dr. Adrian Owen]: I think it’s the perfect tool for doing those sorts of things; it’s extremely sensitive, by that I mean it will pick up small changes. Because of the way that we measure performance in these various tests, it’s designed to pick relatively small changes. I would encourage people to try their own experiments at home with it but, of course, you should try and do it scientifically. Try and do it the way that we would do it in the lab, which is control as much as you can except the variable that you are looking at. So, try and do it at approximately the same time of day, try and make sure there are no huge confounding factors like you haven’t had any sleep for one test and you did for the other; keep as much as you can the same and then vary what it is you are interested in, whether it is in drinking coffee or taking your regular sleeping pill or whatever it is that you are particularly interested in, then do it.

Repetition is the corner stone of scientific enquiry. I don’t think that one single participant performing one manipulation pre-imposed coffee does not make a Nature or a Science paper, I can tell you that. If you are interested in it and see that you have promising early results, then try to repeat it, maybe try it on somebody else to make sure it works on multiple people. But these are all basic principals in science really.

[Damien Blenkinsopp]: I think there is an interesting aspect here when it comes to an n=1 experiment, is that we have personal biologies which are different: caffeine is metabolised differently, for instance. Some things, which in the world of science, because we are not aware of them, they won’t work; when we test ten people, we get a variance of results because we aren’t aware of a specific aspect of biology which varies in people quite differently. But when we’re doing an n=1 experiment, if we do control it well and we do it at the same time of the day, and we try to control for these things, we can see some repetitive thing that happens in us, and maybe it’s not going to happen in our friends, but we have that ability to see, “I wanted to improve my brain performance; this apparently does. I don’t know why it doesn’t work for other people but there you go.”

[Dr. Adrian Owen]: That is a very interesting point. The problem is when people then make claims based upon things like that. This is the problem with the whole brain training literature really is that people are making extremely broad claims, and I think that if you really boil it down, what the person in the street is hearing or is interested in is brain training—whatever that is—makes me smarter—whatever that is—and actually, the devil is in the detail, because brain training obviously works in a sense that if I teach myself to ride a bicycle, I have trained my brain. My brain is now able to operate all my limbs to ride a bicycle when it wasn’t able to do that before, so in that sense, brain training works; but that’s not news. If I practice long division, I’m going to get better at long division; again that’s not news, that’s learning. But in a sense, it’s brain training.

[Damien Blenkinsopp]: You’ve touched on basically the aspect of why everyone focuses on brain training. The point is not to get better at one thing; it’s to improve your ability to deal with new things.

[Dr. Adrian Owen]: It is and actually, that’s where the science gets really complicated and controversial because a lot of people, and I don’t think it’s uncontroversial to say that a lot of people with commercial interest, would like to claim strongly that there is so-called transfer: if you practice this one test, you are going to get better at all of these other things. Scientifically, that’s actually been something that is extremely difficult to demonstrate unequivocally that you really do get better at all those other things, because often all of those other things are quite closely related to the thing you’ve been training on, which is a bit like learning to ride a bike and then suddenly finding out that you are also better at spin class; it is not that surprising.

[Damien Blenkinsopp]: The biggest example that I can think of, I don’t know if you know other ones, is the Dual N-Back, or even the N-Back applications, which you will find on iPhones. I think a lot of people have come into contact with them these days. I played around with it for a while until I started reading some of the conflicting research and I thought I’m not sure this is such a great use of my time. The idea there is that you play this game and then it increases your working memory and your ability to solve problems and, basically, we are talking about the fluid intelligence that we mentioned before, which everyone wants to be able to do. What is your viewpoint on the effectiveness of these types of things and what kind of brain training did you test when you were looking at this?

[Dr. Adrian Owen]: I’ll answer the second part of your question first, so we actually used various types of brain training tests and some of them were similar to the N-Back tasks, they certainly involved a lot of working memory and, as you know, we didn’t find any significant transfer effects. Even when people had trained for six weeks for ten minutes several times a day, they clearly got better at everything they trained at, every single test that was trained people got better at, but they didn’t transfer to other tests, and actually in our hands, they didn’t transfer to other tests that were quite similar.

So for example, we had what’s called a spatial span task, where you simply remember the locations of various boxes on a computer screen, and in many ways that is very similar to a commonly used psychological test known as digit span, where you just remember a series of digits, in the sense that these are very discreet things that you have to remember one after the other and you repeat them in the order that they were presented—one of them are blobs in different places on the screen and the other one are numbers.

I think it would be reasonable to hypothesise that if you got better at one of those things, you might be improving your performance at the other one because there is quite a lot of overlap between them. Lots of brain processes are likely to be the same in both, but actually that wasn’t the case. We found that even with tests that were reasonably closely related to one other, like that, working hard at one didn’t actually improve your performance at the other. But again, that is one study; that’s the study that we conducted, that’s the results that we reported; other people have certainly reported other results and have suggested that training on working memory is beneficial.

I think one of the really big problems here is working out what is working memory, and what tasks do and don’t involve working memory. It’s very easy to say, “Well, this is a working memory task that has been designed by cognitive neuroscientists to assess working memory. We’re going to assess the effects of training on this other task, which is not called a working memory task; it’s called a fluid intelligence task. That must mean that if there’s an effect, there’s transfer,” but what people need to understand is these are just names that we assign to things. For a very simple example, working memory is involved in absolutely every single aspect of our life. You and I having this conversation, a working memory is absolutely essential to have this conversation because you are listening to what I’m saying and you are trying to accommodate what I’m saying in order to generate your next question, and I’m doing the opposite to you, and all the time we are remembering what each of us is saying and that’s how we are having a conversation.

[Damien Blenkinsopp]: It’s a bit like a computer ram. Everyone’s got computers; they need ram to have things working. It’s like working cash flow, working ram and it’s actually being used versus the stuff we have stored in long-term.

[Dr. Adrian Owen]: Exactly, that’s a perfect analogy. But would we, based on that comment I’ve just made, conclude that language involves working memory. Most people who work on language—psychologists and cognitive neuroscientists—don’t think of working memory as being a component of language, but they recognise that in the process of using language, and us talking to one another or even just generating speech, we need to use our working memory system. So, that is just an example where you need to look very carefully at the test because just because it’s called a fluid intelligence test doesn’t mean that it doesn’t involve working memory, and certainly it does; any cognitive test involves working memory because you have to remember the instructions of how to do it. You have to implement those instructions, you typically have to remember where you are in the test—Am I half way through? Am I near the end? It doesn’t matter what the test is about. I can’t easily think of a cognitive test that wouldn’t require working memory. That’s not a complete answer to the question, it’s not a complete explanation to why it is that training on working memory appears to improve fluid intelligence, but it’s just one example I think of the problems that arise when people try and make claims about transfer from one thing to another without really exploring the components of the individual test and saying, “Have I just trained up something that’s helping this person to do this other test?”

There is a lot of discussion/argument in the cognitive literature about exactly that. That’s why we’ve taken the Cambridge Brain Sciences’ approach, which is to not just rely on one test, but to have a whole array of assessment tools. Now, I guess our position on brain training would be that if brain training works, then you should be able to train on this one test, whatever it is, this magic brain training task and, in general, your performance on this whole slew of other tests, which brain sciences should get better. I honestly think that is what most members of the public would expect and are expecting from what they read about brain training. It’s not that if I train on my working memory, my performance on this one test of fluid intelligence is going to improve; they are thinking, apparently, if I train on working memory I’m going to get smarter. The best way we have of measuring am I smarter is to do an entire battery of different cognitive tests that assess planning and memory and attention and all these different aspects, so I think you do have to look at the big picture and when you look at the big picture, the data are really far from equivocal. It’s not clear that training on any one test or even any one battery of tests will generally improve you on most aspects of cognition.

[Damien Blenkinsopp]: Is that to say that every time say I’m doing the Cambridge Brain Science test, or you are, you’d expect to get roughly the same scores, unless you’ve had some injury, something negative, you would expect some age decline as you referred to earlier, but you wouldn’t expect there to be jumps? Even if beyond brain training we’d been exposed to new environments perhaps, a new job, perhaps we’ve taken on a new course, we’d taken on some new studies, a PhD, whatever it is, I’m assuming that you wouldn’t really expect those measures to change much?

[Dr. Adrian Owen]: Actually, in the study we published in Neuron in 2012, we looked at a lot of these different components. Because we had 44,000 people logged in, we also asked them a lot of questions about their lifestyle. That obviously doesn’t directly address your question in that people weren’t assessed at different time points, but we had an awful lot of people that had an awful lot of different lifestyle and behavioural characteristics. We had young people, we had old people, we had smokers and non-smokers, drinkers and non-drinkers, gamblers and non-gamblers, brain trainers and non-brain trainers. We could do some of these comparisons and try and look at what difference things make, and it’s actually surprising. A lot of things that I wouldn’t have thought would necessarily affect performance really did make a difference: your general level of anxiety, for example, affected performance, but it didn’t affect the performance across the entire battery; it had selective performance on a subset of tests. Similarly smoking, whether you were a smoker or not I should say, didn’t affect cognitive performance across everything; it had specific effects on clusters, on known groups of tests. I think that’s more likely what people are going to see if they repeatedly test themselves, perhaps pre and post to brain injury or using one of these interesting manipulations we discussed earlier, like whether you had a cup of coffee or whether you’ve lost a night’s sleep. They won’t see a global deterioration of cognition; they’ll see specific problems in various areas. Perhaps your memory would be affected or your ability to attend or problem solve would be affected.

[Damien Blenkinsopp]: One of the main things I’m interested in looking at is a lot of the things are hyped. A lot of the things that we consider spending time in, so some of the big things at the moment are mindfulness meditation. You’ll see most executives today doing some form of mindfulness or transcendental meditation, basically repeating a syllable versus just focusing on being mindful. Me myself, I try these things and my friends were all trying these things to increase our performance because we are all entrepreneurs and we are just trying to do better at life and get more out of life and so that’s what everyone wants these days.

But the question is, really, could we potentially test what you just said about anxiety because I’ve always of anxiety as like a distraction. If I’m trying to problem solve on a test or problem solve at work, I know for a fact that if I’m distracted I feel more anxiety and it feels like it’s harder work because I’m not really focused. It is like half of my working memory is taken up by whatever the distracting mechanism is. Meditation, yoga, things like this are supposed to improve that, so it would be interesting for people to do interventions at home and for people to do scientific studies on this to see if this has far more impact than brain training if you want to enhance your cognitive performance.

[Dr. Adrian Owen]: I come from very much the same philosophy that you do. I am always intrigued by what the current trend is; what is it that people are doing and believing. I would strongly encourage people to go out and try these things.

I think the problem is the best tool that we have for assessing anything is science and we have a scientific process, and we have a very well worked out system for what is acceptable science and what is not acceptable science and what scientists have to do to make sure that their peers agree with this, and these sorts of thing. People do need to be slightly careful I think on relying too much on just running their own experiments and finding out about stuff and assuming that it’s the whole story. But I think as long as people try and remain scientifically rigorous and go out and test these things, I think they are all perfectly plausible things to investigate.

A rule of thumb I always have is just because a lot of people believe in it and are sure that it is true, if it hasn’t been scientifically proven, then it’s very likely not the case, for whatever reason. I think that the commercial brain training is a very good example of that, where tens of millions of people clearly believe in this because the large manufacturers of these things sell tens of millions of units of these things, so there are a lot of people who think it might work, but the scientific evidence doesn’t support it and most people should be able to see that by looking around them in the street. Talk to your smartest friends and find out why they think they are smarter, I bet you can’t find somebody who says, “Oh, it’s because I’ve been using this brain training system for six months.” It’s not that all of our smart friends are brain trainers and all of our less smart friends are not brain trainers. The evidence is out there in society that brain training in a commercial big sense clearly doesn’t work, that all the smart people aren’t the brain trainers and the less smart people the non-brain trainers. Again, that doesn’t mean there’s nothing in there and no type of brain training could have any effect, it just means that the sorts that most people are buying into at the moment, it isn’t doing what they believe it’s doing.

[Damien Blenkinsopp]: We don’t have any concrete scientific studies saying, without conflicting studies coming up a couple of years later, “Well, actually this isn’t repeatable.”

An aspect I wanted to relate back to is, because I hear this a lot, I hear about the brain aging and how we have got to protect ourselves. A lot of people are concerned about Alzheimer’s of course, it’s is one of the biggest fears of people, and losing our brain is something that obviously we care about a lot. When we are talking about aging of the brain, what does that actually mean? What’s going on there?

[Dr. Adrian Owen]: Again, it really depends on who you are; if you are dementing, by that I mean you have something like Alzheimer’s disease, then your brain is generating abnormal clusters or groups of cells within the brain that are seriously detrimental to performance and are affecting your memory and your attention, your ability on many tasks. If you have Parkinson’s disease then basically you have a reduction in a particular neurotransmitter known as dopamine, which we know is important for many tasks and for the normal functioning of many parts of the brain, and that again will have really rather specific effects. For the rest of us, maybe a lot of us have had small strokes during our life that we are not aware of. We are all very familiar with people who have had a major stroke that may have affected a large portion of their ability to move a part of their body, but there is a school of thought that over the course of our life, many of us have small strokes that don’t have measurable effects, but by the time you get to your 70s and 80s, that stuff is all adding up, you’re starting to see impairments.

Head injuries; I spend a lot of my time working with very severe head injuries, but of cause concussion is very much in the news these days. Over the course of most of our lives, most of us sustain a fair number of bangs on the head. It may not have resulted in a clinical concussion, but the brain, in spite of the fact that it is well protected by the skull, is an extremely vulnerable organ. We know that a blow to the head can have a serious effect. So I think all of these things, along with what most of us assume as aging, this non-specific atrophy of the brain, brain cells just shutting down or dying; all of these things can add up to the aging process and this is why aging is such a mystery because of course it’s all so different in each and every one of us, because we’ve all had different experiences and been exposed to different things in life.

[Damien Blenkinsopp]: What you’re saying is that it is very complex. Aging is this name we give to lots of biological changes, like damage accumulation. We’ve recently had Aubrey de Grey on, and he talks about aging and he splits it into seven different areas, so it’s quite interesting for him to break it down and say well, actually, it’s because you have cellular garbage building up and to actually break it down and describe it. So it’s interesting to talk and clarify a bit because everyone talks about brain aging, and as you say, it can be different for different people. If we are trying to prevent this, since you brought up the injuries, have you been able to improve the situation of people with injuries beyond just kind of assessing what stage they are at? Are you able to at least get them to recover somewhat, so it kind of gives up some hope for the aging process as well?

[Dr. Adrian Owen]: There is obviously a big difference between mild brain injury and severe brain injury. Some of the work we are trying to do now is to look at concussion, and again we are using Cambridge Brain Science; we are assessing concussion in people like American football players, who often suffer many serious concussions within the course of one season, and looking at whether by carefully measuring their cognition pre-imposed concussion and we’re coupling that in some cases with brain imaging studies to see what the actual impact of the brain is. We are trying to look at ways in which that sort of damage can be mitigated.

For very, very serious brain injury, I do a lot of work in patients who are in coma or a vegetative state, and there the damage is often so severe that it is very hard to work out where to start as far as rehabilitating people is concerned, or getting them back to a normal life. That doesn’t mean that there won’t ever be any answers or that there aren’t any potential answers on the table, but it’s a much harder problem to solve.

[Damien Blenkinsopp]: So when people talk about neuroplasticity, because that’s one of the things that gave people a bit more hope there, what does that refer to?

[Dr. Adrian Owen]: It’s a very broad term which has slightly been taken out of context. Two ways in which it is used often is in studies of healthy participants who are taught to do something that they couldn’t do previously. There was a very well publicized study a few years ago about people being taught to juggle. They were non-jugglers to start with, they were scanned at various points during the learning process, they were expert jugglers at the end, and there were changes in their brain that had occurred as a result of them learning to juggle; those changes were, I suppose, why they were able to juggle. Neuroplasticity had occurred in the brain and they had acquired a new skill. It’s a great study; it’s very well carried out and they use some beautiful new technical methods, but in a way, the result isn’t surprising because of course the brain has to change to do stuff and to learn stuff and that is how we retain these abilities to do things for many years. Once you have learnt to juggle you can usually do it for years and years after, even if you don’t continue to practice. So there is that kind of neuroplasticity, which I think, again, some people have taken out of context and said, “Okay, so the brain is totally plastic. We can all just move things around and learn to do new things,” and it’s not quite as simple as that.

The other way is, again, very good studies that have looked at the results of things like strokes, patients who have had a stroke and have learnt to do things that they lost as a result of the stroke. Perhaps they couldn’t move an arm, and through a process of continued rehabilitation, they regain the ability to move that arm. In some cases it’s been shown that it’s not that the bit of the brain that was damaged has been fixed, it’s that a different part of the brain has taken over the role that was carried out by the damaged part of the brain. Things have shifted around and, again, it is another example of neuroplasticity. There is no doubt that this happens; I don’t think anybody is questioning that this is something that the brain is able to do, the question is how widely can it be applied? It doesn’t mean that any of us can just reallocate resources within our brain, because we happen to have a large frontal lobe, let’s shove it all up the font and do it with our frontal lobe; things aren’t quite as easy as that, but neuroplasticity is an interesting idea and it is, as you, say something that is gaining a lot of attention.

[Damien Blenkinsopp]: It sounds like it’s potentially a zero sum game, the reallocation of what you have rather than being able to re-build capacity that was lost for whatever reason.

[Dr. Adrian Owen]: I think so, certainly in the case where there has been a specific type of brain damage. It is very rarely the case that part of the brain that has been seriously damaged can be repaired. I can’t think of examples where that part of the brain has been made to work again. It is usually about reallocation of existing resources, but there’s a lot of truth in the old saying about how much of our brain we are using at any given time. We have quite a lot of brain and it is an extremely complex organ that is very, very well interconnected, so I think most of us do have a lot of potential for neuroplasticity, as long as the damage that you’ve received is not too severe. So although it’s a zero sum game, I think there’s plenty of potential there.

[Damien Blenkinsopp]: I just did want to bring up one study that I saw recently, which was a bit more optimistic. You might have heard of it, I’m not sure, it was a reversal of cognitive decline. A novel therapeutic programme, it was in September 2014, and it was basically a multidisciplinerary approach. They had ten people do ten different things at the same time, so it wasn’t one of these controlled experiments where you’ve just got one thing going on. They just wanted to see if we throw everything at these people, can we help them? And it seemed like it was pretty positive: nine out of ten had some objective and subjective improvement and six out of six who had stopped working, went back to work. I don’t know if you saw that study, it was on Alzheimer’s and other patients; it was published in the Journal of Aging.

It’s with things like that you wonder, potentially, there are way to improve our situation. Maybe it’s not regrowing capacity, but there are ways of allowing our brain to work better in the conditions that it is in and continue to live the life or improve our performance as per whatever we are looking to do.

[Dr. Adrian Owen]: I think that is a really great example of where the point is to just not move too far away from the data. So I don’t doubt for a minute the results of the study, but what’s important is that you stick to that result and you say, “Okay, so when people of that kind, patients in this case, perform multiple tasks at the same time, their lives improve and they go on and live better lives than they did before,” and that’s the important message; that’s what that paper measured, that’s what it set out to measure, that was the result that it demonstrated and that’s what you should take away from it. Rather than say thinking, “Ah, so brain training works then!” which is, as we have been discussing, it is just a much bigger issue and, actually, that study doesn’t show that brain training works; it shows that a specific group of tests in a specific type of patients can improve their lives in specific ways. So that suggests that some aspects of brain training work, but one shouldn’t take away from that that if, “Okay, I go and buy this product to make me smarter, it’s going to make me smarter.”

[Damien Blenkinsopp]: Maybe I should have been clearer here. It wasn’t brain training; it was ten different interventions in terms of exercise, meditation and yoga to de-stress, basically doing everything you can think of that people say we should do to live healthily. So that’s what I meant when they threw everything at them, they were just like, “Have a programme and you have to do everything that we are supposed to do to be healthy. Now, is this going to make any impact in terms of your brain cognitive performance?” Again, I guess the same point remains: are you an Alzheimer’s patient? But it might be an interesting test to do yourself, if you are willing to do ten little interventions and then to use something like Cambridge Brain Sciences test to see if it has had any difference after a month or something.

[Dr. Adrian Owen]: I think so. I think you would get a pretty good pre-intervention assessment and a post intervention assessment with something like Cambridge Brain Science, it would be a perfect way to test that. As you say, it could be different in healthy participants. We know a lot about the difference between patients and healthy participants. Patients, in a sense, have much more to gain. There is an argument that those of us who can claim to be healthy are already doing as good as we can, we’re working at our cognitive optimum levels and maybe we can’t get any better, whereas somebody who is already declined 20% from their best, has that opportunity to climb back up to the top again. These are all important factors that may produce differences in the so-called healthy population versus any kind of patient.

[Damien Blenkinsopp]: Great, great, thanks for that. Just to bring up, it is interesting that you have been looking at EEG and the use of that. We spoke about functional MRI technology, which of course is extremely expensive and limited to research studies primarily because there is not so many of them. So you have been doing some work with EEG, which is interesting because it means that potentially some of those applications could be used broader because EEG is more accessible. So could you give us an overview of how you used it and where it could be applied potentially, this kind of approach?

[Dr. Adrian Owen]: Again, just to sort of qualify something that you have said, although EEG is much cheaper than FMRI, there’s EEG and there’s EEG. The EEG systems that we use actually cost more than 100,000 pounds each, so these are not things that you are going to be able to go and buy down at Radio Shack or Best Buy; these are extremely sophisticated, expensive pieces of scientific technology. But of course, the potential of EEG is that if we get it right with these expensive tools, we can make it cheaper; one could reduce the number of electrodes—instead of the 128 that we use, perhaps you can answer that question with just five or six. Those are all scientific and technical questions that we are trying to solve. FMRI, for various technical reasons, is not going to get a lot cheaper at any time soon. We’re not going to be having portable MRI scanners that we can all take home with us very soon, so there isn’t the potential for things getting much cheaper or more portable with MRI in the way that there is with the EEG.

What we have been trying to do is to use the EEG systems to achieve many of the same things that we have done with the MRI, mostly this is with the very serious brain damaged patients, it’s trying to determine whether some patients who appear to be in a vegetative state might actually be conscious but locked inside their head. We’ve had quite a lot of success with that over the last ten years using FMRI, and we are now pretty good at detecting something like one in five patients who appear to be entirely vegetative, and sometimes have been that way for many years, when we put them in the scanner we can detect that they are actually there, they are conscious, they are aware of what is going on around them, they are laying down memories and if they could, they would probably express opinions about the situation that they’re in. That is something that we have been trying to replicate with the EEG, and technically, it’s much harder, it’s proved to be much harder with the EEG. We’ve done it, we’re about at the same stage with the EEG that we were with the FMRI. But even though it’s simpler, it’s a portable technology, you can take it to the patient in their hospital, scientifically in terms of what you are measuring in the brain, it’s a little bit harder to actually analyse the data and interpret the data, so it’s had it’s own difficulties, but we are continuing to work in that area to try and improve things.

[Damien Blenkinsopp]: I wish you success there, it sounds like a very useful application that is going to help a lot of people.

So to round off the interview, what are you expecting in the next five or ten years in terms of our ability to assess cognitive performance or cognitive abilities? Are you expecting any big exciting changes or interesting things that might be helpful in this area?

[Dr. Adrian Owen]: I’ll tell you what I’m not expecting, I don’t think that we are going to suddenly get a brain training magic bullet. I really don’t think we are suddenly going to find that doing a particular task three times a day, six times a week is suddenly going to improve cognitive performance. The reason for that is you just have to look out there in the world and we would have worked this out by now if that was going to be the case. If there was some reasonable thing that one could do to boost one’s cognitive performance in terms of practice or brain training, then I think we would know about it by now. So that’s not what is going to happen.

We are learning an awful lot of information about things like the effects of drugs on the brain, how drugs affect different brain regions; there’s a whole area that we haven’t touched on here about so-called neuroenhancers, drugs that one can take to up your performance, to improve your cognitive abilities, and we are starting to learn much more about how those drugs work, the neurochemical systems that they work on in the brain, and I think it is entirely plausible that new drugs, so-called smart drugs, will be developed that will have specific and perhaps reasonably large effects on cognition.

I think the other thing is that people are waking up to the importance of trying to keep your brain healthy, trying to preserve what cognitive function you have, and we are seeing changes in society. Society is generally getting healthier, people are stopping doing a lot of things that are now pretty clear weren’t good for us and are affecting our brain in various ways, so I think that will also feed into public knowledge about ways of preserving function during aging for example. I’m not anticipating any huge revolutionary changes except, potentially, in the smart drug area.

[Damien Blenkinsopp]: Great, thanks. That’s good to hear. Is there anyone besides yourself you would recommend to talk about these subjects, like cognitive assessment or potentially, the brain training area, that they have looked at it in detail and assessed the potential of it?

[Dr. Adrian Owen]: Randy Engle in Georgia has published a lot on the so-called brain training, and he is an extremely smart and approachable individual who has a lot of very intelligent things to say about some of the statistics that have been used, some of the controls that have been used. His is a largely negative view, I would say, about the effects of brain training. You won’t have to go very far to find somebody who would be happy to talk to you about the positive aspects of brain training, so I won’t promote that by dropping any names in.

As far as smart drugs are concerned, somebody like my former PhD adviser, Barbara Sahakian in Cambridge, UK, is doing a lot of work on smart drugs and the effects of cognitive enhancement. She is certainly very knowledgeable in that area and I’m sure she’d be happy to talk to you.

[Damien Blenkinsopp]: Great, great. Thank you very much.

Just to round off, I’d like to get a view into your personal life and if you are using any type of data. Are you tracking any type of data in a routine manner or looking at anything in your life from time to time, maybe once every six months, or anything to assess your health, your performance or your longevity?

[Dr. Adrian Owen]: I’m just afraid to do that. I do, of course, log into Cambridge Brain Sciences every so often just to check how I’m going.

[Damien Blenkinsopp]: Out of interest, did you get a decline similar to me?

[Dr. Adrian Owen]: Well, when you get to 48 years old, it is inevitable that some things are just not working quite as well as they used to. Sometimes I’m surprised that I’m as cognitively preserved as I am, but I’m not the sort of person that monitors my performance on a regular basis. I, of course, get to scan my brain very often, and I guess that’s one answer to your question. Because of the context of my brain imaging research, I get to go inside the MRI scanner to test out various new things we are trying and to test new sequences in the scanner, etc., so I do get the opportunity to see my brain really quite frequently. I’m always on the look out for anything that looks a little bit abnormal, any sort of accelerated atrophy or lumps and bumbs here and there. It is impossible not to be intrigued by these things if you are a neuroscientist.

[Damien Blenkinsopp]: Right, especially if it’s your brain you’re looking at. I guess it is like the whole medicine thing, when you start googling stuff, you get the whole placebo effect of, “That sounds like something I have.” We’ll call it the anti-placebo effect, you should never start googling if you have some little random symptom because you’ll end up that probably google will say you have cancer or something.

[Dr. Adrian Owen]: Google always says you have cancer.

[Damien Blenkinsopp]: One last thing; we have spoken a lot about data today and controls, what would be your one big recommendation to people that are using data in their lives—they are trying to make some sort of decision, use data to improve their lives on any dimension, whether it’s longevity, performance or health—what would be your one recommendation in terms of what they do with data or how they use it?

[Dr. Adrian Owen]: I think there’s a scientist in everybody. We are all interested in questions about the world, about our lifestyle, about the effects of our lifestyle on our brains or on our ability to think. I think my one recommendation would be for people to try and stick to the scientific method. We’ve homed this idea over hundreds and hundreds of years now, we know how to conduct rigorous scientific experiments; you don’t have to be an expert in statistics, you just basically have to follow a few simple principles. Make sure when you test something, you are controlling as much as you can about other factors, try and make sure that the effect is reproducible, try and make sure that it’s reliable. There are many fairly basic scientific principals that one can apply to everyday life. Don’t just google something or read about something in a newspaper and assume it’s true. Go out and test it, but when you do that, test it using as many basic scientific principals as you can and I think you won’t go far wrong if you do that.

[Damien Blenkinsopp]: That’s a great bit of advice. I don’t know if you know if there’s a book or something that would give someone a basic introduction to the scientific method? I don’t know if that exists.

[Dr. Adrian Owen]: I’m sure it does exist, but off the top of my head I can’t think what would be a good place to point people, but I can send you something that you can accompany this podcast with.

[Damien Blenkinsopp]: That would be great, I’d really appreciate that, that would be very helpful.

Adrian, thank you so much for your time today and all the questions and answers you’ve been giving us. It’s been really interesting.

[Dr. Adrian Owen]: That’s my pleasure. It was a lot of fun. Thanks very much.

Leave a Reply

How well are you aging? We look at an attempt to make an aging biomarker index accessible to consumers that tracks their true biological age and provides feedback recommendations to improve how they age.

In this episode we take another look at longevity through the lens of aging biomarkers. This time taking a look at some of the most well research-supported biomarkers to predict how well we are aging. Or more to the point, how badly we may be aging, and get some early warning indicators, about having to intervene to assure we avoid shortening our lifespan.

Specifically we look at InnerAge, a new panel of aging biomarkers developed by the consumer blood testing service InsideTracker.

The panel provides an index estimating longevity based on a combination of biomarkers, and based on the results, makes recommendations to improve your longevity (AKA put the biomarkers back in the optimum zone, reducing the associated risks of shortened lifespan).


“…for each of those biomarkers, we have an intervention that you can take in order to optimize your InnerAge, and it’s very important for us to take markers that you can [have an impact on]. For example, we are not taking a marker of a disease like BRCA1 or other markers that show whether you have cancer or not, as you cannot do an intervention for that.”

– Gil Blander, PhD

Today’s guest is Gil Blander, the founder, president and chief scientific officer of InsideTracker. Gil has 18 years of experience in systems biology, computational biology, aging, metabolism and caloric restriction research.

During his career he has worked at MIT, the Weizmann Institute, and several systems-biology and computational biology companies. In this interview he walks us through the new aging panel, InnerAge, and the research and thinking behind why the company chose each of the biomarkers in the panel.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • Gil’s interest in biomarkers arose at the age of 12 when the death of a close family member made him think about age and longevity. (5:12).
  • Gil founded InsideTracker, with the aim of having a way of doing a monthly health check-up with optimal values for various biomarkers that are tailored to each individual (8:06).
  • When we look at biomarkers in the blood, they can show us where we are in terms of health and based on that, we can find optimal zones for each biomarker. (9:30).
  • The team of scientists and two year research process it took to cut down the aging biomarkers from hundreds to the top five (12:55).
  • How InnerAge uses an algorithm to estimate your chronological age, and recommend interventions based on your biomarker results (17:06).
  • Examples of some of the interventions including food supplements, exercise and lifestyle changes used to push biomarker values back into their optimum zones and reduce risk of shortened lifespan. (18:58).
  • Other biomarkers included in InnerAge are vitamin D, testosterone for males, CRP (22:35).
  • Why testosterone was included for men in the panel and why they have used different optimum ranges according to age and fitness activity (23:03).
  • InsideTracker is building its own database with information from athletic populations that do primarily strength or primarily endurance training. They are mining the database to determine optimal biomarker levels for each population. The benchmarking tool can be used to tell you how you compare with the rest of the population For example, a large percentage of the population has low vitamin D levels, but InsideTracker can tell you what percentage of the population shares those levels (25:47).
  • For benchmark levels of the biomarkers, InsideTracker shows the optimal range, which is their range, the normal range, which is what is used by the diagnostic companies and out of normal. For some biomarkers, even more ranges are shown (28:55).
  • An interesting biomarker not included in the panel is cholesterol. There are no scientific papers that have shown the correlation between cholesterol, or LDL and longevity. New guidelines by the American Heart association state that cholesterol is not as important as was once thought (30:00).
  • Cholesterol is a building block of testosterone, so if cholesterol is low it will be harder to make testosterone. If you have good metabolism, you can metabolize cholesterol (31:50).
  • CRP is another biomarker included in the InnerAge panel to capture the inflammation dimension of aging. (32:38).
  • InsideTracker should be used repeatedly so that you can see the trends in your values. Samples should be taken at least a couple of times a year for average users (35:09).
  • Other scientists working on aging is Nir Barzilai from New York City and Cynthia Kenyon from UCSF (37:29).
  • Currently, InsideTracker is developing an app that will help you maintain weight, biomarkers and activity (41:46).
  • InsideTracker uses LabCorp request to send samples, but it also uses home kits. They hope that in the future, home kits will improve. (42:18).
  • Theranos’ innovation in finger prick blood samples for a wide range of blood tests. (44:20).
  • Gil Blander’s own personal routines for tracking his own biometrics with InsideTracker and other tools, and the current devices and other services he uses.

Thank Gil Blander, PhD on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Gil Blander, PhD

The Tracking

Biomarkers

  • Fasting Glucose: One of the most commonly used biomarkers. It is used as an indicator of blood sugar regulation and can be indicative of longevity as blood sugar disregulation lies behind many common health issues such as diabetes and obesity. Gil mentions that while blood glucose should be between 65 and 99 for everybody, his aim was to find optimal levels for different populations.
  • Total Testosterone: Low testosterone has also been linked to depression and decreased cognitive ability. Since testosterone levels decline with age, it can be used as a biomarker of aging. Gil Blander included testosterone as one of the biomarkers in the InnerAge panel.
  • Vitamin D (25 Hydroxy Vitamin D): Also referred to as Vitamin D 25-OH. InnerAge panel includes vitamin D as a marker of longevity. This is measured in ng/mL and InnerAge uses ranges of between 40 and 50 ng/ml depending on your profile.
  • Total Cholesterol: Has long been thought to contribute to cardiovascular disease. However, re-evaluation of scientific evidence has shown that cholesterol is not harmful for most people. Cholesterol is a building block for steroid hormones, such as testosterone and estrogen and is an integral part of cell membranes. Since recent scientific data do not support the idea that high cholesterol causes heart disease, Gil Blander has decided not to include it in the InnerAge panel.
  • High Sensitivity C-Reactive Protein (hs-CRP): We’ve discussed this common biomarker of inflammation often on the show. As a general rule, the closer your marker comes back to 0, the better. InnerAge includes CRP in its panel because they implicate higher inflammation as a dimension of aging. Gil Blander notes that because exercise increases inflammation, the test should not be taken for approximately one week after vigorous exercise.
  • Alanine Amino Transferase (ALT): This biomarker of liver function is also included in the InnerAge panel. Normally, levels of ALT in blood are low, but increase if there is liver damage, which may be chronic and ongoing. The Liver is looked at for longevity in this case as its role in detoxification is considered an important predictor of health and longevity.

Lab Tests, Devices and Apps

  • HRV from ithlete: This is an app for iPhone and Android that tracks HRV. It can be used to maximize athletic performance and maintain good health. Gil Blander uses this to track his HRV, as does Damien.
  • MyFitnessPal: This is an app that is used to track nutritional intake. It can be used to track intake of calories, macronutrients and micronutrients as well as energy expenditure. Gil Blander uses MyFitnessPal to track his food intake
  • Nutrino: Nutrino is a “virtual nutritionist” app that connects to wearable devices like Whitings and Fitbit and makes personal meal recommendations. It includes information on what to eat and when to eat it. Gil Blander uses it to track his nutrition.
  • Withings WS-50 Smart Body Analyzer: Gil Blander uses this scale to track his weight and store the data daily.
  • Fit Bit Charge: FitBit is a wearable tracker used by Gil Blander. It monitors physical activity and sleep quality.

Other People, Books & Resources

People

  • Simon Wegerif: was mentioned in the context of his interview on QBP and his app and HRV platform ithlete.
  • Lenny Guarente, PhD: One of the leading researchers on aging and is considered to be the father of the new aging research.
  • David Sinclair, PhD: David Sinclair is a professor of genetics at Harvard Medical School is one of the leaders of aging research. He is also involved in the biotech community and has started several companies.
  • Bob Troia: Bob Troia is known for his n=1 experiments in self-tracking and biohacking. He was a guest on episode 22 of QBP and is a user of InsideTracker.
  • Nir Barzilai: Nir is one of the scientists involved in developing the InnerAge. He is the director of the Institute of Aging Research at the Albert Einstein College of Medicine. He is studying the effects of the environment, especially nutrition, on extending the lifespan.
  • Cynthia Kenyon: Cynthia Kenyon is a professor of biochemistry and biophysics at UCSF and is one of the scientists who has helped develop InnerAge. She is one of the pioneers of research in genetics of aging.

Organizations

  • LabCorp: Laboratory Corporation of America provides lab testing and services. InsideTracker currently uses LabCorp for its lab processing.
  • Theranos: A lab testing service that tests on very small amounts of blood, taken from the fingertip. Their tests promise to be a lot more affordable, convenient and faster than tests from traditional labs.

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp]: Hi Gil, thank you so much for joining us today on the Quantified podcast.

[Gil Blander]: Thank you so much for inviting me. It’s a great pleasure
and I already listened to a few of your guests and I really appreciate it because the
quality is very good.

[Damien Blenkinsopp]: Thank you, that’s a great compliment coming from
you. As we’re going to see, you’ve been pretty busy yourself doing some good stuff.
So, could you share first why you got involved with your interest area—what is the
story about why you do what you do at InsideTracker today?

[Gil Blander]: It’s a great question. Apparently everyone is asking me this
question. My scientific journey started at the age of 12 when one of my closest relatives
passed away, triggering my quest and a thirst for knowledge in our body age. Basically,
at that time I decided that instead of being a physician or physicist, what I wanted to do,
I decided to become a biologist. The reason for that is that one of my relatives passed
away and I started to realize that I’m not immortal anymore, and I realized that one day I will be gone. I wanted to live forever; I wanted to stop the clock; I wanted to try to delay the aging-related diseases. So that basically pushed me to become a scientist and to focus and to have my lifetime goal in aging research.

So I’ll fast-forward a few years: I decided to study biology, graduated from Tel Aviv
University with an undergraduate in biology, PhD from the Weizmann Institute of
Science studying aging, and then I came here to MIT in Cambridge, Massachusetts,
and I joined the best lab that studied aging in the world. I studied aging there for five
years, published a lot of interesting papers, did very cool research, but very early when I arrived here to Cambridge, I started to be exposed to what we call “the Kendall square
environment.” There are hundreds of start-ups in biotech, pharmaceutical, and high-tech. I started to be exposed to them and I started to talk with a lot of founders. I started to do some partnerships with them and I very soon realized that I will contribute much more to humanity if I would start my own company than to be a professor in the academia that publishes a paper once a year and maybe five people will read the paper. I realized that that should be my next step.

Even having realized that, it took me some time because I really like the work in the lab
and I did a very cool experiment. So after five years at the MIT, I left MIT and I joined a
couple of biotech companies and worked there just in order to learn and understand the
industry. Also, I really wanted to learn more about systems biology. So I spent a couple
of years there and then, during that time, I was exposed to two other PhD scientists that were really intrigued by the aging process as well, but also were trying to change the equation between healthcare—basically that the healthcare is taking care of the sick and not of the healthy.

We came at that time with the basic of InsideTracker. The basic is very simple. First of
all, all of us are a machine and like a machine, we need to take care of ourselves.
Today, we are not taking care of ourselves. If you look at that, you go to the physician
mainly when the machine or “us” is broken down. When we are breaking down then we
go to the physician. So we decided to find a way to have once a month to have a
check-up that we can basically check ourselves, find what is not completely optimized
with ourselves, then intervene, and then have our body good for a few more months.
I really like the analogy of the car: so every 5000 miles, you take the car to the
technician. The technician plugs a computer into the car, the computer tells the
technician exactly what should be done in order to make the car good for another 5000
miles, should he replace oil or the oil filter and so on. The technician does that and then
the car is good for another 5000 miles. There is a lot of research that shows that since
the time that this routine schedule of maintenance for the car was introduced, in the
80s, the lifespan of the car increased from around 100,000 miles on average to around
200,000 miles on average.

So we said let’s do something similar. We cannot obviously plug a computer into our
body, but we can plug a needle into our vein and extract the liquid gold that we have in
our veins, called blood. Then when we extract the blood, we can look at the biomarkers
that show where you are staying and based on that, you can find optimal zones for each biomarker. I can give you an example; let’s look at the most boring, maybe, biomarker that you know, which is glucose. For all of us, the optimal zone is between 65 to 99. It doesn’t matter if you’re male or female, young or old, Olympian or couch potato, someone that is obese or someone that has a BMI of less than 15; all of us should be between 65 to 99.

We said that that’s wrong; let’s find an optimal zone for each of us based on age,
gender, ethnicity, and athletic activity, and other criteria. Let’s find an optimal zone that
is matched, and then find whether you are within your optimal zone, above or below. If
you are not in your optimal zone, we can subscribe you an intervention that includes
food, supplements, exercise, and lifestyle changes, that basically will help you to bring
yourself to the optimal zone, and when you bring yourself to the optimal zone there is a
good chance that you will optimize your health, your performance, and hopefully, your
longevity.

So that’s basically the background of InsideTracker. I just want to say that all of our
recommendations, the zones, everything, is extracted from peer-reviewed scientific
literature. We have a team of scientists that do that, so we are looking at it very
seriously and taking it very seriously.

[Damien Blenkinsopp]: What are the most common use cases you have
today? You mentioned a few different things like athletes. What are your clients today?
What are they mostly using it for?

[Gil Blander]: We have three main segments of clients: we call them the
train, the gain, and the pain. The train is, as you said, is an athlete: someone that wants
to shave two minutes off his marathon time; someone that wants to play at the fourth
quarter; someone that wants, basically, to approve his athletic performance. The gain is
an interesting segment. People—that are more like me—that are trying to reach to their
forties, trying to stay in their peak performance, trying to reach the afternoon and have
enough energy and enough patience to play with their kids; people that are trying to
perform better in their work, so a lot of executives; those are the gain population. The
pain are people that are sick.

Currently we are mainly trying to serve the train and the gain, because we feel like the
pain, which are sick, have already someone taking care of them—that’s the physician,
and wishing that the physician is doing a good job. We also don’t want to get into all the
regulation—when you are sick, there is more regulation. We are trying to have a proof
of concept or to show to the train and the gain that we can help them a lot, and maybe
in the future, we’ll go also for the pain, but currently, the main customer segment that
we are trying to approach are the train and the gain.

[Damien Blenkinsopp]: Thank you very much for that. You have just
created this new panel, which is called InnerAge, and it’s specifically targeted at aging,
whereas the rest of your platform, as I understand, is a bit more general. When you
were looking at the criteria for selecting biomarkers, how did you go about that? What
kind of criteria were you looking for in order to select the biomarkers that you’ve put
into that panel?

[Gil Blander]: First of all, we built a team of scientists, and actually we
recruited new scientists and we work with our scientific advisory board. I want to
mention that two of those scientific advisors that we have, one of them is Professor
Lenny Guarente from MIT, who is considered to be the father of new aging research
era and is by far considered to be the initiator of the aging research in the world and
considered to be one of the five top researchers of aging in the world.

Another scientist is Professor David Sinclair from Harvard Medical School. He actually did his postdoc at the lab of Lenny Guarente. Now he’s also considered to be one of the leaders of aging research. He’s also extremely involved in the biotech community; he’s started a lot of companies, and one of them called Sirtris—which use what they call resveratol (which I assume that you’ve heard of), a small molecule that is in high concentrations in red wine and has been shown in a lot of studies to increase longevity—was sold to a big pharmaceutical company a few years ago for $720 million. So both David Sinclair and Lenny Guarente help us to do that.

As to your question, we basically spent almost two years looking at hundreds of
biomarkers and trying to see what is the effect of those biomarkers on aging or
longevity. Basically, we were trying to pinpoint, looking at the scientific publications,
which are the five that are the most related to longevity.

[Damien Blenkinsopp]: So, just to take a step back—when you’re talking
about longevity and aging, are we referring to mortality here? Some people when they
think about aging, they’re thinking about their skin and how they look and things like
that. Are we talking about longevity in terms of how long we’re going to live, or is it
other aspects also?

[Gil Blander]: It’s a good question, and the answer is yes. I can give you
again the example of glucose, which is one of the markers that we have in the
InnerAge. We looked at the data and we found a lot of data that showed, not surprisingly, that when your glucose is high, you might compromise your longevity. But
we were looking for better data and we found it in the scientific publication that was
published based on the Framingham Heart Study. I don’t know if you’ve heard about it?

[Damien Blenkinsopp]: Of course, yeah.

[Gil Blander]: It’s basically a study that was done here in Massachusetts,
in a small lake town next to Boston. They followed up the population of this town for
tens of years and measured some biomarkers. What they found is that there is a strong
correlation for the level of glucose at a certain age and your final longevity. Let me give
you an example: if you are 40-years-old or 35-years-old and your fasting blood glucose
today is 70, you have a good chance to reach your 90s; if your glucose is a bit higher,
let’s say 80, you have a better chance to live to your 80s; and if your glucose is in the
90s, you have a better chance to live to your 70s; but if it’s 100 plus, you have a better
chance to live only to your 60s. So based on that, we took the data, we compiled it, and
then you can basically take a person and say, this person’s age is 40, his glucose is X,
so basically based on the glucose, the predicted longevity will be 80. He’s now only 40
so he has, just by the glucose, 40 more years to live.

Now we’re looking at a few other markers, so each of them show us what the effect is,
then we compile it all together using an algorithm and that’s what we show you as the
InnerAge. We show it to you in comparison to your chronological age, meaning what is
your age today.

[Damien Blenkinsopp]: So it’s an estimate of your longevity based on an
average person? The trendline I guess you’re showing is chronological age against this
biological age, and it’s showing it against, say an average 80-year-old or if you’re doing
better than the average, maybe you’re going to live to 100?

[Gil Blander]: Yes, so it uses the average but also, I want to say that it
shows what is happening with you today. It doesn’t say, and we’re not trying to say that
if you’re a 40-year-old male and your InnerAge is 30, we’re not trying to claim that you
will live 10 more years than what you’re supposed to or than the average. What we are
saying is that if you continue to stay like that, you have a chance to live ten years less
or ten years more. So that’s a very important point.

What is also very important is that for each of those biomarkers, we have an intervention that you can take in order to optimize your InnerAge, and it’s very important for us to take markers that you can intervene. For example, we are not taking a marker of a disease like BRCA1 or other markers that show whether you have cancer or not, and you cannot do an intervention for that.

[Damien Blenkinsopp]: Right. We don’t have any ideas about what exact
tool we could use to change the fact that, apart from having surgery and having your
breast removed in that case, but there’s no specific intervention that you have linked to
those. So you stick to things that are actionable, which is great; that’s what we like to
hear on this show.

[Gil Blander]: They are actionable and more than that, they are simple
interventions. So it’s a food supplement, exercise, lifestyle changes, so similar to Inside
Tracker but a bit more simple. And the simplicity comes with the next feature that we
have in InnerAge, which we called “focus foods.” So focus foods are basically nutrient-
heavy foods that will help you to optimize all the biomarkers that are related to InnerAge that are not optimized for you. So basically, focus foods are foods that are personalized just for you based on the level of the biomarkers that you have and they will help you to optimize all the biomarkers that are not optimized just for you.

For those foods, you don’t need to change completely your routine. What you need to
do is pick a couple of them and start to integrate them into your diet. So for example, if
you need to consume more oatmeal, eat it every day; that’s it. You don’t need to
change completely your behavior. Or if you need to eat strawberries, just try to integrate strawberries. Don’t change all your diet. So what we’re trying to do here is very simple because, as you know, it’s very hard for us to change our diet completely. You have a lot of influence on your diet, you are at home or at the office, you are commuting, you are travelling—it’s not easy. But when you have only a few food items that you need to incorporate all the time, it’s much easier to do that.

[Damien Blenkinsopp]: Could you give us an example—you gave us a
blood glucose example—as to what kind of recommendations the tool would make: I’m
40-years-old and my blood sugar is currently at 95. My fasting blood sugar I guess
we’re talking about.

[Gil Blander]: First of all is nutrition. To optimize your blood glucose, it’s
very important to consume foods that are rich in fiber because the fiber helps our body
to absorb the glucose and then the level of the fasting blood glucose decreases, and
that has been shown to increase your longevity. So one thing that it’s very important to
do is to try and consume more food that is high in fiber. Another thing that it’s good to do is to exercise more. Again, depending on the person; if you are a professional athlete, don’t exercise more. But if you are not, exercise more. Also maintain a healthy weight. There is a lot of data that shows in the literature that if you are overweight, you tend to have higher blood glucose. So there are a lot of interventions like that.

Each of our users receives the intervention based on this information. So if you have a
high BMI or you are heavy, you will receive the intervention of lose weight. But if you
are not, you won’t receive it. Or if you are exercising five times a day, you won’t receive
a recommendation to exercise more. But if you are not exercising at all, you will receive
it. So there are a lot of interventions that are personalized and coming to you based on
your profile and based on what will help you to optimize yourself.

I just want to add that we are also taking into consideration your dietary preferences. So you can tell us that you are on the Paleo Diet; you can tell us that you are a bachelor, live in town and don’t know how to cook; you can tell us that you are gluten-free; so we have a list of a few kinds of dietary requirements that you just need to click and then the algorithm will provide to you the food that is good for you and will help you to optimize yourself.

[Damien Blenkinsopp]: Which other biomarkers have you looked at for the
InnerAge panel? Which other ones have you included today?

[Gil Blander]: We discussed the glucose, we also added vitamin D, we
added testosterone for males, we added CRP, which is a marker of inflammation, and
ALT, which is a marker of liver function.

[Damien Blenkinsopp]: Vitamin D, a lot of people talk about that today, so
that’s common about the benefits to the immune system and so on. Testosterone, I
think, is not so obvious for a lot of people—what’s the issue with testosterone? Why’s
that important when it comes to aging for men?

[Gil Blander]: That’s a great question. What we have seen, and I assume
that you’ve heard about it, that the level of testosterone is decreased by 1-2% every
year when we are getting old. Testosterone is important for our muscle tone, it’s
important for our sex drive, it’s important for our mood. So it’s very important to maintain a healthy testosterone in order to maintain the health and longevity.

What you eluded in your question is, is testosterone as important as glucose? and my answer is definitely not. So each of the biomarkers that we included has its own value or its own weight. So, if you ask me if you have low testosterone and have a high glucose, what is more important to take care of? I would say definitely start with your glucose, and then move to the testosterone. But the testosterone is also very important and there is a lot of data in the scientific literature that shows that.

[Damien Blenkinsopp]: I believe there’s a lot of research on strength and
muscle: the higher the levels of muscle you have going on older in life, the better your
longevity chances. So that correlates also with the testosterone.

In terms of testosterone, what kind of ranges are you looking at? Because there are
obviously the lab ranges we often talk about here—you have the LabCorp range for
example—which isn’t necessarily, and I imagine is probably, not the same as the range
you’re looking at, so what kind of reference range are you looking to get people into?

[Gil Blander]: As I mentioned before, we have what we call the optimal
range or optimal zone, and that’s calculated exactly based on the papers, like I told you
before, looking at the population of thousands or hundreds of people and seeing what is the level of testosterone at specific ages. Then we can from that come with an optimal zone based on your age, based on your gender—obviously, because males and females are completed different—also based on your athletic activity. Those ranges come in based on all the demographic information and then we subscribe to you the optimal zone that is good for you. Your optimal zone might be completely different for a person completely similar to you but in a different age or ethnicity or so on.

[Damien Blenkinsopp]: That’s interesting. Do you look at the difference
between someone who’s doing endurance training versus heavy-weight training, the
different approaches?

[Gil Blander]: Yes, we are extracting the information that we can from
the peer-reviewed scientific literature. For some of them we have data, so we are doing
that; for some others, we don’t. Basically, we are trying to extract the most that we can,
but I want to admit that we don’t have everything because not everything is published in
the scientific literature. In order to try to fill the holes of that, we are building our own
database and we are mining the database. We have a lot of athletic active population
who are doing either strength or endurance, so we are starting to extract information
from there and then help our customers to compare themselves more to their peers
than compared to a couch potato doing nothing.

[Damien Blenkinsopp]: Great, I understand. So I’m guessing it’s early stages
in terms of mining the information from the client base. When do you expect to bring in
the first bits of information from that and analysis to help improve the tool?

[Gil Blander]: We are actually doing that already. We have what we call
a benchmarking tool that shows how you stand compared to InsideTracker
community. So for example, we can see that a high percentage of our community have
a low vitamin D. But you want to know whether it’s 5% or 20% or 40%, so we are
showing and sharing it with our community. They like it a lot because sometimes people say, “Oh, I have low D but it’s 50% of the population. It’s not so bad.” So some people like to see, “Oh, everyone’s having this issue so I’m not…”

[Damien Blenkinsopp]: Right, yeah, it’s not so bad.

[Gil Blander]: “… I’m not going to die tomorrow.”

[Damien Blenkinsopp]: Are you able to tunnel down and say, it’s athletes
like me, say I’ve put into your system that I’m an athlete and I’m eating Paleo, would it
be able to position me compared to that population, or is it early stages for that still?

[Gil Blander]: We are doing it currently just for specific customers; we
are basically tailoring it for them. We have what we call an InsideTracker Pro, which
we’re working with some professional athletes, teams, some gym chains, and others.
For them, we are doing what we call a tailoring solution for them. But we don’t supply
that yet for the person that comes to our website. We are working on that and we hope
to have it soon.

[Damien Blenkinsopp]: In terms of the number of users you need to make
this really useful, how many users do you have today and how many would you think
would be important to have to really make lots of statistical analysis? I guess you have
ideas about doing data mining and a lot more exciting and intricate things.

[Gil Blander]: We have many thousands of users. Obviously I cannot
expose the number. I have a statistician on the staff that helps us to analyze and to
evaluate each of them, so basically we are doing rigorous scientific work and statistic
work, and based on that we decide whether we have enough power to share it with our
users.

[Damien Blenkinsopp]: In terms of the benchmarks you’re using, we’ve
already discussed that they’re different to the lab reference ranges, so when I go into
the system would it also show me for instance the normal reference ranges and how
yours are different? Or will people just get your reference ranges? So that they can
compare—say they’ve had tests outside of your system in other places before, when
they’ve been given other numbers.

[Gil Blander]: Yes, it’s a good question. We are showing base, what we
call the normal and out-of-normal, and then we are showing the optimal. For some
biomarkers, we are showing even more ranges. I can give you an example of
cholesterol. There is an optimal, then you have a normal, then you have a near-normal,
you have high, and you have very high. So, sometimes it’s more complex than just
optimal, normal, and the out-of-normal. But in most of the biomarkers, you see the
optimal, which is our range, you see the normal, which is the range of the diagnostic
companies, and then you see the out-of-normal, which is out of the diagnostic
companies. Most of the time, our optimal range is consumed by the normal so it’s a
subset of the normal.

[Damien Blenkinsopp]: Right, I understand. So out-of-normal range means
the standard labs like LabCorp or based on the research and so on; thank you. Which
other biomarkers did you look at that you decided not to include in your panel?

[Gil Blander]: In the InnerAge panel?

[Damien Blenkinsopp]: In the InnerAge one, yes.

[Gil Blander]: One interesting biomarker is cholesterol, which when we
started to work on that I was sure that cholesterol would be part of the panel. I asked the
scientist that worked on this marker after a couple of weeks that he was working on
that, “Okay, show me the papers.” He said, “Gil, I cannot find any papers.” So I told him,
“Are you kidding me?” Well, you have cholesterol, you have statins, and you have
lipidol, and a business of, I don’t know, ten billion dollars. So I told him, “You know what,
I will spend.” I spent four weeks on that and I couldn’t find anything. You could find old
papers but old and new papers haven’t shown a strong correlation between cholesterol,
or LDL, and longevity.

Very interestingly, exactly a year ago, the new guidelines of the American Heart
Association came out, and basically said that cholesterol is not as important as it used to
be. It is important if you are overweight, if you have high inflammation, if you are not
athletically active, if you have a family history of high cholesterol, or if you have blood
pressure, but someone that doesn’t have most of those, it’s not as important as it used
to be. That was a big surprise for me, but apparently we came to the same conclusion
that other agencies or all the scientific community came to, so that was a very big
surprise.

[Damien Blenkinsopp]: There is definitely a lot of movement going on
around the cholesterol markers. One interesting thing with that in relation to your
testosterone is I found it’s easier to get my testosterone raised when I have higher
cholesterol. So I think if you’re on a lower cholesterol diet, it can be more difficult to
raise your testosterone, which you’ve included in your panel.

[Gil Blander]: Yeah, it makes a lot of sense because if you look at that,
testosterone is a derivative of cholesterol. So basically, cholesterol is one of the building
blocks of testosterone. So when you have low building blocks, it’s harder to build the
building. Actually, a couple of weeks ago, another news about cholesterol came out,
and what they’re saying now is that cholesterol is not evil. You can eat cholesterol as
much as you want if you have a good metabolism and your body can metabolize the
cholesterol. It’s not like everyone needs to run away from cholesterol. Again, don’t eat it
like crazy, don’t eat 50 eggs a day, but if you eat one or two eggs a day, you should be
all set, other than someone that has all the risk factors that we discussed.

[Damien Blenkinsopp]: You’ve included CRP. The reason everyone was
focused on cholesterol was for heart disease, but it turns out that hs-CRP is a better
marker, correct? Is that why you’ve included it?

[Gil Blander]: Yes, but CRP is not only for that. CRP is basically a
marker of inflammation and it’s related to cardiovascular diseases, but it’s also related to
a lot of other diseases, including cancer, and even diabetes. So, CRP is a marker of
inflammation, and inflammation is more and more considered to be a big, big problem,
not only for after athletic activity that your inflammation is increased but also for the
average population. Definitely inflammation is very important.

[Damien Blenkinsopp]: As you just mentioned, with athletic activity the
marker would go up, so I guess your tool comes in pretty useful in this situation because
you’re looking at those different populations and saying what’s normal for them.

[Gil Blander]: Exactly. It’s normal that your inflammation will go up after
athletic activity. For example, after a marathon run, I would suspect that your CRP
would be high. But it’s not normal that it would stay high for a week after that. So what
we are doing is we are asking our users to test themselves at a certain time when they
haven’t been running a marathon the day before, or maybe haven’t been highly
athletically active for a week before, and do it also after a day of rest. Then, if your
inflammation is high, that means you have some issue. It could be that you over-
exercise, could be that you have some injury, and it helps us and it helps our users to
pinpoint what the issues are that they have.

[Damien Blenkinsopp]: Great. It sounds like you’ve put a lot of controls in
there. Have you done the same thing with blood glucose? I’m just curious because we
had someone else on the show before, Bob Troia, “Quantified Bob,” and he’d been
tracking his fasting blood glucose daily and I was quite surprised to see how much it
went up and down most days. He was doing football practice some evenings, so he had
some correlation differences between the mornings after the night he’d been in football
practice and exercising versus a normal day when he hadn’t been exercising the day
before.

[Gil Blander]: Yes. First of all, I know Bob very well; he’s a user of
InsiderTracker and he’s a very interesting person. I completely agree with you. A blood
glucose, even fasting blood glucose, can change based on what you have done the
night before. What we are reaching or trying to do with our user or trying to explain to
everyone, it’s not only one time point and InsideTracker is not a tool that you should use
once. You should use it and use it again and again and again, and then when you start
to use it again and again, you see where is your field—Is it running between 80 to 90? Is
it running between 90 to 110? Or is it jumping all over? And usually it should be more or
less flat. And you can also start to see the trend if during the aging process or when you
are becoming older and older, you’re starting to see a trend of increasing it. So I
completely agree with what Bob has showed, but what we are trying to do here is not
looking at one point, not even two points, in order to see a trend you need to have at
least a few points.

[Damien Blenkinsopp]: How often do you recommend people take the
blood samples for the tool?

[Gil Blander]: We recommend that you do it at least a couple of times a
year. We have some users that are doing it four times a year; we have some athletes
that are doing it even once a month in order to really keep them in top performance, but
the average users that we have are doing it around twice a year.

[Damien Blenkinsopp]: Okay. That sounds about similar to me, actually—
what I do—so I’m glad to hear that I’m average in terms of how often I do these panels.
To learn more about InnerAge and any resources of our aging that you’ve come across,
first of all, where can we get information on InnerAge itself?

[Gil Blander]: Everyone can come to our website, it’s insidetracker.com,
and there we have a link to a page that we developed that shows what is InnerAge, an
explanation about focus foods, an explanation about the science, why those
biomarkers, and about the scientists who developed it. We developed a lot of
information for that because we know that it’s the cutting-edge and people need a lot of
information to understand what we are doing, so we devoted a page with a lot of
downloads that you can read PDF after PDF and spend maybe a full afternoon learning
about InnerAge.

[Damien Blenkinsopp]: So you’ve mentioned the scientists you’re working
with on this tool. Is there anyone else you would recommend to get more information
about aging, or are there any references like books or particular presentations that you
found useful in your research?

[Gil Blander]: Yeah, there are a lot of good scientists that are studying
aging. I mentioned Lenny Guarente and David Sinclair. There are a few other leading
scientists that are studying aging. One of them, which is a very interesting person, his
name is Nir Barzilai, located in New York City, and he’s studying mainly long-lived
humans and trying to see what are the changes in their genome and their proteome
compared to the average human, so that’s an interesting person to look at.

Another very interesting scientist is Cynthia Kenyon, who is from UCSF in San Francisco. She’s
focused mainly on the insulin pathway, which is very related to glucose—insulin and
glucose. She started with the model organism slow worms, and now she’s also working
on other model organisms. So I think that if you are looking at, or your audience will
look at those four, you can find a lot of very interesting information.

[Damien Blenkinsopp]: Great, thank you very much for that. What would
be the best ways to connect with you personally? And you on Twitter, Facebook?
Where do people connect to you? Where are you most active?

[Gil Blander]: I actually like Twitter a lot so I’m on Twitter. They can find
me, it’s GBlander1 and they can find me there. If someone has any questions, they can
contact us via our website. On our website there is contactus@insidetracker.com and I
would be more than happy to talk with them.

[Damien Blenkinsopp]: Great, thank you, Gil. I just wanted to learn a little
bit about you before you go, are you using your tool every month? What are you doing
in terms of tracking your biology at the moment?

[Gil Blander]: It’s a great question. I’m using the tool at least four times a
year. There are some months that I’m maybe testing every day. There was one day
that I was testing myself like four times because I’m all the time trying to find new tools.
So we are using home kits and different labs, and often my arm is completely dotted
with blood stains.

On top of that I used to use other Quantified Self tools. I used in the past the HRV from
Ithlete, which you interviewed Simon, and I think that it’s a great tool for the athletically
active population. Currently what I’m testing every day, or all the time, is my activity,
and my weight. I’m trying to use some other tools, so we’re trying to develop now a new
nutrition tool for our users, so obviously I’m using some nutrition applications,
MyFitnessPal, Nutrino, and others. So I’m using a lot of different tools but in the day-to-
day and in the last year, I measure my weight every day by Withings, which is a
European company, which have a great wireless scale. And I’m measuring my activity
using Fitbit, but I did test it from the 23andme to measure my genome, so I’m trying,
because I’m working on that, I’m trying a lot of different tools.

[Damien Blenkinsopp]: It sounds like you’ve got involved in a lot of them. Is
there any key insight; what have you learnt about yourself so far? Is there one important
thing that you’ve learnt from these activities?

[Gil Blander]: Yeah, I leant about myself that data is the key for me. For
example, when I’m measuring my weight, every day I’m measuring it here in the office,
after that I make a decision, should I eat that or should I eat that? Because it’s showing
me every day whether my weight went up or went down. So I succeed to maintain my
weight more or less stable. When I’ve seen that my weight is too high, I use some tools
to see if it’s helped me to decrease it. For example, I did an experiment when my weight
went up after the holidays. I started to log my food in MyFitnessPal and I lost like eight
pounds in a week and a half. The issue is that you cannot continue with it forever
because it’s very time consuming and annoying to add what you ate every day. So it’s a
good intervention but it’s for the short-term.

What we are trying to develop here in InsideTracker currently is find a tool that will
help you to maintain your weight, maintain your biomarkers, maintain your activity,
which is more seamless, and it’s not easy. We have a team of scientists, exercise
physiologists, coaches, and nutritionists who are trying to do that. But it’s definitely not
easy.

[Damien Blenkinsopp]: Yeah, great. Well keep me updated if you’re
coming out with something interesting; that would be great. So one thing you did
mention right there, which I forgot to mention, is I think that InsideTracker, currently
you use LabCorp request to get people’s samples. So you give them some requisition
forms and the person runs down to LabCorp and it gets sent to you, but you said you’re
also using home kits. Is that something that’s going to change in the future or is that just
for you in experimentation?

[Gil Blander]: No we have home kits. So if someone wants to use the
home kits, we have them; we are using home kits. The problem with the home kits is
that we tested a lot of vendors and most of them haven’t had the precision of the
measuring of the biomarkers to be good enough for us. Because we are giving you an
optimal zone, you should have the precision. So we came with two vendors that are
precise enough, but the number of biomarkers is limited. So for one of them we have
only five biomarkers; the other we have seven. But we are still using it because some
people are too lazy to go to the lab, some others don’t live in the U.S., and currently the
lab availability is only in the U.S., so they can use our advanced home kit and we are
sending it all over the world. So because of those reasons we are still using the home
kits.

We also hope that in the future, the quality, the precision of those home kits will be
better, then we could use more and more biomarkers. I really hope, and I think that it
will happen that in the next five years, we won’t need to go to the lab at all, we can use
our iPhone. Basically we are saying that you can bleed on your iPhone, spit on your
iPhone, pee on your iPhone, and then receive a lot of information, so that’s our goal. I
think that it will happen and what is nice about InsideTracker is that we are a
technology diagnostic. We don’t care where the information comes from; what we care
about is the quality of the information because we are running it via our analytic and
then providing to you the ranges and the recommendations. So as soon as the
technology will be good enough, we will integrate it.

[Damien Blenkinsopp]: I’m sure you are aware of Theranos and what
they’re doing. I don’t know if you know, but would you think that their services would be
accurate enough for you when they get to market? Or do you think they’re still focused
on being in or out of normal range and it’s not necessarily sharp enough for you?

[Gil Blander]: Theranos is very interesting. What is interesting is that
instead of taking the blood from the vein, you take it from the finger like the home kits
that we’re using. What is also interesting is the volume: because you’re taking it from the
tip of your finger, you cannot extract a milliliter; you are talking about microliters. What
is also interesting, that they promise, is that you can do it on time. So you receive the
information immediately, while when you do it at the lab it takes a couple of days, and
when you do it with the home kit it might take a couple of weeks. What is happening
with this—at least today, and I don’t know, I hope it will improve—is that even though
that they have a machine that can do it in place, they are sending it to a central lab. So
basically you go to one of the clinics of Walgreens. Currently only in…

[Damien Blenkinsopp]: I think it’s Arizona.

[Gil Blander]: Only in Arizona.

[Damien Blenkinsopp]: There’s one in San Francisco I think, as well.

[Gil Blander]: There should be one in Palo Alto, yeah. So you prick your
finger, they fill a small vial, and then they courier it to the lab. The lab do their analysis
and then you receive the result, I assume a day later, I’m not sure I haven’t tested it. So
you lose the value of the immediate response, that we don’t have, but it sounds like (at
least what they claim is) it’s accurate, which is great. Also, another advantage that they
have is the price: their price, at least the sticker price—what they show on their
website—is much lower than the price that a biophysician would do it, which is great
value. But again, it’s only available in Arizona; it’s not immediate. I think that it’s still an
intermediate solution. So it’s nice progress but it’s not the end product. The end product
will be the…

[Damien Blenkinsopp]: The iPhone.

[Gil Blander]: … your iPhone, yeah.

[Damien Blenkinsopp]: Thanks for the commentary on that because it’s
hard to know actually what’s going on and how far the progress. So it’s still in a trial
stage, Theranos.

[Gil Blander]: I assume so but my knowledge is the same as your
knowledge. I don’t have any internal knowledge about that.

[Damien Blenkinsopp]: Great, thank you. Well Gil, thank you so much for
answering all our questions today. You’ve given us some great insights into how you’ve
constructed your aging panel there.

[Gil Blander]: Thank you so much and I’m looking forward to really cool
entrepreneurs in your future podcast.

Leave a Reply

What is the best biomarker to track your oxidative stress burden? Joshua Fessel explains why F2-isoprostanes provide the best assessment of our ongoing oxidative state.

Today’s topic is understanding your oxidative stress levels via lipid peroxidation. We previously took a broad look at measuring and lowering oxidative stress in episode 4 with Dr. Cheryl Burdette.

Now, we are going to take a look specifically at one of the more accurate and reliable markers: F2 isoprostanes, a measure of lipid peroxidation. This is an important marker for the fact that every cell membrane in the body is comprised mainly of lipids and damage to these delicate structures can lead to a host of degenerative health conditions, including cancer.

“…I have a personal sort of one-man crusade to actually get rid of the term oxidative stress because I think it’s too nonspecific. It sort of carries with it the idea that every free radical that’s produced in a living system is bad and we know that’s not right.”
– Joshua Fessel

Our guest is Joshua Fessel, Assistant Professor of Medicine and Pharmacology at Vanderbilt University. His research interest focuses on pathways that control molecular metabolism looking at the Krebs cycle. For example, mitochondrial function and interactions between oxidative stress and cellular metabolism is what we’re looking at today.

Dr. Fessel has done 49 studies on these subjects and he’s worked on research in isoprostanes directly with L. Jackson Roberts, one of the researchers responsible for the discovery of isoprostanes in 1990.

He’s also the founder of Vanderbilt’s Mitochondria Interest Group, which is the multidisciplinary group of nearly a hundred investigators who study all aspects of mitochondria, biology, and metabolism. Obviously mitochondria is another thing that comes up in his show quite often.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • Dr. Fessel distinguishes between “good” oxidative stress (oxidant signaling) and “bad” oxidative stress (oxidant injury) (7:15).
  • The site of free radical production within a cell or within the body may determine lifespan (12:35).
  • Current relevance of tracking levels of F2 isoprostanes and other biomarkers of lipid peroxidation products (17:15).
  • Lack of reliable intervention for slowing the aging process at this time (17:15).
  • Study that found caloric restriction decreases F2 isoprostane levels (20:15).
  • Types of markers that exist today and relative usefulness of F2 isoprostane (22:35).
  • Measuring the byproducts of free radical reactions vs. measuring actual free radical levels helps distinguish between signal and injury (23:30).
  • Chemistry of F2 isoprostane formation is well-known and the molecule tends to be stable and measurable compared to other biomarkers (24:49).
  • Biomarkers of Oxidative Stress (BOSS) studies established isoprostanes as among the most robust biomarkers for oxidative stress (26:55).
  • Distinctions between in vivo (within a living organism) and in vitro (in a test tube or petri dish) (27:55).
  • Lipid oxidation products are useful to study because lipids are present in every cell of the body (29:57)
  • Effects of dietary antioxidants and exercise on isoprostane levels (33:27).
  • Single high-fat meal doesn’t significantly raise isoprostane levels (36:06).
  • Most advantageous times of day to collect blood and urine samples (37:50).
  • Seasonal variation with regard to sample collection (38:56).
  • Effects of acute illness or injury on biomarker levels (39:38).
  • Ability of supplements to lower TBAR and MDA levels (41:10).
  • Dr. Fessel’s tips on how to weed out poor-quality studies when reviewing research on a supplement (43:42).
  • Dr. Fessel describes the Feeding Danny Project: a year-long case study on an organic, whole-foods dietary intervention for a morbidly obese man that is being made into a documentary (47:03).
  • Baseline metabolic functions and biomarkers Dr. Fessel will be testing on Danny: cholesterol, HbA1c, blood sugar, triglycerides, kidney and liver function (52:56).
  • Dr. Fessel’s wish list of comprehensive testing he would do in the absence of budgetary constraints: thyroid function, isoprostane levels, malondialdehyde levels, TBARS, hsCRP, plasma ascorbate, vitmain E and other antioxidants (53:42).
  • Discussion of health parameters that can improve in response to dietary or lifestyle interventions before weight begins to change: blood sugar management, cholesterol levels, LDL particle ratios, inflammatory markers, correlating fitness tracking data with lab biomarkers (55:15).
  • Dr. Fessel’s personal weight loss journey (61:25).
  • Biomarkers Dr. Fessel tracks on a daily basis and his recommendation for the one best way to use data to improve health, longevity and performance.

Joshua Fessell

The Tracking

Biomarkers

    Lipid Oxidization Levels

  • F2 isoprostanes: Inflammation-promoting byproduct of lipid peroxidation. A byproduct of cellular aging and a more direct marker of lipid peroxidation levels in your body than TBARS and MDA. F2 isoprostane levels in urine should be below 8.4 pg per ug creatinine. Pubmed lists 1330 studies that include F2 isoprostanes.
  • Isofurans: Byproducts of oxidation of arachidonic acid. Exert similar effects to isoprostanes. Used as a measure of mitochondrial membrane damage.
  • Lipid Peroxidation

  • Malondialdehyde (MDA): A naturally-occurring byproduct of fatty acid oxidation and arachidonic acid metabolism. A highly reactive free radical used as a biomarker for oxidation. Can be monitored but doesn’t provide actionable information.
  • Thiobarbituric acid reacting substance (TBARS) Assay: A method for measuring free radical activity, that is commonly used but problematic. It is difficult to obtain accurate values because the test itself causes free radical formation. As with MDA, this marker has been used extensively in the research.
  • DNA Damage

  • Guanosine: Nucleic acid base that forms part of the structure of DNA. A biomarker that can be monitored but doesn’t provide actionable information.
  • ADO DG guanosine: Analog of guanosine and a byproduct of cellular aging.
  • 8-OHdG: 8-hydroxy-2′ -deoxyguanosine: Byproduct of free radical interaction with DNA. A potential biomarker for oxidative injury vs. oxidative signaling. Tested via a first void urine test to show levels of oxidative stress in the body. This marker is supported by over 2000 research studies. See the Pubmed entry here.
  • Cardiovascular Risk

  • High Sensitivity C-Reactive Protein (hsCRP): A gold standard measurement for inflammation that other inflammatory biomarkers, such as F2 isoprostane, can be measured against. This is an inflammation marker that is used to also track cardiovascular risk. Values of below 1 are shown to represent low cardiovascular disease risk, however the most desirable level is close to 0 (e.g. 0.1 or 0.2 mg/dL). Pubmed currently contains over 2,900 research studies on hsCRP.
  • LDL-P: Measures the density of your LDL particles. Research shows that small LDL particles are the ones that play a role in cardiovascular disease. This test is not yet routine, but provides the most accurate evaluation of cardiovascular risk today.
  • Biomarkers Used on Feeding Danny Project

  • Cholesterol: The cholesterol panel covers a number of markers related to lipoproteins in the blood. There are standard markers that all doctors and labs will run, and some newer specialist labs that are more specific and accurate.
  • Triglycerides: Should be below 100, optimally under 70.
  • Fasting Blood sugar: Typically taken first thing in the morning after an 8 hour fasting period. Ideal healthy levels are around 73 mg/dL. A cut off point to keep below is 92 mg/dL as an indication of blood sugar disregulation.
  • Hemoglobin A1c (HbA1c): Measure of glycated hemoglobin, or hemoglobin to which glucose has become attached – a process that occurs when blood sugar levels become excessively elevated. A proxy measure used to assess your average blood sugar over a period of time. Since haemoglobin is part of the red blood cells it is exposed to blood sugar over the lifetime of the red blood cell, thus giving a measure. As such this measure is used to identify blood sugar control issues. Levels of 5% or higher can be indications of blood sugar disregulation. HbA1c has been well researched and has been included in more than 34,000 studies published on Pubmed.
  • Basic Kidney Function Test: Blood screen for basic kidney function that Dr. Fessel plans to monitor in the Feeding Danny project. May include uric acid, blood urea nitrogen, creatinine and albumin.
  • Basic Liver Function Test: Blood screen for basic liver functions that Dr. Fessel plans to monitor in the Feeding Danny project. May include bilirubin and liver enzymes such as alkaline phosphatase, LDH, SGOT/ALT and GGT.
  • Basic Thyroid Function Test: Can include thyroid stimulating hormone (TSH), T-4, T-3 uptake, Free Thyroxine Index. Dr. Fessel noted these as nice to have, but too expensive for the project’s funds.
  • Other Biomarkers of Oxidative Stress Mentioned

  • Glutathione: Major antioxidant enzyme used by the body. Dr. Fessel has seen that this is depleted in smokers. The optimum range Christine Burdette’s Dunwoody Labs (from episode 2) uses is 658.3 – 988.5 µM, sample report here.

Lab Tests and Devices

  • NMR Lipoprofile Test: LDL particle number testing was mentioned. This lab test is currently the gold standard of cardiovascular risk assessment which it does by looking at the LDL particle number and size.
  • Precision Xtra Blood Glucose and Ketone Monitoring System: Pinprick blood sugar and blood ketone measuring device that you can use at home.
  • Fit Bit Charge: Fitness tracking device. Suggested by Damien as a way to monitor progress in the Feeding Danny project.

The Tools & Tactics

Supplements

  • Curcumin: Bioactive compound in the spice turmeric. Works as an antioxidant in part through the process of hormesis – a low-dose form of stress that stimulates the stress adaptation response in a healthy way. The most effective forms of curcumin are Curcumin BCM95 and Liposomal Curcumin. Learn more about hormesis in episode 8 with Todd Becker.

Other People & Resources

People

  • L.Jackson Roberts II: Medical researcher who discovered isoprostanes and founder of Vanderbilt University’s Mitochondria Research Group.
  • Aubrey de Grey: Mentioned by Damien regarding his research on longevity. Listen to Aubrey deGrey discuss his longevity research here.
  • Bob Troia: Tech entrepreneur mentioned by Damien regarding his long term experiment in which he tracked his own blood sugar levels for an extended period of time. Damien’s interview with Bob Troia on his n=1 experiments.

Resources

  • Biomarkers of Oxidative Stress Study (BOSS): Series of studies sponsored by the National Institute of Environmental Health Sciences and NIHS to determine the best markers of oxidative stress or oxidant injury in a living system. Mentioned by Dr. Fessel in regards to establishing isprostanes as the gold standard.
  • Feeding Danny: Documentary of a year-long dietary intervention that Dr. Fessel is involved with.

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: I just want to thank you so much for joining us today.
[Josh Fessel]: Sure. Thanks for having me. This is really fun for me. This is a new thing for me, but I’m really looking forward to it.
[Damien Blenkinsopp]: Excellent, Dr. Fessel. I really enjoy these too, so we’re both coming at it with enthusiasm.
[Josh Fessel]: Absolutely.
[Damien Blenkinsopp]: First of all, I always like to hear people’s stories a little bit about how they started working with what they’re working with. How did you get interested in the subject of oxidative stress and start working on that?
[Josh Fessel]: Oh, that’s a great question. I’ve been thinking about oxidative stress for the last almost 16 years and it really started when I was in graduate school or looking to start graduate school. I started a training program to train both as an MD – so it was clinical – a clinically trained physician – but also to get a PhD to do a research degree in some area. I was casting about, looking for what I thought would be an interesting area of study for my PhD research and I ended up talking to a guy named Jack Roberts, goes by Jack. His full name is L. Jackson Roberts, II. If you looked for him in the literature, that’s how you’d find him.
I sat down to talk to Jack and found out that he and I – the important part of the conversation was that he and I were very much of a like mind when it came to thinking about science. That the idea was that you could take the fundamental principles of chemistry and physiology and apply those to living systems in a way that you could learn meaningful stuff. It turned out that what Jack studied and still studies actually – he still has a very active lab – is oxidative stress and free radical injury in biological systems. I was really drawn to the approach that the lab took, basing things in organic chemistry and biochemistry and then going all the way to studies in living people. So that’s how I first got interested in it and what was going on in the lab. It was one of those things that I thought it would be fun when I started and it turned out to be even more fun than I thought it would be.
[Damien Blenkinsopp]: That’s great to hear.
[Josh Fessel]: Yeah. So that’s really how I got started and things really took off. We did some work to discover a new class of biomarker for oxidative injury and that led to an interest in mitochondrial function and how oxygen is regulated dynamically in a living system. That kind of led to what I do now, which is more focused on a broader perspective, looking at mitochondrial function and molecular metabolism, carbon source utilization in living systems. What are the fuels, how do they get used, and how do those decisions get made.
[Damien Blenkinsopp]: Great. So does that still involve oxidative stress that you’re looking at?
[Josh Fessel]: Absolutely, yeah. The two are very closely linked. I think about it like a car engine and if a car engine runs perfectly with perfect efficiency, every drop of fuel is converted to motion to useful energy. But we all know that that doesn’t really happen and that you get leaks in the system. Some of that from a car engine leaks out as heat – sometimes it leaks out as an actual sort of fuel or other things and the human body is really no different. And so if the cellular engine runs perfectly, every molecule of fuel is converted to carbon dioxide and water and useful energy, but that doesn’t happen perfectly and the byproduct – the leak – is free radicals and that gets you right into oxidative stress.
[Damien Blenkinsopp]: Right. Why do you feel this is an important subject? Oxidative stress. Are these leaks? And maybe we could talk about the broad strokes of where the leaks are bigger and smaller. But, in terms of oxidative stress, why do you think that’s something worth looking at? And would it be worth tracking, for instance, in people as they age or as they through different health conditions or even, perhaps, when they’re looking at performance.[Josh Fessel]: So, I definitely think it’s something worth looking at. I’ll tell you, I have a personal sort of one-man crusade to actually get rid of the term oxidative stress because I think it’s too nonspecific. It sort of carries with it the idea that every free radical that’s produced in a living system is bad and we know that’s not right. Some of them are quite useful and serve signaling roles, bacterial killing roles. Some of them, under particular circumstances, are harmful and I think that’s what we really worry about. So, I talk a lot of times and I’m trying to be more rigorous in my scientific writing talking about oxidant injury versus oxidant signaling and teasing those two apart. But I definitely think it’s something worth studying, quantifying, tracking in detail because fundamentally, I think, we still don’t really understand all of the concepts that tease apart useful oxidant production from harmful. And so one of the ways I think that we can start to get at that is collect data and be careful about how we define the conditions that we’re studying and then from there you can begin to kind of back calculate and figure out okay in this situation a little bit of stress to the system maybe was actually useful; whereas in this other situation, it was clearly harmful. So I think in spite of the fact that people have been studying free radical biology and oxidative stress for decades now, there’s still a lot we need to learn before we really can translate those findings into something actionable.
[Damien Blenkinsopp]: Alright. Yeah, there’s still many different theories. I guess you’re juggling and trying to prove and disprove different ones. Let’s take a step back. It’s always interesting to see how someone, especially someone working in this area and doing the studies and everything, it’s interesting what they do themselves. Have you tracked your own oxidative stress or you follow that? Do you ever look at that in yourself and have you compared it over maybe a few years or anything like that?
[Josh Fessel]: That’s a great question. So, I have measured my own levels of – I probably shouldn’t admit this. We aren’t really supposed to do this, but we all do in science where you need a so called normal sample and so a lot of times that ends up being you. So in some small studies, yeah, I have actually done that. On a routine basis, there’s nothing that I track as far as oxidative stress or products of redox reactions. This question always comes up as to what would a person track. I think in a research setting there are a lot of things that are useful to look at and I’ve certainly participated as I say in research studies of, for example, looking at products of lipid peroxidation and looking at oxidized lipids that float around in the plasma. And I think that’s really useful, but when it comes to what I would recommend to a person or what I do myself, I tend to be a little more conservative because I really – hang up isn’t exactly right – but I focus on that word actionable because I might be able to tell you that on any given day [unclear 10:47: oh [ axles of] isoprostanes] are this, and my levels of guanosine are this and my levels of malondialdehyde or whatever the product is. But I don’t really know what to do with that and so when it comes to a person in the real world – whether it’s you or me or a patient of mine or whoever – I tend to focus on pretty low level stuff and this is true in my own life. I tend to focus on pretty low level stuff that we know has a pretty clear impact on health and wellbeing.
[Damien Blenkinsopp]: By that you mean that you like to focus on biomarkers which are being used consistently for a longtime of 20 years of research behind them, a link to specific disease conditions or aging?
[Josh Fessel]: That’s exactly right. You got it.
[Damien Blenkinsopp]: My understanding is that – I’ll maybe start calling it oxidant injury. Maybe that would be the correct term. But as I understand it, like F2 isoprostanes and Ado DG guanosine – I always have a problem with pronouncing that one – but these are linked to aging as one byproduct, just as we get olderthese tend to correlate where they’re kind of sloping and steadily get higher. Is that true?
[Josh Fessel]: In general, that is true. In a broad sense, most products of oxidant injury will tend to increase with age and this gets at the whole free radical theory of aging. The idea that at the molecular level, one of the things that drives the aging process is that slow leak of free radicals that’s just part of the normal process of being alive and having an active metabolism in an environment that is or an atmosphere that’s 21% oxygen. And I think there’s some core validity to that idea. In general, I think its right. In the specifics, I think there’s still a lot more learning. I was just reading a paper this morning, for example – it was just published – that where in a given cell or organism free radicals are produced can have a pretty profound impact on lifespan. Now this was in a very simple model organism and how this actually maybe applies to you or me – that’s anyone’s guess. But I think that’s what makes it fun that in general I think the theory has validity and that’s evidenced by the fact that somebody that’s 80 years old, by and large, is going to have a higher circulating level of F2 isoprostanes than somebody who’s 20. But there are a lot of variables that come into play and we’re just teasing all those out and I think it’s really fun to do that.
[Damien Blenkinsopp]: Yeah, I guess there’s like two things we’re often trying to do. Sometimes we’re trying to diagnose or basically zero in on something we can act on. [Inaudible] is actionable. Here at The Quantified Body we’re all about action. Exactly the same like idea. If we’re measuring it and it’s not actionable, we’ll there’s not much point especially as a lot of these tests of devices or things out there are relatively expensive and we talked about that on shows before. So you have to really be careful about which measures you’re wanting to invest your time in because it also takes times, conveniences, all sorts of pay offs in our equation in terms of your lifestyle and the benefits you’re getting out of it. So, in terms of the payoff for these, would it be interesting, for instance, to relate that to age? If you’re interested in longevity, would it be interesting to track? You’ve focused a lot of your work on F2 isoprostane and the benefits of that marker. So, based on your knowledge, would it be something useful? If I started tracking it right now and continued for the next 10 years, would it be possible to compare myself to benchmark people of the same age? And then also maybe get concerned if it tended to go into an upward trend that I felt was sharper than I’d want at this stage of life?
[Josh Fessel]: That’s a really interesting question and I’m trying to think if I know of a study where anybody’s done that where they’ve actually looked over time of a cohort of people to see what happens. I can’t call one to mind, which is not the same thing as saying it hasn’t been done. It might be very interesting. You’re exactly right when you say that the way that you’d want to think about that, the first thing you’d want to know is fairly large group of essentially normal people or more or less normal people of varying levels of fitness and varied diets and all that kind of thing. What does the population look like with respect to any biomarker be it F2 isoprostanes or whatever? And then that gives you a basis for comparison. And then it might be very interesting to see what one’s individual trend over time was with regard to that some markers would be easier to do that with than others. There are lots of ways to measure these things and some of those – some of the methods are more robust than others and that kind of thing. And so, for example, we’ve talked a little bit about F2 isoprostanes and related lipid peroxidation products that I’ve studied over time. Those are really, really robust markers. They’re chemically stable. They’re detectable in every biological sample type you can think of. They’re detectable at pretty small levels, so you don’t need a huge signal to confidentially say okay the level of F2 isoprostanes in the blood or the urine or whatever was this. The problem is that they are expensive to quantify and for a really robust measurement it requires a pretty sophisticated setup. It’s mass spectrometry and blah, blah, blah. So, it sort of fails that aspect or it fails on that criteria and for an ideal test which should be easy, cheap, reliable, robust, [and] applicable to a wide range of situations. So I think we’re still – in terms of what a person would do on a day to day basis, I think we still don’t have the perfect thing to look at and I’ve had people ask me, “Well should I send in a sample for this array of tests for oxidative stress or whatever?” And my general answer is if you want to know and you’ve got the disposable income to do it, yeah that’s probably okay. But it shouldn’t be the top thing on your budget because there are lots of simple things to do that we know are going to have a positive impact on oxidative stress and on every other aspect of health. You know dietary things to think about, regular exercise, [and] all that kind of stuff. So in that regard – the other thing is that as far as the normal aging process goes, I don’t yet have an intervention that I can tell you to try that will reliably slow down or modify the aging process. There are few things that look promising, but I couldn’t say oh you seem to be aging rapidly. Why don’t you try this?
[Damien Blenkinsopp]: That’s an interesting discussion and longevity is one of the things we look at and we recently had Aubrey de Grey on the show. If you’ve heard of him or you follow some of his work, he’s very focused on longevity and promoting ending the aging equation and investing in research. He actually wrote a book about the mitochondrial theory of radicals and so on. So I’m sure you’ve connected there. So, he’s looking at a whole bunch of markers every year – 160. But I think he feels like you do, he’s really looking for something that goes perhaps an extreme, I think. I think maybe this is like an angle that could be interesting. It’s like if something goes extreme in terms of its nearly off the normal curve. It’s in the top 10% or the top 5%. Then he gives you reason to kind of look at it. But while it’s remaining within a range, which has been detectable, then I think what you’re saying is like it’s not like it’s very actionable or you already can think of something. And I guess oxidative stress – there’s still a lot of controversy around it – oxidative injury. So, when it comes to vitamins – vitamin C, vitamin E, succinate, and other interventions that people use to try to increase their antioxidant levels and lower oxidative stress, I guess in terms of the actual research supporting that and evidence that’s not really there yet. But we were just talking about it before this chat and we’ll talk about it more is the diet. And there’s obviously a lot of people doing different diets today and it’s a subject we’ve discussed before and we’ll keep coming back because there’s so much confusion over which diets work and which don’t and what they’re useful for. But I think it does come to mind that your diet could have an impact on your oxidative stress levels. So, potentially tracking F2 isoprostane once per year and changing your diet for a year and seeing what happens or perhaps a shorter amount of time, might be something relevant just to see if that has an impact in terms of how would you compare it to say inflammation such as high sensitivity CRP, which is a bit very common standard measure of inflammation. So you can often see an impact in CRP when it comes to diet – pretty substantial. It varies. I’ve been following mine, for instance, for a very, very long time and as I’ve changed my diet and optimized it, like it’s virtually zero at this point where it started at closer to 1, like around .8 – it was somewhere around. Which isn’t high, but it’s just you can see the difference over time. So, I’m wondering if you could see that kind of change over time if you feel that you might be able to see that. I know maybe in the research it might not exist, but sometimes if we’re looking to kind of go ahead of the research and just see – it’s like then it equals one experiment and maybe we can inspire someone to do some research if we go ahead.
[Josh Fessel]: Absolutely. I think that kind of thing could be very valuable and in small studies those sorts of interventions have been done where people have been transitioned to – for example, Jack Roberts – the guy I mentioned – the guy that discovered isoprostanes did a small study where he took young, relatively healthy – in other words, no chronic diseases – nonsmoking adults, but who were overweight and measured F2 isoprostane levels and they were increased and had them participate in a program of caloric restriction. So they did and it was pretty robust. It was about a 40% caloric restriction. So 60% of their typical core needs average over like a 3 day period or something like that.
[Damien Blenkinsopp]: So, could you just specify? Is that caloric restriction based on normal human needs or was it based on their original intake?
[Josh Fessel]: If I remember – I got to think about that. It may have been based on normal dietary recommendations. I’m trying to remember the specifics of that.
[Damien Blenkinsopp]: We can check that. We can link to the study or whatever.
[Josh Fessel]: Yeah.
[Damien Blenkinsopp]: It’s not essential, but I thought it was interesting. I imagine they probably did it at normal human intake.
[Josh Fessel]: I think that’s probably what they did actually. Although, as I recall, they did sort of do a food diary and the caloric intake that these people had, while they were overweight, it wasn’t wildly off what the normal recommendations were. Maybe 10% different or something like that. But the only intervention of this short period of time was a caloric restriction and there was a rapid fall in plasma F2 isoprostane levels well before there had been any substantial weight loss. I think the average weight loss at the time of the nadir of F2 isoprostanes was something like a pound or two. So it was not a significant percentage of bodyweight, but there was this really pretty impressive effect on this marker of oxidant injury and so I think what you’re describing – tracking over time within and individual and modifying diet in some way, be it increased antioxidant intake or even somebody had weight to lose and they wanted to try a more calorically conservative diet and then track markers like that, I think that could be very informative if the means exist to do it and all that kind of thing.
[Damien Blenkinsopp]: Well so let’s talk a bit more about the isoprostane because you’re work has kind of shown, as I understand, that it’s one of the better markers compared to the ones that are used more popularly, we’ll say today, still because they’re kind of the ones – I don’t know how you say it – the ones that have been in place a long time. So, what kind of markers exist today and why do you feel the F2 isoprostane has been a more useful marker?
[Josh Fessel]: That’s a great question. So there are tons of markers that you can look at and most of them are some byproduct of free radicals reacting with some large class of biological molecules. So you can look at the products of free radical reactions with sugars or lipids or proteins or DNA or – and depending on where you start from, that determines what kind of product you end up with.
[Damien Blenkinsopp]: So it’s kind of like you’re just trying to measure the volume of free radicals by what happens when they hit other thing and –
[Josh Fessel]: That’s right. That’s exactly right. Yeah because, by their nature, free radicals are fairly evanescent things. They’re reactive and they don’t last long. There are techniques to actually measure the radicals themselves and those rely on techniques like electron paramagnetic resonance measurements and that sort thing. So they’re specialized techniques and they’re really kind of research only sorts of deals. So if you really want to know about the radicals themselves that’s what you end up doing. But for most of us and again if you’re thinking about oxidant injury in particular, I actually find it more useful to look at the byproducts of reactions that we know to be fairly uncontrolled reactions because, in my mind, that conceptually gets you back to a process that’s injury as opposed to a deliberate signal. So you can look at anything from – we mentioned 8-oxo guanosine. That’s a product of free radical interaction with DNA. You can look at malondialdehyde, which comes from lipids and can come from some protein oxidation. There are protein carbonyl assays you can look at and they all tell you some information. The reason that we’ve settled on F2 isoprostanes and related compounds is that we know a lot about the chemistry of formation. We know from the moment the inciting radical is generated, we can walk through the reactions that lead to F2 isoprostane formation. And this is through work that Jack did. When these things were first discovered in the 1990’s, we know that once they’re formed, they hang around in a more or less unchanged structure – a more or less unchanged form. And further when they do get metabolized, we know what the metabolites are. So there’s no source of spurious generation. When you look at things like malondialdehyde or like the TBARS assay, the thiobarbituric reacting substance – the problem with assays like that is that they tend to generate some signal in the process of the measurement of itself and so it’s hard to know, except in a relative sense, how much of what you’re measuring was there to start with and how much of it came about as a result of the measurement itself. By contrast, I’ve heard Jack tell this story a few times of when they discovered the isoprostanes back in the early 90’s, they did an experiment where they took a beaker of urine and sat and measured the level of isoprostanes in the urine and then sat the beaker of urine on a hotplate for about 72 hours which ought to – any spurious generation’s going to happen, that’ll do it and the levels were exactly the same as they had been 3 days before.
[Damien Blenkinsopp]: Wow.
[Josh Fessel]: Yeah, so really robust and –
[Damien Blenkinsopp]: Yeah. So that means you could ship it around the world. So you’re talking about urine samples here?
[Josh Fessel]: Yes, yes.
[Damien Blenkinsopp]: Right. So that’s also very accessible –
[Josh Fessel]: Correct.
[Damien Blenkinsopp]: Compared to blood. Yeah.
[Josh Fessel]: That’s correct, yeah. So exactly what you say has been done. We’ve analyzed urine samples from the deep jungles of Southeast Asia looking at measurements in patients with malaria and all that kind of stuff. So it really is robust in that regard. There’s also a series of studies actually that are sort of interesting reading called the Biomarkers of Oxidative Stress Study or the BOSS study. And this was published in four or five installments. It was a study sponsored by the National Institute of Environmental Health Sciences and the NIHS wanted to know exactly the question that you’re asking. What are the best markers of oxidative stress or oxidant injury in a living system and so they did head to head comparisons of a variety of different biomarkers in a bunch of different contexts starting with different oxidants, looking at different biologic samples and the isoprostanes emerged as of one of the most robust. I don’t want to overstate – it’s certainly not the only thing that’s useful to look at. But in the BOSS studies, the isoprostanes emerged as one of the most robust across a variety of context, samples, that kind of thing. But the BOSS studies are NIH sponsored. They’re publicly available. They’re kind of interesting reading actually.
[Damien Blenkinsopp]: Great. Yeah, we’ll definitely link to all of this stuff in the show notes. One of the big things I understood was there was a difference between in vivo and in vitro. Could you talk a little bit about that because sometimes people go and read studies or they go to a link for a study and it’ll be in vitro. They just assume that it’s going to be exactly the same in the body. So, first of all in vivo means inside the body and in vitro basically means in a test tube.
[Josh Fessel]: In a living system.
[Damien Blenkinsopp]: Right.
[Josh Fessel]: That’s right. So most of the time when people talk about in vitro they’re talking about something up to cells growing in a dish. So, it might pure chemicals in a test tube, it might be cells growing in a dish, something like that. In vivo is referring to in some intact living system. Sometimes as simple as a worm or a fly, but it’s an intact organism. Worm, fly, mouse, human, something like that. So the distinction is really important. You can make lots of things happen in a test tube or in cells in a dish that may never happen in a living system for a thousand different reasons. Just as one sort of easy example to grasp, if you’ve got cells growing in a dish, they have a very limited capacity to respond to any insult you throw at them and you know that’s not true of an intact human being for example. You’ve got all sorts of immune responders and chemical antioxidants and the liver and the kidneys eliminate toxins and this and that. So there’s interplay of a hundred different systems in an intact organism that may run counter to or may enhance the effect that you’re looking at and so to extrapolate from a test tube or cells in a dish to a person or even a mouse in a cage, that’s a long stretch. Now what we constantly do in our research is exactly that. We find something interesting in a very simplified system in vitro and then we say can we find any echo for this in the living system, can we see the same thing, or how was it modified between the cells and the dish and the person in the lab.
[Damien Blenkinsopp]: Great, great. And in terms of these oxidant injury markers, I’m trying to adopt your expression there, what did you find in terms of the markers? Were there some of them which were working better with in vivo? Because I mean at the end of the day we want to know what’s going on in the body of course.
[Josh Fessel]: That’s exactly right. One of other reasons we really like lipid peroxidation products in general or that I really like lipid peroxidation products in general and isoprostanes in particular and related compounds is that every cell with a membrane is fair game for study. So, for example if you wanted to measure DNA oxidation products, well there are are cells in your body that lack DNA. Red blood cells, for example, have no DNA in them. Platelets have little shreds of DNA. But every cell has a membrane, so every cell is fair game for study and it lets you really refine your question. It also means that if I can get ahold of the membrane, I can study it in vivo even down to the subcellular level. So I can take a sample of liver tissue, skeletal muscle, whatever and get the mitochondria out of it and measure the levels of isoprostanes or isofurans or whatever in the mitochondrial membrane and I can tell you something about what happened to that level of detail in a living system and so that’s how we try to bridge that gap between things that are very simplified in vitro and move into in vivo. But there are lots of things you can do in that regard. There’s a lot of literature for example on looking at oxidized DNA floating around in the plasma as a marker, not only of oxidant injury, but of cellular injury. So people are looking at the DNA contained within mitochondria, for example, and looking not only at how much is there floating around in the plasma because it’s not really supposed to be there in it’s free form, but of that how much of it is oxidized and how extensively. And you can get a really pretty granular view of what must be going on at the cellular level. Now, it doesn’t tell you things like is it in one specific spot in the body or is this a whole body thing, but you can get pretty detailed information in a living human. From a research standpoint, a living human is a really complex and sort of filthy place to do your research, right. It’s very uncontrolled. There are a million variables that you can’t do anything about and yet that’s what you have to do and the techniques are such that we, in a research setting, we can get pretty detailed.
[Damien Blenkinsopp]: Yeah because I mean the body has so many variables. If you’re just thinking about it. It has a long dynamic equation – some crazy calculous. There’s so many variable that to do science is actually really difficult because you can’t control so many different variables that are going on. So, you have to appreciate the efforts people are making to study how we work just in the incredible in-complexity. We’ve looked at hormesis quite a bit, which I think illustrates quite well the concept you’re explaining here about in vivo being different where we have things like our hormetic curcumin for example. You put it into the body and it ends up creating some kind of anti-stress kind of like an antioxidant effect. Although the mechanism as we understand it today is actually a small oxidant kind of injury as I understand it. So there you see it’s causing the opposite of what you thought. I’m sorry – It’s very illustrative of the importance of focusing on the in vivo. So, okay we understand why you like isoprostane. What kind of things have you seen our reduced high levels of isoprostane if anything? You mentioned caloric restriction as being seen. Are there any other things that have been seen that have some kind of impact on it?
[Josh Fessel]: Yep. You can supplement dietary antioxidant intake and see a measurable effect on isoprostanes and there are a number of studies that have done that using various dietary sources. Regular exercise is a pretty clear – it’s interesting and this may get to that idea of hormesis. There was a study where they took people – and this maybe isn’t surprising when you say it out loud. They took ultra-marathoners and measured their levels of isoprostanes right before and right after an ultramarathon and then maybe up to a week later. And not surprisingly, right after the run and obviously these are extremely fit people, right after the run their levels of isoprostanes were incredibly high.
[Damien Blenkinsopp]: Sky high, yeah.
[Josh Fessel]: Yeah.
[Damien Blenkinsopp]: Cancer patient levels.
[Josh Fessel]: Right, right or more. I mean if you just looked at the numbers and didn’t know what had happened, you’d say oh my God, what’s going on with these people. But as you say, it’s the biological of that which doesn’t kill you makes you stronger and so clearly these are fit and when you look at their baseline levels, their baseline levels were quite low. So regular exercise we know improves the efficiency of the machinery that tends to leak free radicals or improves the ability to respond and maybe both. So it’s a lot of the things that you might guess at anyway. The healthy diet that’s low in fat and high in fresh fruits and vegetables, that kind of thing. Oh, the other really big thing is we know from a number of studies that smokers are under a huge constant oxidant stress. It not only enhances the formation of free radicals and masking goes hand in hand with this, depletes levels of multiple different endogenous antioxidants. So, the other thing that we know is beneficial is if you smoke, please stop.
[Damien Blenkinsopp]: Alright. So, you’re talking about glutathione and –
[Josh Fessel]: Yep. Glutathione, ascorbate. I can’t remember if there was a measurable effect on vitamin E or not. Lipoic acids – many of the usual suspects and they were all depleted in the smokers.
[Damien Blenkinsopp]: Great, great. So, I guess increasing your glutathione or having low glutathione is going to have an impact on your isoprostane levels just because you’re indigenous antioxidant system is different. You brought a very important aspect of it there. They weren’t for a run for a few hours and they completely changed their isoprostane levels. So then we have to think about, okay we really have to control. If this can change that rapidly – give that that was quite an extreme circumstance. But what kind of things do we have to control for it to make sure that we’re not getting some kind of useful reading with isoprostanes.
[Josh Fessel]: Yeah, that’s a really good question. So, we know that people who are heavier – who are overweight or obese – have higher levels. So you got to control for that. As I say, we know that smokers have higher levels, so you have to control for variables like that. It ends up being a lot of the variables that you would control for in a fitness type of study anyway. It turns out that the specifics of – at least in a short time window – the specifics of dietary composition aren’t as important as you would think. So, year’s back we actually did an experiment in the lab where a bunch of us – because we wanted to know is it possible that what you’re measuring when you measure a plasma level of isoprostanes for example is coming in with the food you’re eating. A bunch of us in the lab went and got a very high fat meal from a popular fast food chain and measured our levels.
[Damien Blenkinsopp]: I wish you would say the name, but we can guess.
[Josh Fessel]: I won’t necessarily say the name.
[Damien Blenkinsopp]: Have they been in the news lately?
[Josh Fessel]: Almost certainly. So we measure our levels beforehand – blood and urine. And then ate a very fatty meal and then I think it was something like 6 to 8 hours later, measured plasma and urine levels and they really didn’t change. Which was kind of a surprise, but it was very reassuring. It suggested that what you’re measuring is more reflective – or at least, if it’s not more reflective of a steady state, it’s at least not so sensitive that you can tip with –
[Damien Blenkinsopp]: With just one meal.
[Josh Fessel]: That’s right.
[Damien Blenkinsopp]: Right, right. Okay.
[Josh Fessel]: But, overall dietary composition is something you would want to know something about if you were doing a controlled measurement.
[Damien Blenkinsopp]: Is there anything about time of day or with a lot of blood tests we do fasting. Will it make any difference if we fast say 6 or 8 hours or 12 hours and then do it in the morning? Or is it okay to do in the evening – to take your sample then if urine for example? Are those kind of influences important? How about like summer or winter? Are these good questions because if I imagine if I’m interested in tracking this just say for aging or for some other aspect, then I want to know that I’m not just going to get hectic data basically. Like one day up, one day down. One season up, one season down and basically can I be completely fooling myself that I’m tracking anything useful?
[Josh Fessel]: That’s exactly the right question to ask. So, as far as we know – at least in plasma levels – there’s no diurnal variation and that’s true actually of a lot of the different measures, not just isoprostanes. If you’re measuring anything in urine, in general, the best time to measure is the first morning urine. Not necessarily because you get diurnal variation, but what happens is you’re awake throughout the day. You tend to take in fluid and that’s going to tend to dilute your sample. But that’s true of almost literally anything you would measure in the urine.
[Damien Blenkinsopp]: Well that’s a great rule that you just gave use there.
[Josh Fessel]: Yeah. And then as far as seasonable variation – that’s a really interesting question. To the best of our ability to determine, no there isn’t any seasonal variation. I actually did a study when I was in graduate school to see if sun exposure had any impact because you’re delivering radiation to a large area of the body if you’re out in the sun and radiation is ionizing and creates free radicals and so I wanted to know was there any acute effective of sun exposure and the short answer is no there isn’t. So, for all those reasons, these tend to be pretty robust measurements and like I say, some measures are going to be a little more noisy than others, but in general these are things that – the one thing that would have an impact on the acute measurement of any index of oxidant injury would be if you had some sort of acute illness. So, if you had that flu for example. We know that people who are acutely ill have – and we’ve probably best studied oxidant injury in the setting of acute illness. We know that people who are acutely ill will have higher levels and the sicker you are the higher they’ll tend to be. So, if you were doing any kind tracking of any biomarker really over time, you’d want any individual measurement to be fairly representative of how you are on a day to day basis.
[Damien Blenkinsopp]: Absolutely. So I actually ran into this problem very early in my tracking. I was tracking high sensitivity of the C reactive protein. And the second time I ever tracked it – this is going back like 8 years or so – very early – and I actually had an injury to my coccyx by falling – I can’t remember – falling over something. Very painful, it was really horrible.
[Josh Fessel]: That sounds awful.
[Damien Blenkinsopp]: Yeah, yeah. It was because you can’t sit down. It’s very difficult. But anyway, I took my CRP and it was like much, much higher of course. I can’t remember the levels. I think it was 8 or something, which it was completely off the chart compared to what it was. I honestly had to look and it really wasn’t worth me spending my money on that CRP this time just to find that yes, you have a coccyx injury or any other injury, you kind of expect these kind of things. So very, very important point there.
So just wind of the isoprostane discussion. So we didn’t’ really talk about TBARS. The thing about TBARS and the MDA is when you look at, for instance, supplements and things like this, you often see that they talk about the TBARS as supporting evidence that it’s lowering lipid peroxidation. Do you feel like it’s reasonable to trust statements from backing supplements and stuff? Should we really be looking at the isoprostane levels? And can we trust – if we’re reading stuff on supplements and it seems that lowering lipid peroxidation, would you trust that or what issues would you see with trusting that TBARS method?
[Josh Fessel]: Yeah, that’s a great question. So, what I often tell my patients when they ask about supplements is remember the job of the person who printed that label is to sell you the supplement. So know that whether they’re making a claim about TBARS and MDA or isoprostanes or protein carbon meals – so know that. The question, I guess, is to dig in and find out what are the quality of the data that they’re sighting? And it seems like you’re speaking to a really engaged and educated audience here and so my advice would be dig into it and see do they site a study? And if so, go find the study and look at it. And if it doesn’t make sense, go talk to your physician or whoever – somebody that you know has some background to help you pick through it and say – because some of the studies that are out there that have looked at TBARS and malondialdehyde and all that – they’re fine studies. They’re well designed and you’re going to get relative quantifications that probably do tell you something. There are plenty of studies of isoprostanes out there that are not as well designed and probably not as informative as better design study of TBARS. So whether you trust the claim or not – I always go in with skepticism and my first question is okay well let me see if I can find the study they’re actually talking about. If I can, I’ll look at it and say okay this is actually pretty good or this has some problems. And then the other thing is independent of that, I’ll look for other investigations of the same thing. So maybe the study they site isn’t that good, but there are 10 other studies that have been better done and they actually seem to suggest yeah there’s something here or the conclusion is no, there’s really nothing here. So I say take each on a case by case basis, but get as much data as you can before you spend your hard earned money and educate yourself on the front end.
[Damien Blenkinsopp]: Great. Is there anything in particular which would, if you were reading a study and it had TBARS in it, is there anything in particular you would look at for that marker which you’d be like, “Ah that could be an issue.
[Josh Fessel]: Yeah. Sometimes it’s hard to pick out what can be the issues. If I’m reading a study – this happened once. I was reading a study that were analyzing samples that were 10 years old and that gave me pause because anything that sits around long enough, unless it’s stored under really rigorous conditions will show generation of malondialdehyde and isoprostanes and all the other products of oxidant injury or oxidative stress just by virtue of sitting around. So, when I saw that it was red flag to me that oh, I need to interpret this data cautiously. Are they making comparisons between groups and how comparable are those groups, really? Exactly as you eluded to? You’re controlling for the things that could influence that. Did they study? Was there intervention in a group who, on average, was 10 or 20 years younger than their control group? Well that’s a problem for reasons that we’ve already discussed. So, I look for things and these may sound goofy. Like of course they would control for that, but sometimes they don’t or can’t or won’t or didn’t or whatever and so you just look for things like that. That’s true not just for TBAR’s measurements, but for anything.
[Damien Blenkinsopp]: So there’s nothing specific that you highlight that you know is a weakness of the TBARS?
[Josh Fessel]: Not really. I’ll say that the one caveat I guess with TBARS, Is that the more complex the sample that they’re measuring, the more cautiously I’d interpret the data. So, for example, if it’s a study of TBARS in urine, urine is a biological sample. It’s pretty simple. It’s got salt and a little bit of protein and few other things and that’s about it. Plasma on the other hand, is really complex. It’s got proteins and lipids and a few cells. So if you were making measurements using the TBARS protocol in urine, I would tend to hang a little more validity on that than if you were in the plasma. I think it’s a dirtier biological matrix.
[Damien Blenkinsopp]: That’s interesting because I think most people assume that blood’s the ultimate measure. So, just of now, does an isoprostane – does urine correlate well with the blood sample levels? So, are they pretty much exactly the same?
[Josh Fessel]: They’ll tell you the same information. And the nice thing with isoprostanes is that – because we’ve had it come up before where people say, “Well how do you know they aren’t being made in the kidney and that’s really what you’re measuring?” That’s a fair question. So the one nice thing about isoprostanes is that we also have defined metabolites that are excreted in the urine. So the only way you can get that is if you formed the compound, released it in the blood, and then the enzymes that metabolize isoprostanes have a chance to work on it. So, you can measure urinary metabolites and they’re very stable compounds and say there’s no way this was generated in the kidney, this had to come from the total body pool. But in general, yes, they do correlate.
[Damien Blenkinsopp]: Great, great. Thank you very much. Okay, so I know that you’ve been starting to get involved in a project that’s going on. We have someone who wanted to change something in their life and so I brought that up and it’s very interesting case study to bring up on the program. So, it’s called Feeding Danny. Could you give us a quick background about it?
[Josh Fessel]: Sure. I’d be happy to. Thanks for asking about it. Yeah, so this is a project that started with my friend and my wife’s friend, Danny. Danny, like a lot of people has struggled with his weight over time and Danny is very overweight. In medical terms, you would say he’s morbidly obese. He carries a lot of extra weight. I’m guessing and I don’t know for sure – I’m guessing he weighs he weighs somewhere around 350-400 pounds. He’s a big dude and has health problems associated with his weight. He’s got joint problems, sleep apnea, asthma, all sorts of things. And so he has tried many different ways to get a handle on this and has had a lot of trouble and like I said, he’s clearly not alone in that. And so what came about is two friends of his approached him with the idea that they wanted to stage what you might describe as a dietary intervention. They said, “If you’ll allow us to do it, we will take over your diet for a year’s time and change everything about what you’re eating. We will make sure that the only thing going into this system are all natural, organic, pesticide-free, hormone-free foods and that by doing that we feel certain that you will, not only lose weight, but you’ll see improvements on any number of health related measures and act scenes.” And so when I heard about this I said I would love to help out if I can because I love my friend Danny and I want to help him, but beyond that I thought this was a really interesting concept on a single person as you say case study and that’s really what it is. Can you do this dramatic intervention and see a positive change. What I thought I could offer was to bring the medical perspective to things just in terms of overall fitness, but also bring the science perspective because I come from a slightly different place than the women that are doing this. Their names are Leilani and Vanessa. I tend to think about things in a very sort of pragmatic, low level kind of way. I think this will work because if you’re eating a diet like they’re describing – and it does include meat and that sort of thing as we discussed. This is not a strict vegan diet or anything like that. But I think if you’re eating a diet that’s high in fruits and vegetables and whole grains and lower in saturated fats and all that kind of stuff, you’re going to lose weight because your caloric intake is going to go down. I suspect what we’re going to learn is that as we go along they are thinking more along the lines of eliminating toxins from the diet and that sort of thing and I always halt a little at that because as I say, just as I don’t like the term oxidative stress because it’s nonspecific, I don’t like the idea of toxins because that’s nonspecific. What do you mean -What toxin, can I measure it, what are the levels, that kind of thing. And so, it doesn’t really matter who’s right as long as it works and so I’m excited to participate in this. What they’re proposing to do is to do this intervention for a year. They’ve uprooted their lives in Chicago and have moved to Nashville. They just got here about a week ago. What they want to do is do this for a year and document it on film and hopefully at the end of it have a true representation of what happens over the course of that year.
[Damien Blenkinsopp]: Alright. Those things are great – documentaries – because they can be inspiring for people, often more inspiring than this show when we’re talking about scientific data like this one for a lot of people. So, they’re really, really great, but it would also be like really cool if there were some controls in place to kind of understand a little bit like what really did happen. So, my understanding is that the intervention is basically a diet of organic foods, right. So they’re going to be buying specifically organic, certified organic produce and probably they’re going to basically eliminate all of the stuff in the middle of the supermarket. So you’ll walk around the edges and you’ll grab all the vegetables, fruits, meats and so on, but most of the stuff in packages isn’t going to be included in the diet.
[Josh Fessel]: That’s correct and ideally they’ll actually, in as many instances as possible, eliminate the supermarket and go to the farm where it’s being raised. And Nashville’s actually a good place to do that. There are a lot of certified organic farms and you can locally source just about everything. So this is kind of an ideal place to try what they’re proposing.
[Damien Blenkinsopp]: I guess somebody other kind of confounders in terms of diet because the diet world is so complex in terms of all the people have different opinions. Whether it’s grass-fed meat or its grain-fed meat, there’s a whole question of grains. In this case it seems like grains isn’t the issue. But like we were just talking before like it’s just important to define exactly what the diet intervention are in it – what limitations are and what the limitations aren’t to kind of get started. What kind of other things would you feel would be worthwhile controlling for? I understand the budget probably isn’t going to be really high, right, in terms of testing and things like that? But there’s probably some things they could track and it would probably maybe help the documentary or just be useful to kind of look at afterwards and be like yeah. So maybe we can say that toxins did play a role or – although I haven’t come across so far a kind of generic marker of toxins like you’re kind of alluding to. I’m not sure it is a generic toxin marker unless you want to say oxidant injury potentially. So what would be your thoughts on kind of if you wanted to get a baseline today before everything started and to see where things are at and then I know what kind of time scale would control certain things and at the end, in one year’s time, what would you like to control for if you could?
[Josh Fessel]: Yeah, that’s a great question and this is something that we’re in discussions about right now because, you’re exactly right, budget is going to be limiting and so there are some things that I think we’ll need to do just from a general sort of health monitoring standpoint. There are some things I’d like to do that we may or may not be able to do, but all of it is in service to trying to figure out did anything actually work. Where my thinking is, is that we’re going to need to look at some really standard, basic measures of health, particularly metabolic health, and this is real simple stuff like cholesterol, like hemoglobin A1C, blood sugar, triglyceride levels in the blood, if I had basic kidney and liver function, that kind of thing. If I had a complete wish list, I’d probably want to know about thyroid function and that kind of thing. And then to branch out from the traditional, clinical indices as far as biomarkers and thinking about what else I would want to know. I would actually be really interested to know what the circulating levels of isoprostanes were and compare that with circulating malondialdehyde or TBARS. I would love to know high sensitivity CRP. I would love to know what plasma levels of ascorbate and vitamin E and all the other small molecule antioxidants. I think that would all be fascinating and to see how those change with this fairly profound diet modification that’s going to happen. How much of that we’ll be able to do I don’t really know. Since some of those things make sense clinically, some of those things are more on the research side and this is an interesting case study, but in the strictest terms this is not a research study. So, we’re going to have to be a little judicious in how we go about these things. But nonetheless, I think what we’ll end up doing is certainly hitting all the things that we need to look at just from a basic health and safety standpoint and then I hope that there’s additional funds available to dig into some of these other things, not only to get a baseline, but hopefully to measure them periodically over time and see what did we really do.
[Damien Blenkinsopp]: Yeah. That’s great. And I think you’ve mentioned a lot of different things and I think especially for people to get the value out of the markers they’re tracking and given how most things are still pretty expensive today. Some of the things you mentioned I thought particularly kind of practical are blood sugar regulation. You mean just taking like the blood sugar reading.
Recently, had a conversation with Bob Troia on The Quantified Body. He was on the one of the recent podcasts and he tracked his blood sugar every day for a long time. It was interesting to see it went up and down all time based on what he’d been doing the night before and everything. so the problem that I realize is like sometimes when I’m having my blood panels, I’ll get my fasting blood sugar taken and I realized I’m kind of wasting my time because, unless I’ve been very careful about what I’m doing the night before, in terms of exercise and intake and everything. But on the other hand, there’s a pretty cheap method. It’s the Precision Extra pinprick blood sugar devices where you can take a couple of reading. It’s pretty cheap. Unfortunately you have to prick your finger and you have to think about okay is Danny going to want to prick his finger like once every day or maybe once a week or like whatever you’re trying to control for. Obviously, blood sugar regulation’s one thing that’s going to fit with the research that there’s definitely going to be some changes there. One of the things I was thinking of is cardiovascular risk. Is that something he’s worried about? Given the weight and everything, we worry about that a lot. There’s one other test out there that I’ve been meaning to get someone on the show for, for a while is the LDL particle number, which the research has been looking at more sharply because it correlates better. They are looking at some other things they are using CRP which is one you mentioned too. So, just kind of figuring some of the other things I thought would be interesting and of course like a weighing scale because in terms – like I think one of the great things about this project is that you could take pictures every day and obviously there’s going to be video footage, which is going to motivating for other people, but sometimes you can’t see it yourself as well when you’re measuring. But if you got a scale and you’re just jumping on it every day, that’s a very easy thing to keep you motivated to see that something is happening. We have to be aware of something that you said earlier in our conversation today. Which is that there were benefits being seen with caloric restriction before any of the pounds were coming off in your example, right. So we have to also be aware that although sometimes maybe the weight isn’t’ coming off, there are other improvements that are going on inside our bodies.
[Josh Fessel]: That’s absolutely true and that’s why I hope we’ll be able to quantify as many different parameters as possible as you say. In terms of a quantified body, a quantified life a bathroom scale is probably one of the most useful things you can have. But you’re exactly right in that let’s say that weight loss – let’s be pessimistic and say there isn’t as much weight loss as we there’s going to be, we might still have one real victory, but you’ve got to know what to look for. You got to be able to look for it. And so for exactly that reason I think the more carefully selected data we can have in this case – and this is true, not just in the case of Feeding Danny, but in a broader sense I think that’s useful. My clinical life is in part spent in the intensive care unit taking care of critically ill patients and that’s about as quantified as you can get on an acute basis and all of that information can be really helpful, not only as individual data points and not only as trends, but also as a gestalt of what’s going on with the person. And i think this maybe a similar conceptual exercise over a much longer time scale. So I’m hopeful that we’ll be financially able to look at all these things. But if nothing else, like you say, daily weights and looking at blood sugar over time and things like -one of the things that I hope we’ll be able to do – one of the sort of quantified self-measures that I haven’t personally gotten into, but that I think has a lot of potential utility for not much investment is looking at actigraphy things like the fitness trackers and whatever. But just getting a sense of over days/weeks, what is your activity level? What are you really doing? And patterns emerge that you would never observe as you say on a day to day basis.
[Damien Blenkinsopp]: That will be interesting for this project as well because like I’m sure as your weight goes down your activity naturally tends to rise.
[Josh Fessel]: That would be my hypothesis.
[Damien Blenkinsopp]: And then as a benefit that most people aren’t going to think of like straight away, but it would be great – just have a Fitbit – be wearing a Fitbit. We discussed on one of our last episodes about the whole market and basically the Fitbit tends to be one of the better trackers at the moment. Or another one as long as it’s giving you directional info, it would be really interesting just to see that. So I think these projects are great, like I said, for inspiring other people for change. So good luck with that. In terms of your own personal life, just always interested to find out what people are doing with themselves. Are there any biomarkers or personal data you track on any kind of routine basis or monitor just related to health, longevity or performance, anything about your body really?
[Josh Fessel]: Yeah. So, the bathroom scale is there. So I track my weight every day and I track that pretty closely. At times I’ve even charted it out, made graphs, that sort of thing. That’s been really informative. I’m a pretty careful calorie counter. I keep a really close count on a daily basis of the calories going in and –
[Damien Blenkinsopp]: Is that just by kind of eyeballing? Like that’s roughly 200 I’m consuming right there.
[Josh Fessel]: It’s about that. I mean I spend a lot of time reading labels and that kind of thing. I’ve had periods where I had the flexibility in my schedule to actually weigh foods and that sort of stuff and carefully measure out serving sizes and I love being able to do that. In terms of satisfying the practical demands of every day, it’s a lot of times by eye, but I’ve been doing it for a while and so actually have a pretty good database built up of “Oh okay I know that this is going to be this many calories and so on”. And I do that essentially on a daily basis.
[Damien Blenkinsopp]: Okay, great. So you kind of track roughly how much you consumed in a day of calories and you track your weight. Has anything interesting come out of that for you whether it be accountability? What kind of value have you got out of that?
[Josh Fessel]: Yeah, absolutely. Like so many people, I’ve struggled with my weight for a long time too and so at my heaviest I was probably about 230, 240 pounds.
[Damien Blenkinsopp]: Just out of interest, how are you now?
[Josh Fessel]: So now I weight between 145 – 150.
[Damien Blenkinsopp]: Okay. So like a big deal, a lot of difference.
[Josh Fessel]: Yeah. So I lost a lot of weight. Some of it was diet modification, some of it was activity, most of it was diet actually. But by being very careful about tracking calories and tracking daily weights and that sort of thing, I’ve been able to take that weight off and keep it off and that’s worked really well for me. It’s also made me very conscious about the dietary choices that I make. So, in general, I’m – lazy isn’t the right word – but I like to spend mental energy on particular things. And one of the things that I don’t love to spend a lot of time thinking about is what am I going to eat for any given meal? Or, if I’m hungry and I want a snack, I want to sort of check that box and get on with whatever it is I’m actually interested in doing. And so that coupled with being careful about calorie accounts has really had a great positive impact on my diet because the things that you can mindlessly eat without destroying your daily calorie count, tend to be pretty healthy things. So that’s worked really well for me and I’ve had some patients that that’s worked really well for. Others are much more exercise oriented and that’s the area that I’ve started more recently tracking my exercise over time with following either how many calories burned in any given workout session or I’m mostly doing treadmill and cardio aerobic kind of stuff.
[Damien Blenkinsopp]: So you’re using the machines or using your own device?
[Josh Fessel]: I use the machines typically. I haven’t yet invested in, like I say, an actigraph or a Fitbit or anything like that, which I think would be really interesting. But I’ve started tracking what kind of distance do I do and to motivate myself a little bit because I know that the piece that I am personally missing is regular physical activity. I think the data are really solid that that has health benefits beyond weight control and that sort of thing. So I’m trying to live by example as when I tell my patients to do this – and these are people – so I’m a pulmonary doctor by specialization. So the patients that I see all have lung disease. So here I am telling these people that have difficulty drawing breath to go exercise and it’s pretty hypocritical of me if I don’t make the effort myself.
[Damien Blenkinsopp]: Great, thank you for that. Okay, so last question. We’re talking about data on this show. So, do you have one recommendation? Like what’s the most important insight you have about using data in a way that’s going to be valuable to improve health, longevity, or performance? What would recommendation would it be?
[Josh Fessel]: If I were going to say anything about using data to guide performance, health status, anything, it would be to pay close attention to know what it is that the data are telling you or going to tell you before you get it and know what you’re going to do about it before you get it. This gets to the whole actionable thing. So, not all data are useful. If you don’t know what the data are really telling you, not useful. And if you know what they’re telling you, but you can’t do anything about it, not useful. And this is true in really any context I think. So before I would get a test results or order any kind of assay or whatever, I would want to know. And I do this in my research lab, I do this in my clinical practice. Before you order a test, before you run an experiment, have an idea of what it’s going to tell you and what you’re going to do with the likely or the potential outcomes. If it’s this, then I’ll do this. If it’s that then I’ll do this other thing. And if you can’t set that up on the front end, that’s not going to be a useful piece of data to you, so don’t waste your time or spend your money.
[Damien Blenkinsopp]: Great and we talk often about things being actionable, which is kind of like a jargon. It’s a bit of a jargon word, so I really liked the explanation you just gave, which was very clear and it was kind of like an exercise. It’s like before, plan what action you’re going to take once you find out the data is this, once you find out the data is that. And that’s a way of learning if it’s actionable – that it’s actually going to be valuable. But I think a lot of people don’t think about it. So I think that’s really a great piece of advice. It’s a great exercise before anything you’re going to think through that way. It will kind of force you to understand if it’s going to be of value to you in terms of taking action on it.
[Josh Fessel]: Well thank you. Yeah, that’s exactly right. That’s why I force myself to do it because if you don’t know – if you can’t make a plan, then it’s probably not actionable. And so maybe wait until you have other information or maybe discard it entirely and change the line of inquiry.
[Damien Blenkinsopp]: Well Josh, like final thing. Where can we reach you, get in contact? Are you on Twitter? Are you on a website? Where can people find you?
[Josh Fessel]: That’s a great question. No, I’m kind of a lead eye. I don’t even have a Facebook page, but I’m pretty findable. So, google search for Josh Fessel will find me. I’m on the faculty at Vanderbilt University. So, I’m that Josh Fessel. And I think there are a couple other people out there with the same name, but a google search and if you include Vanderbilt you’ll find me. That will link to my faculty page that talks about my particular background and my research interests and that sort of thing. And I think email addresses are there too. So, I can be reached any number of ways. I’ve spared the world my thoughts a 140 characters at a time. So, like I said, I’m a little behind the times there. But, yeah, I’m pretty findable online and that’s probably the best way to do it.
[Damien Blenkinsopp]: Great. Well Josh, thank you so much for your time today. I really appreciate it. It’s been a great discussion.
[Josh Fessel]: Oh, no. Damien, thank you. It’s a pleasure.

Leave a Reply

This episode is about experimenters in the field of biohacking, the people actually in the trenches doing stuff. We’re focusing on wearable devices such as watches, shirts, bracelets, necklaces and on and on.
We’re focusing on wearable devices such as watches, shirts, bracelets, necklaces and on an on. Basically, anything that you can put on your body that can give you data on your performance.

Wearables are here to stay and there are more coming out to track different aspects of our biology, of our health and our fitness, and so on. Which of these devices give us the most accurate data? How can we make good use of the data and improve our lives instead of just letting all those numbers cause confusion and distraction?

“You really have to get this intersection of who is the user. How much data do they want? Are we giving them enough data and is it accurate data?”
– Troy Angrignon

Troy Angrignon is an emerging technologies consultant with expertise in marketing strategies and segmentation for wearables. Troy spends a lot of his time testing several of the latest wearables while doing a range of relatively extreme athletics and feats, including military style training like that done by SealFit. He reviews and compares the products then maps them all out into big ‘x and y’ diagrams simplify data and make test easier to understand.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Troy’s interest in wearables started with early generation sports watches that could tell the user how much recovery time they would need after a particular workout. (4:05).
  • Improvements in utility of wearable devices over the past 10 years from sport watches to fitness trackers, to activity trackers to smart watches. (6:25).
  • Value of wearable tech depends on the user’s activity level and goals – Troy Angrigon’s 5-tier approach ranging from the semi-active user who needs little more than a watch with a timer to measure how long or how fast they ran to the pro athlete looking for clinical data. (7:33).
  • Devices currently available that cater to the tracking needs of elite-level endurance athletes: Garmin 920Xt and Fenix. (11:10).
  • Discussion of accuracy of wearable devices – Damien notes that tests have shown the degrees of error to be roughly the same between manufacturers. (13:10).
  • Devices currently available that are accurate enough for optimizing performance at a high level (17:10).
  • Problems with current software that misinterprets sedentary activity such as watching t.v. and reports it as sleeping. (20:32).
  • Fitbit Surge design advantages – combines GPS with optical heart rate monitoring (21:42).
  • Design areas where Troy Angrignon thinks manufacturers are excelling: Fitbit has good tracking for lower level users, Jawbone offers good customer service and good apps, and areas that still need work: understanding the customer, how they live and what they are going to use the tool for. (22:45).
  • Devices for lower activity level users: Fitbit, Jawbone and Body Media (23:47).
  • Devices for mid-level users: Fitbit Surge HR, Garmin Vivoactive, Garmin FR620 (27:14).
  • Devices for high-level users: Garmin 920XT, Fenix and Epix models (29:10).
  • Platform compatibility issues between manufacturers – users with several devices from different manufacturers can’t pool or cross correlate their data easily(29: 58).
  • Application issues with EEG devices: Muse, Emotive; collect data but few apps have been developed for converting the data into usable or actionable information. (30:40).
  • Meditation as a tool for improving mental and physical performance. Damien mentions using meditation in conjunction with the Muse (32:05).
  • Discussion of sleep tracking devices for different user/quantification levels: level 2 analysis reports how many hours in bed and of that how many hours spent sleeping vs. tossing and turning; level 3 reports deep vs. light sleep phases, records snoring, level 4 provides clinically verified data, level 5 provides raw sensitive data. (35:04).
  • Troy and Damien describe techniques they’ve each used to improve their sleep quality: cover bedroom window with blanket to darken the room, turn off all screens, programmable lights; devices to use: Basis, Jawbone, Fitbit Sealfit Unbeatable Mind, Lumen Trails. (39:48).
  • Price ranges of wearable devices (50:00).
  • Risks associated with EMF exposure from wearable devices. Damien mentions that most people aren’t aware of potential detrimental health effects of EMF’s. Topic is discussed in the book 4-Hour Body by Tim Ferris. (52:55).
  • Sleep coaching tool: Sleepio.com. Troy mentions this tool, which educates the user on the complexities of sleep and identifies the user’s particular sleep issues. (56:30).
  • Troy Angrignon’s prediction for the direction wearable device technology is going in the next 5-10 years: we are currently at an immature stage in being able to collect and analyze data. He hopes we can compress the maturation period of this technology and not have to wait 30 years until we can turn data into actionable intelligence (57:55).
  • The biomarkers Troy Angrignon tracks on a routine basis to monitor and improve his health, longevity and performance include sleep via Sleepio.com, heart rate variability with the Garmin Forerunner 920xt and recovery levels through RestWise.com.
  • Troy Angrignon’s one biggest recommendation on using body data to improve your health, longevity and performance is to decide on the one thing that would make the biggest difference to you and track it.

Thank Troy Angrignon on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Troy Angrignon

The Tracking

Biomarkers

  • Sleep-Related Biomarkers: Measure sleep in total time (hours and minutes) and percentage of time spent in different sleep phases:
    • REM (Rapid Eye Movement) sleep : Characterized by random eye movements and is physiologically distinct from non-REM phases of sleep. Troy mentions that the Basis watch measures the amount of REM sleep.
    • Deep Sleep: Characterized by slow, synchronized brain activity and is the most restful phase of sleep. Mentioned by Damien in relation to inability of the Basis watch to track properly.
    • Light Sleep: Also known as stage 1 sleep, a non-REM sleep stage that forms the transition from wakefulness into deeper stages of sleep. Mentioned by Troy in context of the Basis sleep tracking watch.

  • Heart Rate Variability (HRV): Mentioned by Troy as an indicator for over-training. HRV is a physiological phenomenon whereby the heart rate changes to accommodate physiological, mental or emotional stressors.
  • VO2 Max: Mentioned by Damien as a test available through fitness labs. Measures an athlete’s maximum oxygen consumption rate and is used to gauge aerobic fitness levels.

Lab Tests, Devices and Apps

  • Colored LED Lights: Damien mentions using these to help with sleep.
  • Apple Watch: Smart watch with fitness tracking capability.
  • Basis Watch: Smart watch with sleep tracking. Mentioned by Damien for its inability to distinguish sleep from sedentary activity.
  • Beddit: Sleep tracking device. Troy mentions that version 1 was offered in consumer or pro models, with the consumer model being cumbersome to operate.
  • Beddit Misfit: Under mattress sleep tracker.
  • Body Media Fit : Mentioned by Troy as having a loyal customer base. Strap-on style device worn on arm.
  • EEG (electroencephalogram) Devices : Measure brain wave activity, used to determine sleep cycles. Mentioned by Damien in relation to tracking sleep.
    • Emotiv: EEG monitor Troy mentions that he hasn’t tried yet.
    • Muse Headband: Contains an EEG device.

  • Fitbit Products
    • Fitbit Surge: Fitness watch that offers GPS tracking, heart rate monitor, all-day tracking, sleep tracking, and wireless syncing. Troy mentioned it in relation to its optical heart rate detector.
    • Fitbit Charge HR: Fitness watch with automatic monitoring.

  • Garmin Products
    • Garmin Fenix: Mentioned by Troy as a durable device, good for competitive and endurance athletes.
    • Garmin Forerunner 920xt: Mentioned by Troy as a durable device, good for competitive and endurance athletes.
    • Garmin Vivoactive: Good for running, cycling and swimming but not able to track transitions in triathlons
    • Garmin Epix: Similar to the 920XT and Fenix plus a larger screen with high-reolution color and apps.

  • Jawbone Up : A line of activity trackers. Mentioned by Troy as being problematic for its clip-on style and not being waterproof.
  • Lumen Trails: Tracker app Troy uses to simplify tracking for many things.
  • Sleep Tracking Devices
    • ResMed S-Plus: Sleep tracker with connections to Phillips Corp.
    • SleepRate: Sleep tracker mentioned by Troy as having a different scoring algorithm than Jawbone.
    • Sleepio: Sleep tracker mentioned by Troy in relation to its scoring algorithm.

  • Restwise: App Troy uses to track post-workout recovery.
  • Suunto: A Finnish manufacturer of measuring instruments that carries a range of sport watches. Troy mentioned their products as having excellent hardware but cumbersome software.

Other People, Books & Resources

People

  • Dr. Greg Welk: A Kinesiology Professor at Iowa State University where he oversees the Physical Activity and Health Promotion lab. Listen to Damien’s interview with Dr. Welk on the accuracy of fitness trackers in episode 18.
  • Dave Asprey: author of The Bulletproof Diet Mentioned by Troy in regards to brain training for increasing focus and blood flow to the pre-frontal cortex.
  • Ben Greenfield: Mentioned by Troy in relation to sleep improvement tips. Maintains a fitness website and blog.
  • Ray at DCRainmaker.com: Triathlete who maintains a website and blog. Mentioned by Troy for his extensive product reviews.
  • Dr. Kirk Parsley: Sleep clinician for Navy SEALs. Associated with performance program called Sealfit Unbeatable Mind.

Organizations

Books

  • The 4-Hour Body: The book by Tim Ferriss mentioned by Damien in relation to health effects of EMF’s.

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: Troy, thank you so much for joining us on the show.

[Troy Angrignon]: Hey Damien. Thanks, great to be here.

[Damien Blenkinsopp]: So, you have the absolute, most comprehensive review of wearable technologies, wearable devices I’ve ever seen. It looks like something from my consulting background years where I was paid big money to create those kinds of things.

So when I saw it I was like, yeah I definitely have to get this guy on the show. He’s put so much time and effort to looking at it from a user; what people actually need and the functionality out there. How did you get into this? Where did your interest in wearable devices start from?

[Troy Angrignon]: I’ve always been interested in them. I’ve always looked in the very early days at running watches, all the sport watches in the early days. The Suunto’s and the Garmins’s and things like that and even in the early incarnations, you could see some kind of cool things that were happening.

They would have interesting features in them. It would say, ‘you have to recover four hours after this workout’ and then say, ‘oh wow, that’s really cool. How are they figuring that out?’ So I got interested in some of the early sport watch stuff and really followed it through that. I’m a nerd and kind of a geek in general.

Anyway I like data. I’ve been involved in data based industries and loved doing sports. It really came from probably the sport watch side of things in the early days.

[Damien Blenkinsopp]: Great. So how long have you been doing this because the sport watch has been around for quite a while now?

[Troy Angrignon]: They have, right. Probably ten plus years and I really got into; I’d say what we know as this current generation of wearables or near-ables. You want to use that phrase.

Really about four years ago when I started looking at sleep issues; I was having sleep issues from working on a start-up and getting no sleep, and all those things. So I started looking at better sleep practices, a lot of stuff that you and I both went through in the bio-hacking space.

And looking at sleep practices as well as tools, so I started looking at a lot of tools and from there that was kind of the beginning. I think you were probably very aware of it at the same time. The sleep tools were happening and the activity trackers were starting to come out and things like that. That was probably 2011, 2010?

[Damien Blenkinsopp]: Right. Absolutely. What it is though, is sleeping activity is a big area? It’s interesting. Have you got a lot of data from over ten years reflected from all of these watches and things?

[Troy Angrignon]: No. Especially in the early days a lot of it, it’s hard to get the data off or it just comes off into space and you could look at it on some desktop application or something. So no, I think my largest, continuous data set is probably three years. I was just looking at it actually, all my workouts, probably for the last three years.

It’s spotty. There were sections where things didn’t track or I lost data or whatever else. Probably the last three years has been pretty rigorous.

[Damien Blenkinsopp]: I think you’re probably got pretty much on top of what’s been actionable and what’s been most useful for you over that time. How have you seen the curve of utility go up for you personally, because obviously you’ve been testing different devices and it’s been ten plus years?

In the beginning, was it useful or was it like trying to get some value out of this and getting a little bit but not so much? Like how to use scales on like one to ten, how has it changed over the last then plus years?

[Troy Angrignon]: Well I think two things have changed. There’s how have I changed. I own an approach to thinking about the data and I’ve kind of gone through my own levels of maturity in thinking about it. And then the technology, of course, is changing.

You and I have talked about this before where I kind of do think in that ‘x and y’ and I think that the market has evolved. We’ve gone from just sport watches to now, we’ve got fitness trackers, activity trackers and I can get into definitions of those things. Smart watches.

Some of the fashion companies; they’re with traditional fashion watches are now getting into smart watches. And so you’re getting this kind of bigger fragmentation and more features being developed. At the same time as what I want data has definitely changed and matured and mutated over time. So it has been definitely a change in both ways.

[Damien Blenkinsopp]: Great. Thanks. And who do you see is getting real value from the wearables tech on the market today? I mean you can take yourself as an example. What are you getting real value out of today and who else do you see getting real value out of these wearable tech today?

[Troy Angrignon]: That’s a tough question. I think a lot of different people of different skill sets can get value and it really comes down to what they are trying to do. So I think, maybe it will help set the stage probably for the rest of the call and give us a framework. Why don’t we talk through what we discussed the other day?

But I tend to think of user types as kind of a zero to five in a very gross, coarse way. So a zero would say, ‘I don’t care about data. I’m not going to use any of these tools. I’m just going to go run. I want to just feel the wind in my hair and get outside.’ Where a one would start to ask for some data, like I just want a watch that shows me the time. Like how long did I run? How far did I run? Maybe something basic.

A two would say, ‘well I want that but I want a little bit more data. Give me a few more fields.’ And a three really starts to say, ‘I want to know my time, my splits, my cadence, my running dynamics, my vertical oscillation. They start to get pretty technical in terms of what they’re looking for.

And the fours, they’re really looking for that. They want it to be trusted. They want to know that the data that they’re getting in those devices or applications truly is actually legitimate data. Where the threes are ok, just give me the number and I’ll kind of look at the numbers Is it going up or going down. I don’t really care if it’s super accurate.

And then the fives, you’re really talking Olympic athletes to that point. You’re talking people getting clinical, grave data. And so if you think about kind of the levels and you can apply those levels to the level of athlete too; zero probably doing nothing, one just starting, a two sort of semi-active, a three quite active, four pro-amateur level and five being a lead athlete.

And so if you think about those levels and then you think about what they do. Is this a wellness client who’s saying, ‘I just want to feel better, eat a little better, lose a little more’ or are they kind of a fitness type person that’s saying, ‘well I jog a bit, I run a bit, I cycle. I do a couple of things, I dance, I do yoga whenever. Or they’re really starting to get into the endurance in space.

So, I do run. I do marathons. I do long distance cycling. And then all the way up to what I call to the right on my charts where you’re beginning to know super competitive endurance and ultra-distance stuff. And ultimately you’re getting into like the outdoor, backcountry stuff where they’re like, ‘I’m going to go, put my watch on and go ten days into the back country.’

That’s a different animal. It’s a different kind of an athlete. So I tend to think of it kind of an ‘x by y’. And that’s a long back story to answer your question. But I think that people from, kind of the ones to the fives, on the y axis. And then everything from the sitting on the couch and just trying to get a little more active, all the way to the outdoor backcountry folks.

There are pockets of people in there who are getting a lot of value but I think it’s less about them and less about their specific technology and more about the process. So, are they clear on what they’re trying to figure out? Have they chosen the right tool? Does the tool give them the data and can they look at the data and have a feedback loop and say, ‘ok, I got what I needed. I’m going to improve my running speed or I’m going to back off and train less hard because I’m over-trained or whatever else.’

So, that’s a really fuzzy way of saying some people are getting useful stuff out of it and a lot of people are just looking at stuff and they don’t know why.

[Damien Blenkinsopp]: Right. And what we were talking about is a critical need the other day. You were talking about competitive athletes who want to shave off a few seconds off of their times or whatever.

This is critical needs and I guess these are the guys that would be using the fours and the fives that exist today. What kind of devices out there are there that provide that level of detail today, if there are any?

[Troy Angrignon]: Yeah, up in the competitive endurance space. I would look at, these are folks who are doing pretty aggressive, marathons, triathlons, cycling races, multi-sport, even obstacle course racing, which as you know is pretty popular these days, Spartan racing, those kinds of things.

And it’s less about those sports and more the level at which they compete in them. So we’re talking upper 50 percentile, upper 25 percentile folks. Now we are either looking at their times, very aggressive about their times. So once you get into those environments, your use case is pretty tough for a device manufacture.

You can throw a FitBit on these people. And then a lot of my friends bought Jawbones or Fitbits or whatever. What I would can an activity tracker, meaning something with an accelerometer in it and they last about a day because you get them wet, you cover them in mud, you get them in the ocean. Whatever happens, they short out.

So those kinds of users that are really competitive and endurance athletes, they’re hard on their toys. And they really need devices and apps, in fact they don’t even carry their phone with them cause they just trash them. So, you’re really looking at things like Garmin 920xt’s are a great example in the triathlon space or the Fenix, which is the new Garmin in the Fenix Backcountry watch.

Suunto has some excellent hardware, although their data is really hard to move around so I’m not a big fan of them for that reason. So yes, there are definitely tools that work in that space.

[Damien Blenkinsopp]: Great. And in the general where do you see most people using today? Is it in the level one? We were talking with Greg Welk who’s done ongoing studies on the accuracy of these devices and we got into this discussion of how they’re not accurate, most of them to varying degrees. They’re biased.

However, they’re roughly the same wrong every time. So you can check, the relative is difference to what you did yesterday. Consistently one direction wrong or the other so you will talk about the usefulness of at least I know had more activity or I was faster than yesterday at the very least. Is that how you look at that whole area right now? I mean it’s more of a relative difference you can use it for.

[Troy Angrignon]: Absolutely. And again, think of the ones to fives. Kind of drawing a picture in your head of kind of the ones to fives on the left side and then really the bottom of the chart, consumer wellness on the left and all the way through fitness, recreational endurance, competitive endurance and outdoor tactical on the right.

And so I think your question really gets to who uses these, let’s say activity trackers, like Jawbones, Fitbits, these little things that you can clip on. I don’t like clip on ones cause you just throw them in the wash and lose them and break them.

But let’s say the bands you can put on. And you nailed it; they’re not that accurate but if you’re a one you don’t really care. All you’re looking for is step data. And so, did I move a little bit more than I did yesterday? Is it consistently capturing the step data? Is it good enough?

And I have met so many people who say, ‘oh I’ve got my first one and I love it because I used to do 2000 steps and now I do 3000 steps.’ And does it matter that it was 3500 or 2500? No, it’s irrelevant. What they know is they a feedback loop which gives them some objective measure and it’s better than what they had before, which was nothing.

So I think that there’s still a lot of value there. There’s a really interesting company I was actually looking at it yesterday after you and I talked. Diva Metrics I think is the name and I think they’re in Montreal. I may have the city wrong, or Calgary.

And they’ve gone through a really rigorous analysis on how inaccurate all these tools are and making data correction tools. So they’ll say, ‘well this thing is 92% accurate so we’ll just take the data and just up it by the requisite 8% to reality.

[Damien Blenkinsopp]: That’s interesting.

[Troy Angrignon]: So, it’s pretty cool.

[Damien Blenkinsopp]: They can be selling that to the companies who design the devices.

[Troy Angrignon]: So I think there’s still a lot of value in just having some kind of indicator. Calories, I could go on a rant about calories for days. The shorter version is that I think calories in and calories out is a dead model. But a basic summary, whether it’s steps or calories, is it a number that’s higher or lower than it was yesterday.

That’s a great indicator for people that just didn’t have awareness of that before.

[Damien Blenkinsopp]: It’s definitely kind of how serious you are about doing what you’re doing. So if you take an example of sleep. That’s what we were talking about this last time and we’re both fans of sleep, obviously.

I was really interested in the Basis Watch when they were bringing the sleep tracking out because I wanted to understand my deep sleep versus other areas of sleep. And I really just wanted to know I was hitting my eight hours that I wanted and trying to push it up to nine for a while.

I was pretty disappointed because it was saying I was asleep a lot of the time and I wasn’t able to trust that data because if I was sitting around watching TV, or even working on my computer sometimes, it would be like yeah you were asleep in the middle of the day.

So I couldn’t actually use that for just an estimate of how long I was asleep and because I didn’t trust that, I didn’t trust how much it was saying I had in deep sleep either. I didn’t feel like I could do any of the experiments, like to increase your deep sleep because that’s one of the things that I was interested in doing.

I gave up on those experiments and trying to optimize that. By having these biases, it really limits the kinds of experiments and what you can do. If we’re just trying to get a little bit better, like say with the activity trackers. Its fine, we just want to make sure we’re moving. The Basis Watch I’m sure, loads of others, you can point out would be ok for that.

But if we want to actually go to the next stage and optimize it to another level, to a higher level, a more competitive level and get more out of that performance, whatever that angle is. If it’s sleep or running, it’s not quite there yet.

Or are there devices which you feel are there in certain areas, whether it’s sleep or running or areas where you can really optimize pretty well and move to the next level?

[Troy Angrignon]: There are and it’s interesting and I’ve really been wrestling with this a lot. I’ve looked at and broken everything out there or bought and given it away. I’ve tested pretty much everything I’ve ever written about.

You can definitely get more data. You just gave a great example with the Basis and it’s a bit my favorite whipping horse because it’s got some weirdness in the way they develop product. But essentially they try to give these really advance, what I would call QS level, quantified self-level for type of graphs.

A graph is pretty complex and you would expect a person in a pretty deep understanding of visualization and data analytics in order for them to use it. But yet a whole watch was really aimed at couch to 5k, people who are walking and maybe cycling.

In fact, that’s all it will even track, actually. It will self-identify activities. And then in the sleep arena, as you said it had things like deep sleep, REM sleep, light sleep and activity but everybody I know who has one said, ‘yes, they always tell me I’m sleeping when I’m sitting at the opera,’ which is probably true but that’s not relevant.

I don’t really want it showing that I’m sleeping at the opera. Or I’m watching TV or I’m sitting down to dinner. It was trying to do automatic sleep categorization. We’re running into really tough to build hardware and software that does auto-sensing and auto-identification of activity, whether that’s sleep or running or cycling or anything else.

You tease apart all of these issues, what it really comes down to is, as a vendor these guys have to get together and say, ‘well who really is our user and what level are they at? What use case are they using it for? Are they a triathlete and if they’re a triathlete, are they a one, two, three, four, or five?’

In my view, I know triathletes who don’t use watches. They literally just have a Timex. They don’t care about anything else. They don’t use complex sport watches. I would call them almost a QS-1, a quantified self-level one, but serious competitive triathlete.

You really have to get this intersection of who is the user. How much data do they want? Are we giving them enough data and is it accurate data? There’s this really complex landscape out there, which you and I talked about. This is why people are so confused right now.

[Damien Blenkinsopp]: Your charts are amazing. It’s amazing how many devices are there, already. And there is obviously a lot of money going into this space. What I guess is interesting is if you take the Basis as an example, again and I guess the Apple iWatch which is coming out.

Applications like that are trying to give people at home a very generic tracker, which is going to have a broad spectrum of things it’s tracking. But it sounds like you’re saying that just because the hardware isn’t there yet in terms of actually getting data from us, that the software can’t handle figuring out what we’re up to.

If you’re trying to track everything like are you asleep, are you moving, what are you up to, all of these kinds of things, yet the hardware isn’t accurate enough to be able to take that data and use some software to interpret it.

But if, like you said, we focus on a narrow use case, where the conditions we understand a lot more closely because it’s just one area of use rather than trying to track someone’s whole life. And that’s working and you can see that it’s possible that we can get there this time even though the hardware is not quite there yet. Is that kind of your viewpoint?

[Troy Angrignon]: Yes. I think it’s a reasonable summary, especially when we started with things like 3D accelerometers. They really don’t do much. They just give you rotation and space and G-Force, and that sort of stuff.

It’s pretty hard to extract really clean signal out of that and figure out what the heck is really going on. Is this person running or jogging or doing cycling. That was a big issue. There just wasn’t enough data or the sensors were even terrible and there weren’t enough of them.

Then we started to do things like, a great example I think that I was quite impressed by, is Fitbit Surge, their new heart rate based one. It has GPS for location, it has optical heart rate on the back, so it’s shining right into the skin, in the tissue just above the wrist and reading your heart rate which is pretty challenging to do.

They have the 3D accelerometer and they can use all of that combined so the GPS will be shut down. It will say, you’re not moving or it will actually just be shut off. It will say heart beat is low and there is no motion in the body and it’s late at night.

So it’s starting to get easier and easier for them to identify that you’re going to sleep and to pick that pattern out, or to just show that you’re active. I can see you’re active. Your arm is moving, your body is pumped up and I’ve got a lot of very heavy heart rate, sustain heavy heart rate. You’re probably doing something.

Now they don’t try to self-identify, which I think was the right move. You can mark it and tell it that you’re doing yoga or doing a workout. I think it’s all trending in the right direction.

[Damien Blenkinsopp]: So if you were would like to point out on the landscape right now what manufacturers are doing right and what needs work, in specific areas, where is your pet peeves and where are the areas where it’s doing a really good job?

[Troy Angrignon]: I think my biggest pet peeve across the board is just not understanding your customer. It goes back to what I said a few minutes ago. Know who your customer is. Know how they live and what the use cases are that they are going to put the tool through.

That really helps the vendor narrow down to what features does it have to have, how rugged does it have to be, how much battery life does it have to have. I have not been traditionally a fan of Fitbit. I know they are the 800 lb. gorilla here in North America. I think they had 67% of the market share in 2013 and I’m not sure that’s a ’14 number, but they have a broad spectrum of product.

[Damien Blenkinsopp]: So which devices do you see as being the most effective, the best buys right now, doing a really great job for users?

[Troy Angrignon]: Again, it depends on who you are, but I think there are some ones that are standing out. Moving left to right again and from ones to fives, lower left to upper right if you keep that chart pictured in your head that we talked about earlier.

The folks that want to just get a little more active than they were or they’re lucky to move a little more, track a little more and ones and twos in terms of tracking and they’re not really hard on their toys. Any of the new Fitbits (they’ve launched a whole new line) I think are doing a pretty good job.

They’re number one for a reason. I think what’s going to be interesting in that space is Jawbone. Jawbone I lost and or broke and destroyed a bunch of them and they were very good in Customer Service and kept sending me new ones.

I like their apps. They’ve got a good partner network. They’ve got a new one coming out; the Up 3 and they’re actually integrating some of the technology they bought from Body Media and I know that people who have Body Media’s, you can’t pry them off of their cold dead bodies.

It’s pretty interesting. They are rabidly loyal fans. That was the big one you strap on your arm basically. A lot of people are really attached to that and so they’ve taken some of that technology, like the bio impedance sensors and things and put it into the new Jawbone Up 3. I haven’t tested it but I have a pretty strong belief that they’re going to do a pretty good job at that low end of the activity tracker section. It will be interesting to see and that should be out March or April.

[Damien Blenkinsopp]: With those two devices, what kind of things do you think people could reasonably do? What kind of functionality are people thinking they just want to know they are doing more? How far do you think they can push those devices and get useful decision making out of them, using them to maximize something?

[Troy Angrignon]: You really can’t do a ton. They do basic activity tracking. They basically show you how active are you; you’re active parts of your day. They’ll give you calorie data and it’s totally inaccurate, so I wouldn’t use that. I would use the steps as just an indicator like you and I talked about. Am I doing more or am I doing less? That’s really what you want to look for, just for trend data day to day.

The Fitbit has sleep tracking. The low end of their stuff you still have to push a button or mark it. I think that’s a non-starter. That’s not sustainable because people forget. As you move up into their new ones like their Charge HR, which stands for heart rate and a Surge HR which has a screen and also does heart rate, you’re getting into more into the fitness tracker space.

Now you can track your day to day activities, see trending patterns. You can actually auto-sense your sleep or it will auto-sense your sleep. It’ doesn’t give you very deep sleep data. It just shows you are you restless or are you awake or are you asleep. It’s really three states essentially

If you’re really a nerd like you or I and you want to see deep sleep and light sleep and all that, it really doesn’t do that. Jawbone actually has always done that, although they’ve only done it through the 3D accelerometers. I’ve never really trusted that data.

With the inclusion of the new stuff, the new technology they bought from Body Media, I suspect they’re going to start to be able to pick up because they can sample the heart rate through the night and do things like figure out your morning resting heart rate which is a nice thing to know.

So I think that’s going to be an interesting entry in the higher end of that low end, if that makes sense, the activity trackers. And then as you get into the middle range, I’d say fitness folks who are doing a couple of sports, maybe they dance or running or the odd bit of cycling, but nothing ongoing, then the Fitbit Surge HR.

I sound like a Fitbit rep which is funny because I’ve never been a big fan. But I think they’re doing a good job and you can mark different sports. It’s pretty good actually. The accuracy is even surprisingly high when I cross reference it to some of the higher end tools I use.

Really to me, it’s kind of one of the only successful ones in that middle of the road fitness tracker space; Garmin is releasing something called a Vivoactive which will be squarely in that spot. It’s for running and cycling and swimming but this is a key point- not for triathlon because that’s a whole other use case where you need to connect those sports together in a block, like a swim and a transition and a bike and a transition and a run.

That’s a multi-sport thing which really you find at the high end. So I would say in the fitness tracker stuff in the middle, you’re looking at the Fitbit Surge HR, maybe the Garmin Vivoactive. I have not tested it. I’ve seen it and I’ve used it and I find the touch screen a bit finicky.

Maybe the Garmin FR620, which is their running watch, is pretty nice in that space; clear, bright screen, auto-upload on WI-FI and Bluetooth. So literally you do your run and then that’s it. It just synchronizes and it sends the data up which I think for these things to be sustainable, all of this stuff has to happen automatically.

You and I talked a lot about that. It’s like how much overhead can we take away. We shouldn’t be saying to the user, ‘you need to mark sleep, you need to do this, you need to do that.’ We’ve got enough on our plates. They don’t want to adopt a baby. It’s not a Tamagotchi watch.

I think that the watch can do, the better. And then at the high end, definitely these days I would really lean to the Garmin lineup. They release three new ones at CES, the Consumer Electronic Show, which I was quite impressed with because I think they’ve done a very good job of understanding the use case.

They’ve got a 920XT for the triathletes and multi-sport folks, a Phoenix which is that plus the backcountry stuff and then their Epix, which is all of that plus a great big screen with high-resolution color and apps on it.

I think the Fenix and the 920 are the winners out there because they’ve got the same thing; auto-upload on WI-FI and Bluetooth. And to me the big deal is data. Is it automatic, is it easy to use, is it automatic, does the data go somewhere and can you get the data to other places. Does that make sense?

[Damien Blenkinsopp]: Yes, absolutely. There are different platforms, like the Basis is a closed one, or not?

[Troy Angrignon]: It’s an island and so is Suunto. They’re off in space, Timex is the same thing. And anybody who’s an island, it doesn’t make any sense anymore because people have something like, I’m making this number up, but crazy numbers of 20 or 30 fitness apps on their phone and they want all that stuff to connect.

[Damien Blenkinsopp]: And it’s also a trust factor I think. Because with the Basis you can’t extract the information so where do these numbers come from. So I think there’s also that angle when you’re talking about people who are getting more involved in it.

They can’t take the data off of it. They’re wondering what the data is inside of it and how it’s calculated and things like that. I know that’s been a big frustration with Basis users. Another interesting model is the Muse, like the Muse Calm, they had that EEG device where basically you have an open API and they’re bringing this hardware to market and anyone can connect to it, develop aps on it, although no one seems to be doing that yet, so I’m wondering how that’s going to go.

[Troy Angrignon]: I talked to Muse and have not used the Muse. The Emotive is another one. And any of these EEG things essentially they are saying it’s something you put on your head. It’s this thing that looks like it’s from the future. It has all these touch points on your skull and it picks up your brain waves or brain wave patterns.

I think the big question I always have is, to do what. What’s the application and so I understand you have the hardware and I understand you have some kind of open API application programming interface, some way for me to get the data out, but ultimately what am I doing with it.

I tested another one. I picked up one from Dave Asprey’s Bullet Proof site which was a brain trainer, focus trainer which is ostensibly teaches you to move more blood flow in the pre-frontal cortex. I have it and I could actually do it. It’s actually pretty cool because you can put this little film on and you can fly over the mountains and you can actually control it with your brain, which is really cool for about ten minutes.

[Damien Blenkinsopp]: But it was, I was at this bullet proof live conference so I did it there and it’s a lot of fun but it’s a nice fast game. It’s not integrating with your life I guess. It’s something like meditation that you have to take time out for.

[Troy Angrignon]: which I’m a huge fan of. I think meditation, I do it every if not every day, every second day. I know a lot of people, especially athletes who are really, really find that critical piece of their training. But I don’t think that these tools are necessarily getting you there.

I think they’re kind of early attempts to say, ‘look at the pattern in your brain’ and you’re like, ‘great, what do I do with it’. I don’t know what to do with that information.

[Damien Blenkinsopp]: My personal experience from the Muse so far, I’m meditating every day and I’m using that. I’m playing around with different things and different types of meditation, for instance.

Dan [unclear 0:32:45:5] and so on, and I have managed to shift it. Basically you have an index . You don’t exactly know what that is so that’s a bit worrying to me because it’s their index that they’ve given you.

[Troy Angrignon]: Again, it’s another made up number

[Damien Blenkinsopp]: Rather than some standard that you can rely on more easily. So I think that’s another concern I have about a lot of these devices. Some of the manufacturers come up with an index which is 1 to 100.

It’s not based on any standard and you’re left wondering, I hope it’s doing what I want to because otherwise I’m spending of time meditating and hoping that I’m getting better but I might actually be getting worse.

I definitely want to dig more into what that data means and how it’s calculated. Now I’ve spent enough time on ‘I have to get around to looking at this’. So I think people have that concern at this stage too. And it’s kind of this transparency thing again. If you can just pull the data off and you can see exactly what it is then it would give you that comfort factor.

[Troy Angrignon]: Well, let’s step through that though, back to the beginning of the conversation. A level one person, in this case a quantified self, level one person, they only want that number because they don’t really know and don’t want to know the complexity underneath the numbers.

So I understand why the manufacturers do that, to look at the slave tools. They’ll give you a score. Your sleep score was 85%. Now Jawbone’s sleep score is not the same as Sleep Rates sleep score, or Sleepio’s sleep score. Those are all different sleep scores. And they have different algorithms underneath.

Some are transparent, some are not. But ultimately the user just wants to know, ‘hey it was 85 yesterday, its 90 today’. I’m trending up and that’s a good thing. And they’re good, that’s fine as long as that’s all they want then they’re already ok.

But I think you and I, we’re not ones. You’re definitely not a one. You’re a five.

[Damien Blenkinsopp]: Hey, you’re a five too.

[Troy Angrignon]: I’m a five, you’re a five.

[Damien Blenkinsopp]: Don’t stop for any fives around.

[Troy Angrignon]: So, we’re not that user and I think we need to be cognizant that a one doesn’t want the level of data that you and I want. And that’s ok because they’re just in a different place. And it doesn’t mean also that we’re a badass athlete and they’re not.

You can find world class athletes who are ones. Who are like just give me my Timex watch, I don’t want to know anything else. So I think that those are two separate dimensions. So to get to your point, yes, a lot of people are doing these roll up scores.
In my mind that’s a thing you deliver to the users who are ones and then if you’re delivering product to be also available to the twos, the quantified self, level twos, then you say, ‘hey, here’s your sleep score. It’s 85%.’ Underneath that means is, you were in bed eight hours but only six and a half of that you were sleeping and an hour and a half of that you were tossing and turning.

That’s kind of a level two analysis. And a level three analysis would be; well actually you had deep sleep, light sleep, here are the different phases. Here’s how many times you were interrupted and maybe here’s a recording of you snoring. Sleep rate does that, which is a little bit creepy.

And a level four would be that plus all of that is trusted, absolutely, clinically verified. And then a five would be the raw sensitive data. Put me in a lab and hook me up to 50 machines, which I’m sure you do.

[Damien Blenkinsopp]: I’m tempted. I haven’t done it as much as I’ve wanted to yet. I bet you’ve been doing it for a long time.

[Troy Angrignon]: No, I do actually show up to something with three or four devices on me. I was at a heart zone training session in this last week and I showed up with all of these devices on my arms and everyone was like, ‘why do you have so many watches’.

[Damien]: Because I don’t trust anyone of these.

[Troy Angrignon]: I’m cross referencing them all.

[Damien Blenkinsopp]: Which one do I trust today. Just out of interest, you were talking about labs, you’ve done VO2 Max or any of these kinds of measures. I know you can go to fitness labs and do those kinds of things.

[Troy Angrignon]: No surprise. I love to do more of that lab type testing. In fact, I’m actually doing one this week with a start-up that’s in stealth mode around heart zone training and threshold analysis. I would love to do more of that.

Most of mine has been with these consumer grade tools. Really just looking to see which one is the most accurate of the bunch because I am not at the level with my own training and with my own coaches where I need to be within, for heart rate threshold analysis, I don’t need to be within one beat. It’s not material useful for my training.

[Damien Blenkinsopp]: For most of my stuff I’m there. I’d say like the most critical thing I have is sleep. And I’d really love to know exactly how many hours I’m sleeping. And it’s more, for me its accountability. It’s just like if I get a little alarm and it’s like you only slept five hours the last few days, then I’m going to act on it. That’s the big thing and that will change my life, just that little thing there.

[Troy Angrignon]: I think it would change everybody’s life. I fell into this rabbit hole. You and I both came to this from having health issues. I was having sleep issues. That was my big thing at the time. I’m sure a lot of your listeners know your back story.

So I came into it from the sleep angle of going, ‘man, I’m not sleeping,’ and I’d like to prove that. I learned a lot from the bio hacking community and the bullet proof executive and Ben Greenfield and all of these guys.

And I was like, ‘ok, I need to make the room black and I need to go to bed early and turn off my screens at night’. All the stuff that we now know is good sleep discipline. There is another word.

[Damien Blenkinsopp]: Sleep discipline is a good word because all of things take a little bit of effort to do them, that’s all. Once you’ve got a routine and you’re doing them, then it’s great.

[Troy Angrignon]: Right, and so coming into it I think that everybody kind of vectors in on these things like what is your one thing that you’re working on. Actually, that’s a good thing to talk about here which is, what is your one thing? What’s the one thing you want to change the most?

Do you want to increase your time or do a race and just finish or do a race and be top ten? Or just sleep better? And that helps you pick the universe of possibilities of things you might use as a tracker, maybe you just pick the one thing that will help you get to that step and don’t try and boil the ocean.

[Damien Blenkinsopp]: So you’re saying don’t just try to attempt to track everything? When I got the Basis I wanted to have it all. I’m not picking on Basis here, it’s just that when I happened to jump on to it a couple of years back so I had the most experience of it. And it didn’t do that and the Jawbone or the Fitbit didn’t do it at the time. So what you’re saying is decide that one thing and that’s going to decide what device you get and you’re going to get that value out of it, if that’s the most important thing to you, whatever you want to change.

[Troy Angrignon]: Right. And I think that that’s a really good object lesson for all of us. I’ve been through all of these things so I ultimately I always come back and think about it. Now that I’ve tested it and I can talk to other people about it, that’s fine. But for me, what am I working on next and therefore what is the right tool for me, today or this week?

[Damien Blenkinsopp]: Well cool, let’s talk about some quick case scenarios then and the market and where it is today. What would you do? Let’s start with sleeping. If we’re just trying to improve our sleep or get some accountability behind it, which device would you choose right now, and you think it would do the job? Would you think it would do the job?

[Troy Angrignon]: Yes. So I wouldn’t even get a device. Actually I would just listen to Ben Greenfield’s podcast that he did, a long presentation, a bunch of Q&A that he did at Sealfit Unbeatable Mind, I think you and I talked about Sealfit. He was down there for a conference. He’s published the podcast and it’s an excellent podcast. I highly recommend it.

[Damien Blenkinsopp]: Cool, is this on sleep or is it Q&A?

[Troy Angrignon]: Well inside there he has this whole how to bio hack your whole life. He goes through 4000 things you can do and so many at the end rightfully said. ‘Look dude, my brain exploded. Where do I start?’ And he came to the same thing. He was like, ‘pick one thing. Pick one area that you would like to improve, one metric in that area and look for the right tool.’

To go back to your question, the right first device to fix your sleep is not a device. It’s reading up on the basics of sleep, understanding what good sleep discipline is, doing things like blacking out your room. Maybe the first device is a big hairy blanket you hang from your window. That’s probably the best device. The cheapest thing that you can buy that’s going to have the biggest impact.

[Damien Blenkinsopp]: You’re laughing about that but that’s exactly how I started. I just got a big furry blanket and I’m guessing you did too. I had come to visit my parents and I all of a sudden read this stuff. This is years ago and I grabbed a blanket and put it up and they were like, ‘what the hell are you doing?’ And they really didn’t like it because it’s just not done, I guess.

[Troy Angrignon]: Somewhere I read was like, ‘tinfoil doesn’t pass any light through’, so I completely tin foiled my window and the very next day the building manager came up and said, ‘you need to take that down, you look like a crazy person.’

[Damien Blenkinsopp]: Some of these things, if you go this route, is a pain to take down. Otherwise you just leave it up. You’re like, ‘well I’m not in that room during the day anyway.’ But other people aren’t so [unclear 0:41:56:3]

[Troy Angrignon]: Exactly. I think there’s a lot of work and we don’t need to go down that. This is more about devices. There are a lot of things you can do. I would say black out the room, put things like ‘F LUX F. LUX’ on your computer at night. It dims the screen. There’s a lot of stuff about not having blue light at night. This is all well documented at Ben Greenfield or Dave Aspreys Bulletproof podcast.

[Damien Blenkinsopp]: Well the one thing I have done, because I didn’t trust the Basis data, was I have this little tiny app which tracks all manor of things. It’s just like a little tracker app. It’s called Lumen Trails. There are probably plenty of others like that, but for some reason three years ago when I started tracking a lot of stuff, that was the one out there.

And it just allows you to put data in and it just allows me to press a button which says I’m going to sleep and then when I wake up, press it again and now I’m awake and then I know how long I slept. That’s really the most reliable measure I had and I’ve got huge chunks of data like months where I was doing that.

And I found that useful although it’s not automatic, it’s a pain. But at least it gave me some kind of register. Because I found out I really don’t know sometimes what time I, especially if was tired if I went to sleep, I won’t really remember at what time I went to sleep and what time I’m waking up unless I’ve actually gotten it written down somewhere.

[Troy Angrignon]: And I think you just nailed it. You’re a very quantified guy and it was still a pain and we need to get away from that stuff. This whole thing of you have to click a button, it doesn’t matter how small that motion is, we have too much going on to make the users do that.

I’m coming back to being a PR dude for Fitbit here, but I think the Charge HR does this as well but I know that the Fitbit Surge HR does this. It just automatically figures it out and unlike Basis, which would say I slept five blocks of 30 minutes, which is just insane.

The Fitbit Surge actually does a really good job of saying, you went to bed now and you got up then and it was eight hours and you were actually asleep for six and a half. It doesn’t give you any depth below that, so it’s kind of a quantified self, level two answer.

Eight hours with six and a half with real sleep inside there and there are no phases or anything else, but it’s automatic. I don’t have to think about it. I’m quite willing to make that trade off because I could get more data but then I would have to think about it and I don’t want to think about it. I have enough tools in my life.

[Damien Blenkinsopp]: And for 99% of people, that data is going to be actionable. That’s going to tell them what they need to know.

[Troy Angrignon]: Absolutely. Because you can look at it and see, ‘oh well, gee, I got four hours, four hours, four hours, four hours. And it actually displays your actual sleep time. So it’s been showing me things like three and a half hours. I’ll be in bed for five or six and it will say three and a half. What do you mean three and a half?!

It’s showing the actual time that I’m not moving and I’m really dead to the world. I have to laugh about that. I think finding a basic device like that is good, but something that’s automatic I think is also helpful.

If you have real sleep issues, sleep is a really critical issue and we are all as a population lacking in good quality sleep, I think this is worth investing time and energy and focus on, because it improves everything. There’s hormonal issues and weight loss and moods, just a million things. In my book it’s foundational so I think it’s the place everybody should start.

[Damien Blenkinsopp]: Sleep and meditation I think, are the two things that I want to get done every day. We are always thinking about these huge lists of task, but I’ve really tried to start putting these two things at the top. So if I don’t do anything else at least I’ve slept and I did my meditation.

[Troy Angrignon]: Yes, if more people would prioritize that. Down at Sealfit Unbeatable Mind there’s a really great fellow there, Dr. Kirk Parsley. He is a Sleep Clinician for Navy Seals and he said, ‘my biggest challenge is, a) they don’t sleep that much because they’re training all the time and b) I have a hard time in getting their heads around the fact that sleep is fundamental and foundational to everything they do. And that lesson is not just for them. That’s for all of us.

[Damien Blenkinsopp]: So you fixed your sleep. What did you find that the main things were that you’re doing and that worked for you just since that’s something that you worked on a lot?

[Troy Angrignon]: The big things were I had to make changes at work. I had a very great team that I was working with at the time and I said, ‘look these are all the things going on and we need to shift some stuff.’ There were work changes, darkening the room, putting timers on my phone that would alert me to say it’s 9 o’clock and start winding down.

One of the big things that I did, which has made a huge material difference, is as soon the Phillips Hue light
ing came out where you could change all the bulbs and control them from your phone. I put timers on them. Back to the whole ‘don’t have blue light at night thing’, I put timers on them and I basically set the entire house and the whole thing dims from normal lightening and deep submarine red lightening.

It feels like I’m in the Hunt for Red October movie. Feels like I’m in a submarine. But the whole house dims to basically 10% deep red by 9 o’clock. So really it’s fantastic and it sends this signal.

[Damien Blenkinsopp]: I bought some Amazon lights and I was doing that myself at one point but depending on my location it hasn’t been convenient. But have it set up at your homeand automatic, that’s really amazing. If it’s done automatically it’s going to happen.

[Troy Angrignon]: For a while I was doing it manually. I would turn certain lights off or I would do various things. Again, back to the overhead, I don’t want to think about this. I have enough going on in my life. We all do.

[Damien Blenkinsopp]: Well right because you say you were re-organizing your work. I would just be interested to know, you’re basically talking about stress loads here. For me I’ve been subscribing to the fact that if you have too many things in your head, we’re talking about adding things in terms of I’ve got to track this, I’ve got to track that.

That’s not going to be an easy way forward for us because it’s just too much. We already have too many items based in our heads. I don’t know if you did this for your work, but for my work I’ve been hiring a lot more people and systematizing a lot of stuff and basically knocking things off my table.

So just, even if I’m still working the 40, 50, 60 hours, at least I’m only working on four things. And I find that helps tremendously with sleep and just general stress levels. I don’t know if you’ve seen something similar.

[Troy Angrignon]: It does. I think you’ve nailed it and I think that this is all very self-reinforcing and everything is connected to everything. So your sleep supports your work and your work impacts your sleep. And this we could talk for days on this subject. So I think there are basic things that I did.

[Damien Blenkinsopp]: So it’s hard to actually see the quantitative impact in your sleep I guess. I don’t know if you were able to see that. Well you just feel better. You were able to see more hours slept or were there anything that you were able to see that and changed?

[Troy Angrignon]: No, absolutely. I went from two hours to near panic attack sleep to eight, nine hours of solid sleep and it took probably a year to make that change.

[Damien Blenkinsopp]: That’s something I didn’t have as serious as you. I was waking up at 4 o’clock in the morning and I there was nothing I could do about it. I would go to bed at 12 and I would wake up at 4 every day. I’d start working in the dark.

Luckily, I lived in Mexico at the time so I was looking out at the light, the sunrise on the beach and it was amazing. But my girlfriend wasn’t a huge fan of me waking her up at 4 o’clock in the morning when I left. So for me gradually the hours increased.

I think this is kind of funny; I was tracking it for a long time then I stopped tracking and I knew it was fixed because I wasn’t concerned about it anymore because now I’m sleeping seven or eight or nine hours consistently and it doesn’t feel like a problem for me anymore and so I haven’t tracked it for maybe six months.

[Troy Angrignon]: And that’s a really good point. You had an issue amongst all the other issues that you were working on and then when you got to a point where this isn’t really a problem anymore. I don’t need the extra overhead and headache of waking up, finding my phone, clicking this button, doing these things, tracking these numbers. You don’t care at that point. You’re not working on it anymore.

And that’s why it’s kind of like peeling the onion. Pick the one biggest thing, the one biggest boulder and pick one thing that you can do about it and start there.
[Damien Blenkinsopp]: And it’s not necessarily going to be the same thing that you’re going to be doing for the next year. Maybe you’ll work on it for three months, you’ll fix it and then you will say, what’s next. Hopefully you don’t have to buy a new device, depending on your budget.

Let’s talk quickly about budget, actually. I’m guessing the Garmin’s are some of the more expensive ones. I haven’t looked at the prices myself, but what do you think of the pricing at the moment? For the things I’m buying it’s relatively accessible, I think. They’re around $100 or $150, tops.

[Troy Angrignon]: There’s such a huge range. Before we jump to there, I’ll come right back. But before we leave the sleep subject, just so we can wrap up on the devices. There are a lot of devices ultimately after you get through figuring out what you want to do and fix, there are a bunch of devices as you know that will help you track sleep.

It could be as simple as a sleep cycle on your phone. I’m not a fan of that unless you put your phone on the Airplane Mode because you’ve got this EMF blasting a hundred meters of Wi-Fi right beside you.

[Damien Blenkinsopp]: Did you trust the data on that, because I used it for a little bit.

[Troy Angrignon]: No I didn’t really think the data was any good because it’s too hard to pick it up from the accelerometer on the phone and it’s sitting there beside you. It seems like a bit of a dorky way to do it. But again, if it’s better than it was yesterday, it’s consistently probably inaccurate, back to our beginning conversation.

[Damien Blenkinsopp]: I think that app is a couple of dollars, or is it free?

[Troy Angrignon]: Exactly, it’s a cheap way to get your toes in the water. And then going up a step from there, you could look at some of these low end, Fitbit or equivalent things that kind of clip on. Withings had one which was really dorky.

You’d have to find the sleeve and stick this thing in the sleeve and put the sleeve on and the sleeve would fall off. It was ridiculous. It was unsustainable. So I think anything that’s just really easy that you can put on and hopefully have to push one button and hopefully you don’t even have to push that button in the morning.

That’s a better case. The best case is you’re always wearing it and it just automatically knows you’ve gone to bed and it automatically knows you’ve gotten up. So, if and when you go to check the data, the data is already there and you didn’t think about it.

[Damien Blenkinsopp]: So after you looked at the Beddit and there’s a Phillips one as well. Or they’ve basically have got things placed on the mattress?

[Troy Angrignon]: The Beddit comes in multiple versions. The Beddit V1 came in two versions- consumer and pro, it was Bluetooth legacy, so it was a huge headache. So the process, very briefly was, go find your phone, turn on the phone, open it up, open the app, connect to the sensor, sit there and wait for it to connect to the sensor. Eventually it would connect and you would select the sensor.

Then you would open the app and you would go through these questions. I wanted to throw my phone out the window I was so stressed trying to go to bed every night. And I hated it and everybody I know who used it, stopped using it.

And Dave Asprey was always saying, ‘oh, I love my Beddit.’ And I couldn’t figure out why so I went and talked to Lasse Holstrum who is the founder and he said, ‘oh he’s got the pro version.’ Apparently they went to Bluetooth, BLE, Bluetooth Low Energy and cleaned that all up so it automatically connects to the sensor. So literally all you do is open the app, it auto-connects and you just say, ‘hey, I’m going to bed.’

[Damien Blenkinsopp]: So just to clarify, is that Bluetooth running all night?

[Troy Angrignon]: It is and that’s Bluetooth Low Energy and the transmitters are hanging off the edge of your bed, but there’s a great podcast that Ben Greenfield did about this one as well recently too. These things are not labeled or marked and for folks that really EMF wary, which I’m becoming more so these days, I’m not a huge fan of that frankly.

I haven’t used the Version 2, which is the one they did in partnership with Misfit. What I heard from the founder they were doing the right things for V2. Ultimately I tossed it in the box and got rid of it. I’ve tried the S-Plus by ResMed, which bought some of the IP from CO and it’s actually downstream from Phillips. I think it’s tied into Phillips Corp.

It’s this contact list that sits there at the edge of your bed and bounces these 10 G HZ signals off of your body and it uses echo location to try and figure out your chest respirations from your chest. I didn’t trust that data at all. They say the gut research data that says it’ as good as a 3D accelerometer, which is not saying much.

[Damien Blenkinsopp]: But what you said about it bouncing waves, so it’s bouncing waves of you all night?

[Troy Angrignon]: Yes. It’s basically just sitting there blasting EMF at you all night long, which seems like a bad idea.

[Damien Blenkinsopp]: That seems like a really bad [idea] especially for sleep. If you want to have good sleep, I’m not sure that’s the best idea.

[Troy Angrignon]: In my building I have 20 visible Wi-Fi access blasting out full-bore 100 meter, 2.4 G so I’m swamped in here anyway. So I wasn’t keen on it, sent that one back and then Withings go so slammed by people who hated their product that their CEO actually apologized for how terrible the product was so I don’t think there’s much there.

Then InFIT is one I saw at CES and it looks interesting. It’s a very heavy strip which sits underneath, not on top of top mattress but in between the top and the second mattress. It scans you through the bed. Again it’s doing some kind of signal through the bed.

This is a problem. Everything swarm you in EMF and pulls this data and broadcast from you and I think we’re going to be paying the price on that one at some point, but I’m not sure.

[Damien Blenkinsopp]: There don’t seem to be many manufacturers who are concerned about that though.

[Troy Angrignon]: They’re too busy in the hay day of wearables.

[Damien Blenkinsopp]: I guess we’re ahead of the curve thinking about EMF. Most people aren’t concerned about EMF. Most people you talk to don’t even realize there’s a problem. Although there’s some books which I appreciate like 4-Hour Body by Tim Ferriss.

He talks about the phone waves and keeping them away from your balls. But it’s little things like that. Ever since I read that, that’s a rule I’ve had. I’ve had my phones switched off for most of the time. We don’t know where it’s going.

That’s why there are all these devices out there and a lot of them have these and it’s the one thing that makes me resistant to play with all of the devices.

[Troy Angrignon]: Yes, because it’s an overload.

[Damien Blenkinsopp]: Yes. Maybe in ten years this is going to be something that I wish I hadn’t pursued so intensely.
[Troy Angrignon]: When you’re growing a third arm out of your forehead and you say how did that happen? I think to wrap this thing up on devices; there are a few different things that I would say, easy, lightweight, relatively inexpensive.

I would look at the Fitbits. It’s not deep data but its ok. I would look at the Jawbone Up24 or the Jawbone Up3, which is the new one coming out in month or two. And I think that those are reasonably good. I think the Jawbone actually does now and will have better sleep tracking with more data in it, if you’re more nerdy. That could be an interesting one.

That’s for now. Then actually I think the coolest thing I’ve seen in the sleep space and I’m actually using their program right now is a little thing called Sleepio., which is a sleep coaching tool. Sleepio.com and they’re in the UK.

And I can’t believe how well-done it is. Essentially you’ll get this little animated, British professor who walks you through the complexities of sleep and what your specific issues are. They’ve got incredibly deep, rich branching logic in behind this thing.

If you say my biggest goal is this and my biggest fear is that and my biggest issue is whatever, then that builds the curriculum from there and every week it pulls in your Fitbit or your Jawbone data and then it reviews it with you and says here’s what we learned. Here’s what we were working on. Here’s what you’re going to work on next week.

It walks you through it and ask you, ‘I will make a commitment to you that I will only give you advice based on these 30 years of scientific research and you need to commit that you will do your best to stick to this program because change is hard and changing sleep habits is hard.’ I thought that was a really interesting addition so it’s not a wearable device but it works with wearable devices.

[Damien Blenkinsopp]: That’s more intelligence side and definitely we need to see more of that. What do you think is going to happen over the next five or ten years because that seems like one of the endpoints where you have near artificial intelligence walking you through step by step and fixing your problems for you?

[Troy Angrignon]: I think that’s an early indicator of the direction that we’re going. The stuff that you and I have had to go through just to figure out a) figure out what we were asking and b) how to collect the data c) how to make sense of it or rationalize it or normalize it.

That was really hard for us because we started so early and d) what does it mean? When you look at it on charts and graphs, ‘well am I learning anything or not.’ How many thousands of hours have you spent looking at graphs thinking ‘I have no idea what that is.’

[Damien Blenkinsopp]: I have. You can Google a presentation of me showing people. It’s ridiculous.

[Troy Angrignon]: I actually had people call me on that. ‘That’s a pretty graph, what does it mean?’ It’s been a lot of work for us to figure that out and yet ultimately I have gotten to a point where I’ve been able to say, ‘I know what data means. I know what this is telling me. I know what these trends and patterns are. I can compare this to my goals and I can see I’m either moving towards or away from my goals.

That was a lot of work. That’s why I was so impressed with Sleepio, that they would come right out up front and say, ‘You’re not alone. A lot of people have these sleep problems. It’s also hard so get ready to dig in and do the work and we’re going to walk you through it.

It’s not artificial intelligence but it’s really well-done branching logic.

[Damien Blenkinsopp]: It’s pretty amazing it’s done that. As you said a lot of their hacks, hacks to fix sleep, hacks to improve different things. They’re just kind of still appearing and we’re just getting to the grips of the science and a lot of things.

This is why we have this show. We can focus on data or the data behind things so that we are acting and making decisions that are good versus we don’t know. It’s just opinion. We see a lot of opinion out there when it comes to fitness, health and all of these areas.

I think that’s part of the challenge with that. Before we can get there we need to accumulate a lot of data and people really need to know for sure that when you do this it equals this. But it sounds like they’ve got a really good job. Do you know where they got the actions, basically the things that they’re recommending from?

[Troy Angrignon]: No. I was going to dig into it and I thought actually that I would try a week or two and just walk through their process to see how that’s handled and I’m so impressed that now at this point I have to go back and dig into what their evidence is. What’s their ‘peer reviewing’ research.

[Damien Blenkinsopp]: Excellent. While I’m in London I might reach out to them Thanks for bringing it up.

[Troy Angrignon]: Actually I would definitely do it. They would be worth having on the show I think. And I think to answer your question, ‘where do we go?’ I had this really interesting conversation with a friend of mine, a colleague from my old industry which is Business Intelligence as well as some military intelligence analyst.

I said it seems like we’ve already seen this movie. We already know how to get from data to actionable intelligence, to smart guidance. To say given you’re trying to do ‘x’ the data says you should do ‘y’. And we already know what that data supply chain looks like.

Like how you get the data, clean the data, analyze the data, run it through some kind of mental model or framework and then that outputs this answer which says you should do ‘x’. Then you do ‘x’ and you run through the whole process again. And you say did that work or not. Where we are, we are just really immature.

We’re way back at step one where we’re collecting a huge pile of data and we’re providing some pretty charts and graphs. They’re not that useful and we’re providing a chart or graph, or five charts or graphs for one sensor.

What you really want is this nice, blended, normalized view of all of your data on one time base where you can just look at it and see, almost like those old biorhythm charts, if you remember those things. It’s like your mood is doing this and your sleep is doing that and you’re food intake is doing something else and your workload from your training is doing something else.

You can see the patterns and do eyeball correlation, like when I sleep really short my productivity really sucks the next day or my mood sucks the next day. We’re early in that process I think so we’re going to go through maturation.

I’m giving a talk on this IOT World, I think here in San Francisco soon. What I’m hoping is we can take those lessons from the other industries and instead of taking 30 years to get to the point where we can take data and turn it into actionable intelligence, maybe we can compress that to ten. I don’t know.

[Damien Blenkinsopp]: You’re absolutely right. It’s already being done so well. When I think about my corporate training, it was all analytics was being the big thing for a while. When I was in management consulting and strategy consulting, a big thing with that when you’re trying to roll it out was the KPI, the Key Performance Indicator.

It is one number which you’re trying to bundle a whole bunch of stuff into and then you had to balance the scorecards. You might have heard of those. Those are another nice way to look at data and make it more useful. So you’re right. It’s just about playing with all of these models that we already have. So much work and literally a decade has been spent on those things.

[Troy Angrignon]: I think we know that stuff. We just need to bring it across and import it from those other industries and hopefully we can do that and not take the same 30 years.

[Damien Blenkinsopp]: At some point. Where should someone look to learn more because you’ve got all of these great charts on your blog? So if someone wants to see the map of the whole wearables devices in 2015, those charts are awesome. Where do they go to get those?

[Troy Angrignon]: I don’t have a short URL for that. I’ll just give you the website and I’ll spell it out for everybody since it is a French complicated name. But its www.troyangrignon.com, that’s my full name, Troy Angrignon. There’s a Wearable section, Health and Fitness section, Market Map section and they are just different views into all of the different blog posts. I would say that’s probably the best place to go. Everything I write and all of my speaking that I do is always posted there as well.

[Damien Blenkinsopp]: We’ll put direct links to all of the charts and stuff and show notes as well as well so the people can find it.

[Troy Angrignon]: Oh yeah, that’s fine too, very good. That’s a great idea. Perfect.

[Damien Blenkinsopp]: I thought it was a French name.

[Troy Angrignon]: I can only swear in French.

[Damien Blenkinsopp]: Do you speak any French? So, besides yourself, are there other people you look to and you learn from in this whole wearable tech area, which are on top of it?

[Troy Angrignon]: Ray at DC Rainmaker. Anybody who has ever done any sports and used any sport device owes Ray a huge debt of gratitude. He has a site called dcrainmaker.com. You looked at my charts and we were laughing.

I said I felt like Russell Crow from Beautiful Minds sitting there in my garage connecting things with strings because everyone looks at this and asks is that in your brain? He’s even more extreme. He will do these reviews that are longer and better than any other review on the planet, but he will preface it by saying, ‘This is just a brief look. I will do my full review later.’

It just makes me laugh. And his real reviews are 30 pages deep of every screen and unboxing and it’s just insanely deep. So I have learned a ton from Ray. I owe him a huge debt of gratitude for getting me up to speed over the last couple of years. I would say he is the leader.

He knows so much about the industry. He gives great presentations at the ANT+ forum each year. You can often Google those and find those presentations. I get a kick out of them because he always starts with his first slide, ‘Why should you listen to me?’

And it says my site is now responsible for $900 million of purchasing decisions and he is not making it up. This isn’t even his day job. This is his side thing he does for fun. I would definitely point at him. The bio hacking stuff, you and I are already pretty big fans of folks like Ben Greenfield or Dave Asprey, lots of folks in there and their camp. Those are probably the biggest ones that I can think of.

[Damien Blenkinsopp]: Great. Thanks very much. Now for you; what are you focused on in terms of data metrics for your own life along routine basis? Maybe you’re doing a lot of projects at the moment but are there other things that you track on a routine basis and pay attention to?

[Troy Angrignon]: Aside from wearing four devices all of the time and cross referencing them, so the data I’m looking for is how good is the data. That’s a different thing. Personally, the things I track day to day are my sleep so I can go visit my little British Sleep Prof over at Sleepio and he can berate me for how little sleep I’m getting and my daily workouts. I throw a heart rate strap on and I put my Garmin 920xt on, which I love. I go do my workouts. I come back in and save it and it uploads and all of that stuff goes into Garmin.

[Damien Blenkinsopp]: Which actual markers do you look at? Do you scan them all or are there ones you pay attention to more? Do you look at HRV for instance?

[Troy Angrignon]: Yes. HRV, Heart rate variability, which we’re not going to go into here obviously, but it’s an indicator of how over-trained you are. I think my biggest ones are really sleep, activity level through my workouts and recovery level. The HRV and I use something called Rest Wise at Restwise.com.

I use Rest Wise, HRV, morning heart rate, muscle soreness and just my own intuition to assess how I am feeling. Am I over training? Do I need to back off or not? To me this has been a really big issue, which is ‘we can see the trees, we can’t see the forest’. Ultimately at the end of the day, I want to train as hard as I can; going up the curve towards some events I have planned.

But I also don’t want to over train and then incur risk of injury. I think we talked a lot about that in our one to one call. I think for me its sleep, recovery, nutrition, training load and stress load, which is an ambient awareness of it.

[Damien Blenkinsopp]: I guess with the sleep is what we were talking about. You just keep an eye on it and the number of hours you’ve slept.

[Troy Angrignon]: That’s a really interesting thing. I used to be very focused on deep and life and one of the pieces of education I got from Sleepio, is they’ve said, ‘we done this 30 years. We’ve realized that the phases inside don’t matter, which was a bit of a surprise to me, frankly.

What really matters is of the ‘x’ hours you spend in bed, what percentage of that time were you asleep. The phases inside that really aren’t material.’ Now I think that that’s a different case if you’re self-medicating yourself to sleep and you’re not getting the phases.

I’m just using Fitbit and Sleepio. It’s giving me a record and it’s giving me an efficiency score and that efficiency score is pretty low. It’s 65%. So I am spending 30-35% of my sleep rolling around.

[Damien Blenkinsopp]: I don’t remember my numbers. With the Basis mine were lower but I don’t know about these devices. That might be average for that device, right?

[Troy Angrignon]: It’s definitely nice having both the accelerometer and the heart rate in there to cross reference that data to get the slightly more accurate sleep analysis.

[Damien Blenkinsopp]: Thank you so much for your time today, Troy. Final Question; what would be your number one recommendation to someone who is trying to use some form of data to make their lives better, basically decisions on their body’s health performance and longevity?

[Troy Angrignon]: I think the number one is really just to know what you’re trying to do first. We talked about it in this call. What is the one thing that would make a real difference to you and what is the one goal you have set there? Is it your sleep or it doesn’t matter? Pick one.

Pick that one thing and do one thing in that arena and track one thing that’s material. That makes a difference. For sleep you want to just track number of hours and percent of time you’re in bed actually asleep. That’s huge. Have a goal and then track something that’s material that makes sense in relation to that goal.

I’ve seen too many people tracking way too much data that’s not material and that’s not useful and doesn’t lead to change. I had a conversation with somebody who literally tracked every meal for three years but didn’t lose a pound.

And they changed their diet and suddenly started shedding the weight because they got more information. For three weeks of not making a change, it should’ve been what I am doing isn’t working. I guess maybe that’s the second fall on point to make. Use the number and test the metric. If it’s not showing up try something new.

[Damien Blenkinsopp]: Absolutely. Keep it simple.

[Troy Angrignon]: And if the change you’re looking for is not happening, you’re probably not changing.

[Damien Blenkinsopp]: You have to give it a little bit of time, a week, two weeks, depending on what that is. And adjust for sure. Well Troy, thank you so much for your time. This has been a great discussion. We’ve pretty much looked at the whole landscape today. Thank you so much for your time.

[Troy Angrignon]: Damien, it’s been great.

Leave a Reply

Today we return to the topic of detoxification. A simple and universal lever everyone can use in the quest for better health, detoxification is a worthwhile endeavor whether you suffer from a chronic disease or are an athlete seeking to gain a performance edge. Previously on The Quantified Body, we looked specifically at toxicity issues surrounding mercury and lead and today we are going to look more broadly at other metal toxins and chemical toxins which are all around us in our everyday lives. We’re going to look at testing methods and discuss several case studies that reveal the types of impacts toxins can have on your health.

We covered Mercury and Lead detoxification in past episodes – you can see all ‘detoxification episodes’ here.

“Let me scream this from the rooftops. We all have a toxic burden. Period. We all do. We’ve all been exposed to toxins.”
– Kara Fitzgerald, ND

Today’s guest is Kara Fitzgerald. Dr. Fitzgerald received her doctorate of naturopathic medicine from National College of Naturopathic Medicine in Portland, Oregon. She is the lead author and editor of Case Studies in Integrative and Functional Medicine and contributing author to Laboratory Evaluations for Integrative and Functional Medicine and the Institute for Functional Medicine’s updated Textbook for Functional Medicine.

She is also on the faculty at the Institute for Functional Medicine. She previously held a position in nutritional biochemistry and laboratory science at Metametrix, one of the big functional medicine clinical testing laboratories, now merged with Genova. Currently she maintains a private practice in Connecticut.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Dr. Fitzgerald discusses her perspective on the distinction between integrative medicine and functional medicine (5:20).
  • Where detoxification currently falls within the spectrum of functional, conventional and integrative medicine and Dr. Fitzgerald’s basic approach to addressing toxic burden in patients (8:34).
  • Typical signs and symptoms of toxicity (11:30).
  • The connection between toxins, oxidative stress and toxicity symptoms (13:37).
  • How and why toxins accumulate in the body (15:20).
  • How lab results differ between a healthy person with acute toxic exposure and a chronically ill person with detoxing difficulties (16:20).
  • Genetic mutations that contribute to poor detoxing ability (18:39).
  • Dr. Fitzgerald discusses diet as the foundational work and the most important first step for any detoxification program (22:20).
  • Water filtration: charcoal vs. reverse osmosis (26:05).
  • Discussion of lead exposure and toxic metal detection (27:35).
  • Chelation challenge with oral DMSA, n-acetylcysteine or glycine (34:16).
  • Importance of establishing adequate nutrient status prior to beginning detoxification therapy (35:53).
  • Specific detoxifying nutrient minerals to focus on: selenium, magnesium, zinc, calcium, chromium, vanadium (38:10).
  • Preventing disease and optimizing athletic performance through nutrient testing (41:20).
  • Relative binding affinities of DMSA and other chelating agents (46:50).
  • Standardization of laboratory measurements: chelated vs. non-chelated ranges (49:20).
  • Testing for volatile organic compounds (VOCs), PCBs, pesticides and other chemical exposures (50:35).
  • How your  life history can reveal important clues to toxic exposures (53:40).
  • Weight loss as a detoxification strategy (57:35).
  • Kara Fitzgerald tracks the status of all of her nutrients, her toxin levels and mitochondrial function on a yearly basis to monitor and improve her health, longevity and performance.

Thank Kara Fitzgerald on Twitter for this interview.
Click Here to let her know you enjoyed the show!

Kara Fitzgerald

Tools & Tactics

Treatments

  • Charcoal Water Filters: Remove impurities without demineralizing water, as occurs with reverse osmosis type filters. Dr. Fitzgerald recommends Multipure Damien mentions that he uses Berkey Filters.
  • DMSA (Dimercaptosuccinic acid): An organic molecule that contains four sulphur groups – active sites that bind to toxins and remove them from the body. The presence of multiple binding sites makes DMSA a strong chelating agent by comparison to other compounds, such as n-acetylcysteine, that have fewer binding sites. DMSA can be ordered through a physician.
  • EDTA (Ethylenediaminetetraacetic acid): A strong chelating agent mentioned by Dr. Fitzgerald as being a good detoxifier for lead. Dr. Fitzgerald mentions that EDTA is most effective when administered intravenously, which can be done at a medical facility. EDTA is also available as an oral supplement.

Supplements

  • Selenium: A trace mineral important for production of antioxidant enzymes. Selenium also helps convert thyroid hormone to its active form. Found in small quantities in a wide range of plant foods as well as fish, shellfish and animals fed selenium-containing grains. Selenium has an affinity for mercury and is used in mercury detoxification protocol. Dr. Fitzgerald considers selenium to be one of the three most important detoxifying minerals and one she often uses as a standalone nutrient for detoxification.
  • Magnesium : A nutrient mineral found in green leafy vegetables, nuts, seeds and legumes. Important for bone health, energy production, nervous system function, blood sugar control and reducing inflammation. Dr. Fitzgerald considers magnesium to be one of the three most important detoxifying minerals and one she often uses as standalone nutrient for detoxification. Magnesium is discussed in greater detail in Episode 17 with Dr. Carolyn Dean.
  • Zinc: Dr. Fitzgerald considers zinc to be one of the three most important detoxifying minerals and one she often uses as a standalone nutrient for detoxification.
  • Calcium: Insufficient quantities in the diet can lead to toxic metals gaining entry into the body by attaching to transport proteins intended for calcium. Adequate calcium levels can outcompete toxic metals and prevent them from being absorbed. Dr. Fitzgerald mentions calcium as a second-tier detoxifying agent and discusses the importance of adequate dietary sources, with additional supplementation, as needed.
  • Chromium: Dr. Fitzgerald mentions chromium as a second-tier detoxifying agent.
  • Vanadium: Dr. Fitzgerald mentions vanadium as a second-tier detoxifying agent.
  • Molybdenum: Dr. Fitzgerald recommends molybdenum as a second-tier detoxifying agent best obtained through a multi-mineral supplement.
  • Greens Powder: Mentioned by Damien as a whole food source of essential minerals he has used for detoxification. There are many brands with varying levels of quality and breadth of foods combined, he uses a HealthForce brand one.
  • N-acetylcysteine: A precursor to glutathione, the body’s primary antioxidant enzyme. Dr. Fitzgerald uses n-acetylcysteine as an alternative metal chelating agent for individuals who are too sensitive to tolerate DMSA.
  • Glycine: An amino acid that also functions as a brain neurotransmitter. Dr. Fitzgerald mentions it as an alternative metal chelating agent for individuals who are too sensitive to tolerate DMSA.

Diet and Nutrition

  • Brassica vegetables: Mentioned by Dr. Fitzgerald as part of the detox protocol used to reduce PCB levels in one of her research colleagues who had been consuming large quantities of farm-raised salmon, which are known to contain high quantities of PCBs. Broccoli, kale, cabbage, collard greens and mustard greens are a few of the many brassica vegetables. All brassicas contain compounds known as sulfuraphanes and indoles that boost the body’s detoxifying abilities.

Tracking

Biomarkers

Note: The benchmark levels in ppb below are taken from the lab test Kara Fitzgerald recommends for testing whole blood metals at GDX.

  • Whole Blood Mercury – Toxic metal obtained through mercury amalgam dental fillings, fish consumption, vaccines and some older paints. Toxic to the nervous system, heart, lungs, kidneys and immune system. Dr. Fitzgerald references a case of mercury toxicity in a health-conscious patient who was eating an organic diet but had been consuming sea bass on a daily basis for some time. Levels should ideally be below 4.3 parts per billion (ppb) in whole blood.
  • Whole Blood Lead – Toxic metal obtained through exposure to lead based paints (prior to 1978), old plumbing (prior to 1930). Neurotoxin associated with poor brain development in children, memory loss, peripheral neuropathy (numbness and tingling in the extremities), fatigue, elevated blood pressure, kidney dysfunction. Accumulates in bone tissue. Levels should ideally be below 18 ppb in whole blood.
  • Whole Blood Cadmium – Toxic metal used in production of batteries, pigments and metal platings. Fish in areas where cadmium-containing products are manufactured contain high levels. Tobacco leaves accumulate high levels of cadmium from soil. Cadmium displaces calcium from bone tissue. Long-term exposure weakens bones and causes kidney and lung damage. Levels should ideally be below 0.60 ppb in whole blood.
  • Whole Blood Arsenic – Toxic metal found naturally in high quantities in drinking water in certain geographical locations including some areas of India and China. Mining activities, coal burning and the use of geothermal power increase exposure. Arsenic is also a component of some pesticides. Chronic arsenic toxicity causes peripheral neuropathy, weakness in the hands and feet, headache and confusion. Levels should ideally be below 5.1 ppb in whole blood.

Lab Tests, Devices and Apps

  • Whole Blood Metals: Fundamental screening tool for toxicity that Dr. Fitzgerald uses in her practice to measure current exposures to mercury, lead, cadmium and arsenic. The whole blood toxic metal test offered by Genova also evaluates aluminum. Genova’s laboratory reference ranges for toxic metals can be found here.
  • Lead Swabbing Kit: Use to swab household items such as ceramic dishes to determine the presence of lead.
  • Toxic metal chelation challenge: Measures total body burden of toxic metals. Person consumes a substance that chelates (binds) heavy metals, such as DMSA, and exports them through the urine.
  • Toxic Effects Core Profile: The broad spectrum chemical toxins screening panel that Kara recommends. Measures levels of a variety of industrial and agricultural chemical toxins in the blood and urine including PCB (Polychlorinated biphenyls), chlorinated pesticides and volatile solvents.

Other People, Books & Resources

People

  • Aubrey de Grey: biomedical gerontologist and Chief Science Officer of SENS Research Foundation a non-profit organization dedicated to combating the aging process. Mentioned by Damien in regards to his research showing how oxidative stress accelerates the aging process. Listen to Damien’s interview with Dr. de Grey here.

Organizations

Other

  • Doctor’s Data: The lab Dr. Fitzgerald mentioned in addition to Genova that offers a range of toxic element testing.

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp] : Kara, thank you so much for joining us on the podcast today.

[Dr. Kara Fitzgerald] : Well, thank you for having me. It’s great to be here and I’ve just enjoyed talking to you for the last ten minutes about all things toxicity. So I look forward to jumping in and talking to your audience.

[Damien Blenkinsopp] : Absolutely. Yea, I don’t know if it’s a passion of yours. It’s been a little bit of a passion of mine. Toxins and everything. I heard you on a detox summit and it was a great interview you did there. It was one of the better ones on toxicity. That’s why I reached out to you. It would be great to have a discussion with you about it. So, how did you first connect with the topic of toxicity? Where did it come around for you? Is it something you came across in your practice a lot? How did that whole interest start for you?

[Dr. Kara Fitzgerald] : That’s a good question, Damien. I did my post-doctorate training at Metametrixs Clinical Lab in Atlanta Georgia. Metametrixs was later, not too long ago, it was purchased by Genova. If you are familiar with Genova, they’re running Metametrixs suite of testing. Metametrixs, it was studying the toxins from a laboratory perspective; and also being part of the medical education team. Not only lecturing, but speaking. Doing consultations with doctors all of the time about the toxic burden. Incidentally, I was also in my clinical practice, and have been all along, so using it in practice. But, I came into the study of toxins from opposed to stuck in a lab.

[Damien Blenkinsopp] : Great, great. In your practice, is this something that you come across quite often? You’re in integrative medicine. I should just take a step back a little bit. We haven’t really talked about integrative medicine. We had Jeffery Bland talking about what functional medicine is. What is integrative medicine in comparison?

[Dr. Kara Fitzgerald] Another really good question. It’s always important to define terms. I imagine you could ask twenty of us who say that we’re integrative or functional and you’ll get little variations of definitions. So, integrative is sort of an over-arching definition that I think acknowledges the value in all forms of medicine. I am trained as a naturopathic physician. We do indeed prescribe medication when it’s indicated, but my core training is in taking a natural approach. As we used to say, removing the obstacles of cure. Working in foundational wellness and health and healing and nutrients and so forth. And then, if medications are indicated, you step in. Or if surgery is indicated, you step in. An integrative approach really quite simply; is acknowledging the value and when to use all of these systems of medicine that we have. A traditional or a conventional western approach, a traditional naturopathic approach. You can pull in paradata. You can pull in traditional Chinese medicine. As you are trained, and as it’s indicated with a given patient. That’s integrative medicine. Now, within that, is functional medicine. For me, functional medicine is a way for us to practice systems medicine. Most functional medicine practitioners would say that they’re integrative. That’s the larger picture. And then, you drill down into particular approaches. For me, functional medicine is a model of being able to practice systems. It’s a way of data capturing, of analyzing the patient that enables us to step back. Actually, Dr. Bland, Jeff Bland, has said “from telescope to microscopes”. You want to look at the being and their environment and then you want to drill down to the molecular level. That’s an incredibly careful and detailed history. To actually be able to capture that, you need a good structure. So, the institute of functional medicine has the matrix and this is a fabulous tool that you use in your chart note. The matrix for capturing systems medicine. Of course, actually; let me go over here and tack on to that what Jeff Bland said. Obviously, you are looking at the being and function and you’re correcting those imbalances. You’re correcting the dysfunction to restore wellness.

[Damien Blenkinsopp] : Basically, you come from two schools. The traditional medicine schools that we know is hospitals and so on, and you’ve also studied the functional medicine and some of our naturopathic and alternative sides as well. You just try to use whichever tool you think is relative to the situation. That sounds like the best of all worlds. Sounds like the best approach. I would say that’s really the kind of approach we like to get covered on here. Where it’s just taking whatever works and whatever context without any allegiance whatever to any. There’s a little bit of politics and fan stuff going on as always does go on in health. There’s all these different modalities which fit different situations. It sounds really like the best of all worlds. In terms of toxicity, when you’re addressing that, is it more on a functional medicine side? Or would you find a bit of a mix of everything?

[Dr. Kara Fitzgerald] :Addressing toxicity. What do you mean from a functional perspective?

[Damien Blenkinsopp] : What I’m just trying to understand how you approach the whole thing. For instance, when a patient walks into your practice, and you typically decide that there’s some element of toxicity involved in their problems. Where would that come from? Would that come from one discipline or is it like a bit from everywhere?

[Dr. Kara Fitzgerald] :Well, I would say that, conventional medicine. The conventional western model, doesn’t acknowledge the influence of toxins in the disease process. Sufficiently, yet. The data are completely irrefutable, so there’s some movement towards that. It would be as a functional medicine doctor. Baseline, anybody walking into my office has a toxic burden. That has been well established. Anyone coming in to my practice, I know, has a toxic burden. That toxins are influencing the course of disease that they’re presenting with. Most of the individuals that come to see me in my practice have something complex and chronic. I know that toxins are playing a part of that, but the question becomes, for me, as the clinician, in my analysis. My detailed analysis of the patient. Both history and lab, is to what extent are toxins influencing this person’s disease process. Therefore, in terms of our treatment, how immediately and how aggressively are we going to address them? Always a toxic burden, always influencing the course of disease. In fact, when you restore it. When you take a functional, sort of a systems approach, to treating somebody. You take care of their diet and you make sure their nutrients are appropriate. Those extremely fundamental steps are helping release the toxic burden. Toxins are always addressed in my practice. All of those foundational things are addressing the toxic load that we all have. But then, the second piece becomes, once we go in there and do that foundational assessment and treatment. Do we need to then, chelate… move into a more aggressive detox protocol? Do further laboratory evaluations and so forth. For all of the folks who come to see me, incidentally Damien, I do assess, as I talked about on the detox summit. Everybody, I look at whole blood metals and it’s a screening tool.

[Damien Blenkinsopp] : So you do that test with everyone who comes into your practice?

[Dr. Kara Fitzgerald] : Yea. I sure do. I’m always screening for stuff. You know that whole bloods are reflective of current exposure; going on in their life now. But it’s a screening tool. Then, we’ll go on and do further assessment as I deem appropriate from taking the history.

[Damien Blenkinsopp] : So, that’s kind of your baseline. Okay, great. You are saying basically this applies to people of chronic, complex conditions which you tend to treat. Would you say that there’s other people who should think of this also? I’m thinking how far should it go? Like if someone’s athletic performance isn’t as good. Or if their mental performance isn’t as good. Or if they’re just someone normally who’s a bit tired these days, but it’s not, they haven’t classified themselves as actually ill yet. Or, are not going to see doctors about it, but they just don’t feel in top form and are not doing so well in general. Are these the types of symptoms or are there specific symptoms that anyone who doesn’t feel like they’re in a chronic condition yet should look at? As a pointer that this may be something that they should look at.

[Dr. Kara Fitzgerald] : Yea. Absolutely. Let me underline it. Let me scream this from the rooftops. We all have a toxic burden. Period. We all do. We’ve all been exposed to toxin. We’ll have an influence in the course of our wellness. We want to consider them. Now, in my practice, most of the individuals who see me happen to have complex chronic disease. That’s just, that’s my training. That’s who I work with.

[Damien Blenkinsopp] : Right, right.

[Dr. Kara Fitzgerald] : Those individuals, absolutely have a toxic burden. We all do, and there are steps that we all need to take to ensure that we minimize our toxin exposures. As well as our body’s ability to detox. I would say an emphatic yes. To optimize athletic performance you would absolutely want to consider the toxic burden. Or to a little bit of brain fog. So, going back to your question to me. What are some typical signs and symptoms you might see? Certainly, fatigue. Actually, fatigue would be a piece of the puzzle. Brain fog is a pretty classic first type of sign. Allergic disease. When you look at the literature on the impact of toxins, you will see allergies screaming. A lot of the organo- toxins- BPAs, phthalates, parabens, etc., etc. A lot of those, the first reaction is some sort of allergic reaction. That’s because the body wants it out. You’re exposed to something toxic, you sneeze. Or you develop a rash. It’s this reactive response to some bad thing trying to come in.

[Damien Blenkinsopp] : You are saying. Would that be like rashes, would that be some tiredness responses to foods? Could it also be like sneezing, like hay fever kind of things?

[Dr. Kara Fitzgerald] : Yes. Yes, yes, yes, and yes. They’re broad, and generally speaking, they’re non-specific. Endocrine disruption is another potential reaction. Hypothyroidism, hormonal irregularities. Estrogen dominance and so forth. All of these things can be influenced by toxins. Really almost any symptom can have a toxic burden. This is because when you drill down to the molecular level. When you look at what toxins are actually doing in the body at the molecular level. One of the fundamental lesions is increased oxidized stress. You are causing that fundamental imbalance in the mitochondria. In tissue. Towards different tissue. They’re just doing this fundamental damage process. But, depending on the type of toxin, you can get some idea of symptoms. But, they’re still broad, Damien. I hope that I’m making sense.

[Damien Blenkinsopp] : Yea. It’s still an area we’re investigating and exploring. One of the ways I look at it, is like, these are basically molecules. The only reasons they’re toxins is because they are unnatural to our body. Our body’s made up of certain types of molecules and atoms. These come into the body and just because of the way chemistry is. Biochemistry is, they connect with, they disrupt, and they change in some cases, how things are working in our body. Because instead of selenium we have some other toxin which is binding to something in our body which it shouldn’t be. It’s kind of like distorting how our bodies are supposed to work. Therefore, they start to work in different ways. Which means we get some kind of symptoms we’re not used to. Which you’ve referred to many. Is that a fair way to explain it?

[Dr. Kara Fitzgerald] : I think that, yea, absolutely. That’s nice. That’s a really nice snapshot that’s easily digestible. Yes. What’s interesting, just leaping off of that, is the idea of polycarbonate biphenyls, or PCBs. Talking about an unnatural compound. Something that the body doesn’t recognize. Often times, we store these compounds in our fat. We want to get them out, and PCBs, certain metals and so forth; the body is smart enough to say I don’t know what this does. I’m getting it out of here. The safest place to dump it is in the fat. You’ll see it accumulate there. The half-life, the time these toxins can stay around in the body, it moves into the decades and decades. Because, our body isn’t equipped. We didn’t evolve with these exposures. They are synthetic, as you said. They’re man made. We sequester them, and they stick around, which is a drag. Which is unfortunate. Which is why we would like to minimize our exposure.

[Damien Blenkinsopp] : That’s great. I’d just be interested; have you tested yourself? Have you run these whole blood, for instance, screens on yourself? Or other people which are more normal and haven’t come into your practice at a chronic disease level? In comparison, how do they compare to the chronically ill? Are toxin levels lower, or how does it look in your profile versus someone else’s?

[Dr. Kara Fitzgerald] : That’s a great question. It depends on what we’re looking at. For instance, if you have a water soluble toxin that our body can get rid of. You might see periodic high levels in an individual. Say that you just purchased a carpet. That carpet is off gassing petroleum derivative molecules that your body can eliminate. You might measure some of those compounds and you’ll see a lot of them in your urine. Then, you step away from the carpet. Your body turns it over pretty quickly if you have good detoxification systems, and you will see them normalize. You can see that in a healthy individual. One of the signs of that, we all have these toxic burdens. In a healthy individual, they’re able to detox and remove and get on with their life. They might notice when they’re in the carpet off-gassing. When they’ve got a little bit of a runny nose. Or maybe a slight headache or a cough. Some of the signs. But then they get out, they deal, life goes on and they are no longer bothered. In the toxic person, yeah, you could absolutely see higher levels. In the person with the complex chronic condition. Part of this is that their body isn’t able to get rid of them so well. They just might have detoxing difficulties. Be it phase one, the first step in detox or phase two. For myriad of reasons, we can have challenge. Maybe we don’t have adequate nutrients to detox. Glutathione, I’m sure you’ve talked to your folks about it before, is really one of the major players in our ability to detox. We actually waste it. I shouldn’t say waste it. We don’t recycle glutathione when we use it to detox. In that complex chronic disease patient with a large accumulation of toxins, they may have spent the glutathione and they have not adequately replenished it yet. Glutathione comes from three different amino acids in the body. That’s how we are able to make it. But, if you’re chronically detoxing, or attempting to detox, you could run out of glutathione. One mole of glutathione detoxes one mole of toxin, be it mercury, or be it any number of different organic toxins. We also can have mutations in our ability to detox. We can have genetic mutations that might slow us down. Make us vulnerable to accumulation of certain toxins. We see that in complex chronic patients as well. In those cases, we make choose to look at those genetic mutations. When we find them, we really want to support those particular areas all the more aggressively. A lot of people have mutations in the glutathione s-transferase enzymes. The glutathione s-transferase enzymes are, as you can imagine, as the name implies. They’re major players in our ability to detox across the body. Not just in the liver, but in the skin,(and) in the kidneys, (and) in the gut, (and) in the brain. We can have mutation in these enzymes and therefore, when we see it in our patients. When we know they have a toxic burden. We need to get in there and really support it.

[Damien Blenkinsopp]: You’ve outlined many different ways in which our detox system may not be able to cope with the flood of toxins we are getting these days from many different synthetic sources. Carpets and heavy metals and so on. Is this something, I guess something I just want the audience to understand, is: Are issues with your detox system pretty rare? When we talk about mutations, sometimes, genetic mutations. It sounds like it could be something rare. One in a hundred, or one in a thousand? But my understanding is that a lot of these mutations today are relatively common. It’s a bit like the MTHFR, which is extremely common these days. There’s a lot of these mutations and just differences in our make-up which mean that maybe we’re not, we haven’t got a super powered detox system which is really working really, really efficiently in terms of chemical processes. It slows it down a bit, and then when you combine that with the fact that we have a lot of toxins around us today, it seems relatively common that they can crop up for some people. That this is hampering them in some way.

[Dr. Kara Fitzgerald] : Yea, yep you got it. You asked me about the incidents of mutations in our detox system. Are they common, you asked me? Yea, they sure are. We have somewhere in the order of four million single nucleotide polymorphisms. These mutations that you and I are taking about. These single base para switches, like MTHFR, is the most famous of those. We have somewhere in the order of four million. We have tons of them. Loads of them. Many of those aren’t significant. We have backup systems. There’s a lot of redundancy built into the body. We do have backup systems. So, a lot of those aren’t going to be particularly relevant to us and to disease process. But there are also many that are. So, yea, I would say that all of us, we have some mutations in our ability to detox. The question is, what hand of cards were we dealt? How big of a deal is that playing in our disease process? I do look at detox snips in a lot of my patients. It may not be the first thing I look at. It depends on what someone presents with. I do end up looking at them frequently. The glutathione s- transferase system. It’s huge. We have many of them. In different types and in different tissue locations. When you see one, it’s not the end of the world. Yes, we do want to support it, of course. But, it’s when you see multiple or when you see patterns. MTHFR is a big player in detox as well. Indirectly, but significantly. It’s going to help us make the glutathione that we need for the glutathione s-transferase. It’s a big, MTHFR is a fundamental player in methylation. We detox with methylation also. Everything is interconnected and a nice broad snapshot of what are the genetic issues, and how many and then go back to whether or not you think it’s playing a role in whatever the individual is presenting with. There’s a lot of angles we need to look at here, to guide us in our treatments. I want to step out for just a second. So, as not to overwhelm the listener. Really, the very first thing that we can do, Damien. The very first thing. You know, this, I know this and use this in my practice, is investigate what’s going on in current time, and we expose your sources. Any patient coming into my practice will have a meeting with my nutritionist on clean living, clean eating, clean living in the home and so forth. Lowering the toxic burden is huge.

[Damien Blenkinsopp] : Right. This sounds like your foundational work, that you said you did at first. What are the biggest things that you do there, that you feel are important to clear the way.

[Dr. Kara Fitzgerald] : Far and away, the biggest thing we can do is clean up our diet and go as organic as much as possible. I would argue, I would say, that most urgently, we want to look at clean fat sources. Organic butters, organic milks, organic meats, etc. They really almost as important would be looking at organic vegetables and fruits and so forth. Going as organic as you possibly can, using the dirty dozen from the environmental working group as our baseline. At lease achieve the dirty dozen. If you can’t eat organic versions of those, like apples.

[Damien Blenkinsopp] : This dirty dozen are the ones with the highest levels of pesticides and are there other chemicals involved in those dirty dozen? Is it primarily pesticides? And in many forms, in neurotoxins and different ones?

[Dr. Kara Fitzgerald] : Primarily, we are looking at pesticides and their many forms. We could move into discussing, that’s what the environmental working group is testing anyway. They’re looking at pesticides. We could then talk about metals, we could talk about genetic modification, but that would bring us into tomorrow. We would be talking…

[Damien Blenkinsopp] : Exactly.

[Dr. Kara Fitzgerald] : If we go organic, Damien. If we go organic as much as possible, we’re going to bypass all of these toxin issues. To the best of our ability. That’s the foundational. That’s the entry point.

[Damien Blenkinsopp] : I guess, because some people are concerned about cost of organics, so I’m guessing that’s where you introduce the concept of the dirty dozen. Trying to focus on the biggest ones?

[Dr. Kara Fitzgerald] : Yes. Exactly. Focus on the major players. Do not eat non-organic apples. If you can’t find good organic apples, then just skip apples. Secondarily, say you are in a location where you simply cannot find organics at all. I remember in medical school, having a debate with my roommate at the time. “Kara, there are no organics.” She lived in Hawaii. I find it hard to believe there are no organics in Hawaii. “There are no organics in Hawaii’. She argued with me. This was years ago. I don’t know that I buy it. But then, you talk about, ok, how do you clean the food? How do you clean it appropriately? You can do, you can use a vinegar solution. You can soak your fruits and vegetables in there, and you can reduce the pesticide load that way. That’s not optimal, but it’s a whole lot better than not doing anything else. A 10% white vinegar solution that is the cheapest vinegar off the shelf at the grocery store. 10% in a basin of water, and soak the vegetables for three to five minutes. That’s going to reduce the water soluble pesticides. Now, I use the vinegar wash. Actually, I use it all the time for any fruit or vegetable that I’m washing. Because it’s easy. I just have a spray bottle at my sink. I actually just use 100% vinegar. It’s so cheap. I have a bottle of vinegar. I just twist on a sprayer and I spritz it on whatever I need to wash. Let it soak for a period of time. That would be the next best thing.

[Damien Blenkinsopp] : Great. Great. I’ve traveled in many countries, and I’ve kind of tried to practice eating clean. It can be pretty challenging to find organics in some countries. Especially third world countries. I’ve used a similar strategy as you’re outlining. Focusing on the ones that are cleaner. Avoiding the worst ones, and trying to clean. Thank you for that very practical tip. That’s very helpful for people. Once you’ve done this first…

[Dr. Kara Fitzgerald] : Let me just throw in one more tip here. I’m sure you were doing this when you were traveling. You can always bring some extra vitamin C. We were talking about how much we loved that at the beginning. You can bring some extra nutrients to just protect yourself.

[Damien Blenkinsopp] : Right. Absolutely. We can talk about that and the kind of treatments you use which are also helping from that level. Is this the one big pot of your foundational area? Or is there something else you advise your clients to do? Water, or something in the house, or anything like that?

[Dr. Kara Fitzgerald] : Yeah. So the other major things that, guidelines to clean living, yes. You absolutely want to filter your water appropriately. I think charcoal filtration is the absolute way to go. I don’t know what your position is on reverse osmosis, but we can get into big problems if you remove all the minerals from your water. So, reverse osmosis is the cleanest, there is no question about it. But all the minerals are gone. You can develop significant, ironically, dehydration from consuming lots of reverse osmosis if you don’t adequately replenish the minerals. For me, I use, and I recommend, charcoal filtration to my patients.

[Damien Blenkinsopp] : Have you got any specific brands? To make this a little bit practical in terms of recommendation. If someone wanted to go and get something to help them.

[Dr. Kara Fitzgerald] : Yes. My favorite brand has been for years. The Multi-Pure filtration system. You can get that. I think its Multipure.com. It’s easy to get. It’s pretty pricey though. They have a bunch of different systems, so there’s different price points on it. The other one, it’s nice, and it has a much more palatable price point, is Usana. I think both of those are quality products.

[Damien Blenkinsopp] : Great. I’ve been using Berky. I don’t know if you’ve come across them before.

[Dr. Kara Fitzgerald] : I haven’t. I haven’t, but you can send me some information.

[Damien Blenkinsopp] : I will. Just a different alternative I’ve seen. I’m not use how they compare to yours.

[Dr. Kara Fitzgerald] : You go through. You do a whole home assessment with the patient. Just minimize exposure sources in the home. Incidentally, actually, I have a blog. I have a couple blogs on lead. I have a blog at drkarafitzgerald.com, Dr. Kara Fitzgerald.com on lead exposure. It was a case of Parkinson’s disease. This woman was rehabbing a lead house. Lead paint was in this old house they were rehabbing. She ended up getting very, very early onset Parkinson’s disease, and concurrently gave birth to a child who was later diagnosed with Autism. I think both of those were significantly, significantly, significantly influenced by this lead exposure. There are some pretty nifty tools, if you are concerned about lead, with your patients. I often am, if I do a urine, or a blood test. There’s some pretty nifty kits that you can do home lead testing with. You can buy these on Amazon and you can get them at Home Depot or whatever those big hardware stores are in the UK.You can buy lead swab kits and just swab stuff. A lot of ceramics that come in from China and there about, can have lead in the ceramic. You swab this particular lead sticks that I use, and it will change color if lead is present. If you look on that blog, you’ll see. If you scroll down, you’ll see a patient sent in a photo of the positive finding on one of the plates that eats on every day. She’s always had high lead and we needed to do some sleuthing to identify it.

[Damien Blenkinsopp] : Wow. Is this potentially a lot of ceramics? Everything comes from China these days, and having lived in China, I can definitely understand that lead might be in everything. Is lead particles around it, or is this actually they’ve used it in the material itself?

[Dr. Kara Fitzgerald] : They’ve used it in the material. So it’s in the ceramic, and it’s absolutely worth it then. It would be great for you to do this yourself Damien and see what you find.

[Damien Blenkinsopp] : Sounds like an amazing test.

[Dr. Kara Fitzgerald] : It’s handy and it’s cheap. There are more sophisticated and sensitive tests that some of us use clinically. But this is an easy, easy, cheap way to just get in there and start looking now. When we did it, when I first started using these at the laboratory. We swabbed all of our teacups and tea pots and plates that we had in the lab. We all had different plates in our offices that we from. Eve Brolley, the daughter of the former owners of Metamatrixs, had this beautiful tea pot she brought home from China. It was riddled with lead. It was absolutely riddled with lead. Yes.

[Damien Blenkinsopp] : You know, this is really important. Because, if we go back, you said one of the screens you do is the whole blood. The first screen you do is a whole blood test for heavy metals and metals. It would be interesting which metals they are and then you have to kind of go through this detective process. Where is this coming from? When you have high levels of lead or of arsenic and it doesn’t make sense sometimes. Where is this coming from? I don’t know what exposure it might be.

[Dr. Kara Fitzgerald]: Yes.

[Damien Blenkinsopp] : First of all, which metals are you screening for in that test.

[Dr. Kara Fitzgerald] : In my whole blood, and these are all routinely covered by insurance in this state, so it’s extremely easy for me to do. I look at mercury, lead, cadmium, and arsenic. In everybody. Another great example. A mother and a daughter came to me. Actually, daughter was complaining. Her chief complaint was anxiety. She was in her twenties and it was so disabling. Early twenties, she was unable to attend college. She had to withdraw from college because of this. Relatively recent onset of severely debilitating anxiety. In her history, she did mention. Actually, her mom was with her, and they both were putting massive amounts of effort into eating very healthy. They were buying organic, they were eating lots of fish. They were proud of themselves, and clearly they were doing a good job. One of the things that they had, on a routine basis. Multiple times per week, was sea bass. You and I know, sea bass is very high in mercury. When I got her blood mercury, her whole blood mercury, it was off the charts. That was the smoking gun in this girl’s anxiety. She was becoming mad as a hatter. She was in frank acute mercury toxicity from chronic ingestion of sea bass. Of mercury toxic sea bass. We removed the exposure source and we detox her and her symptoms abated. Considerably. She was able to return to school. She does need ongoing treatment and you need to pay attention to what’s going with her regard to detoxing. It was quite useful in that regard. Sometimes, I’m kind of topic jumping here a little bit Damien. You can reel me back in. Sometimes you’ll see, in fact frequently, we won’t see any evidence of toxins in the blood. That’s because the half-life. The amount of time these toxins actually spend in the blood, isn’t long at all. It’s hours, or a day or two. They’re so toxic. These metals are so toxic to us, that our body wants to clear them out. Wants to take them out of circulation as soon as possible. For lead, we store it in the bone. mercury is going in the fat, etc. So, you will get a lot of people who have no burden at all. For those individuals, we need to drill down a little more deep. When I suspect the metals are in, which I really do for most folks. At some point, after we’ve addressed the foundational, we’re going to do what we call a chelation challenge. We’re going to look at the urine level of toxic metals. I’ll give them a compound that will help draw the chemical, the metals, from the body and dump them into the urine. Then, I get an assessment of total body burden.

[Damien Blenkinsopp] : Great. So this is versus the whole blood. Which you were saying, it’s very much on going exposure. I guess, when you are doing that, it’s interesting because it’s the critical. What are you being exposed to every day is more likely to show up there. That’s why it makes a lot of sense if you do that first. Because it could be something that’s going on every single day and making it worse. Versus looking at this urine challenge test, which allows you to see what’s the history, how much have they gotten this burden? When you are doing this, we have spoken a little bit about the urine challenge test before. Which labs do you use? What kind of chelator are you using for provoking challenge?

[Dr. Kara Fitzgerald] : I think that Metamatrixs does a great job. In just being really familiar with their analytics, so this would be going through Genova. I think they do a great job. I also think Dr. Sata does a really good job. Those are the major, those are the two labs that I use for this.

[Damien Blenkinsopp] : Great. Just out of interest, can you compare the two, or basically how they are on different standards? So you have to stick with one. If you’ve got your history with different patients with Metamatrixs, it makes sense for you to stick with that, because then you’ve got this comparison.

[Dr. Kara Fitzgerald] : Yes. Correct. That’s absolutely right. I mean, you can take a, generally speaking, if you see a high in Dr. Stata, you are going to see a high in any assay. You are going to see it in Metamatrixs, but you are right. There’s different units, there’s different methodology, so it’s wise to just continue with whatever lab you did your baseline assessment. It’s wise to continue your baseline assessments with that lab. Just keep the same test. For chelation, remember, going back to the foundation. We need to make sure that individual can detox. We need to make sure their nutrients are up to speed. That phase one and phase two is good. We need to absolutely make sure kidney function is ideal. That they are moving their bowels. They’re having at least one complete BM per day. Once we have all of that dialed in, then we go in and we do a chelation challenge. For most of my patients, I’m going to use an oral DMSA challenge. Generally speaking, the easiest way to go is 1000mg in two divided doses over eight hours. The half-life of DMSA. Some people will choose to do a 24 hour toxic metal measurement, but I think eight hours is plenty because the half-life of DMSA is just under that. The DMSA is going to be cleared out of the body quickly and that’s what you are trying to look at. You want to see what the DMSA, what metals it’s pulling out. So for that reason, you can do an eight hour measurement. You start the collection, take 500mg or there abouts of DMSA and then four hours into the collection, you take a 500mg or there abouts a second dose of DMSA. Then, you collect for another four hours. You take a portion. You mix the urine, take a portion of that specimen and send it into the lab. I think that’s a decent way to assess. Some of my individuals, who are too sensitive, for whom I think the DMSA is not going to be tolerated well, we can use antecedal cystine, glycine. There’s a number of natural compounds that we can use. There are data on antecedal cystine as an effective alpolic acid. Having chelative properties will help pull it out, so we can do that if I deem it necessary.

[Damien Blenkinsopp] : Alright. Thank you very much for bringing up the, you were talking about the importance of doing your nutrient stage first. It’s safety. Because if you are going to use a chelator and pull toxins out. Heavy metals, then, it can be a bit hard on the kidneys and the other detox organs.

[Dr. Kara Fitzgerald] : Incidentally, if you start drawing it out, and they don’t have adequate nutrients. If their detox systems aren’t up and running, and they are very dependent on nutrients. Selenium, and zinc, and glutathione and metholdone, (and) many amino acids. If those aren’t there, ready to do their job, you will make the person sicker. Even basic kidney function has to be intact. Beyond that, they need to have their detox ability really up and running. The other thing is, Damien, this is so fundamental. It’s so fundamental, and that is one of the major roots of entry into the body is orally. We eat toxins. We’re eating these metals in our food or whatever. If you’re deficient in minerals, if you’re deficient in your essential minerals, those transport proteins. The ways that their minerals are taken in to the body. If there are no minerals, or low minerals present, those transport proteins will be high jacked by toxins. This data has been demonstrated. One of the easiest ways you can reduce your exposure source of metals is making sure you have adequate essential minerals in your body. It’s so foundational. Those transport proteins, this has been shown actually very strongly in iron deficient anemia. Padmium, manganese, which can be toxic in high amounts, mercury and so forth. They can, they hitch a ride into those transport proteins that would otherwise be used for iron or magnesium, and actually, they are relatively non-specific. A lot of the essential minerals move into the body using these transport proteins, and if you are deficient in your minerals, which most of us are. Eating a standard western diet, those metals get a ride in. The other huge piece of this, is that these same transport proteins are at the blood brain barrier. Not only are they entering into circulation through the gut, they’re going to have readier or easier access to the brain and the central nervous system. One of the most fundamental things is to make sure you have adequate nutrients and especially adequate essential minerals. Isn’t that, it’s profound.

[Damien Blenkinsopp] : Yea, it’s amazing. That’s part of your foundation, right.

[Dr. Kara Fitzgerald] : Part of my very fundamental, foundation.

[Damien Blenkinsopp] : And amazingly simple. Which nutrients do you focus on?

[Dr. Kara Fitzgerald] : Well, I focus on all of them, but I’m looking at, as you mentioned earlier, selenium. Selenium can actually bind and render inert mercury. Bind it and pull it out of circulation. In the body. So, mercury is highly toxic and selenium can bind it and just allow us to eliminate it. It’s potent. So, if you’ve got a mercury burden, chances are, you’re burning through your selenium. Selenium is used elsewhere in the body as well. So, selenium is a big player. All of them are. Magnesium is a huge, huge player. Zinc is a huge player. I would say that those are the biggest three. You also want to, of course, make sure you have adequate calcium. Lead is stored in bone, it’s going to displace calcium and other nutrients. You want to have adequate calcium in your diet, or take some degree of supplement. Chromium can be useful. Secondarily, zanadium. But really, the major minerals, magnesium, selenium, zinc and so forth are what we want to have in abundant supply.

[Damien Blenkinsopp] : How do you bring those levels up. I guess, because I’ve come across this before. The way I thought about it was that it’s kind of like, because you’ve deficiencies. You’ve got these molecules that have holes. Waiting to pick up something. So, you’re leaving all these holes in your body, basically, waiting to pick something which is a similar molecule. You have the toxic molecule come along. That’s what you were talking about, the bones and calcium and lead seems to basically have a similar molecule. It will just bind there because you’ve left the gap open by having that deficiency.

[Dr. Kara Fitzgerald] : Yea, yea, yea.

[Damien Blenkinsopp] : Yea. I think it’s really great how straight forward it is really.

[Dr. Kara Fitzgerald] : It’s elegant

[Damien Blenkinsopp] : It’s elegant the way it works.

[Dr. Kara Fitzgerald] : You just eat a great diet. Then supplement with extra minerals as see fit. I assess mineral status in my patients. I’ll look at red blood cell status of minerals. Along with my whole blood toxin. Incidentally, Damien, on most of my patients you’ll see generally speaking, higher amounts of toxins relative to their essential minerals. It’s all of the time I see this. The toxins are a little bit higher. Even if they’re not frankly elevated, they’re higher normal or something like that. Minerals are so often in all of us, low or very low normal. Very low. Low normal to very low. You always see this skewed ration. Almost all the time I see this. Unless somebody is really intentionally addressing it. This is the most fundamental thing that we turn around. We’ll get your essential minerals nice and robust and that alone will help drive down your toxins. Then, we’ll do all of the other things. Look for exposures and so forth.

[Damien Blenkinsopp]: For the essential minerals, I don’t know if you use this or not. The thing I’ve used in the past is the Greens powders because they have a broad spectrum of nutrients. Other than just trying to eat a better diet with a greater variety of vegetables is really where you have to start with this. What are your main recommendations? The ways you try to get your patients up to speed with that?

[Dr. Kara Fitzgerald] : Ok, since I’m testing, I’m going to see the degree of the deficiency. If it is high enough, I’m going to supplement them with individual nutrients. I very often use magnesium as a standalone nutrient. I very often use zinc as a standalone nutrient. Selenium, since we don’t need as much or maledium or some of the others, we can use in a complex mineral supplement. I think the Greens powder is great. Whatever company you’re using, obviously you know that they’re ensuring their quality. They’ve tested for metal quantities and so on and so forth. It’s a super clean product. It’s rich in metals, so that’s a nice thing. Baseline. While I’m first starting to work with an individual, and they are really depleted, I’m probably going to use individual supplements relatively high doses to get them up to good levels. Then, after that, we can do a complex mineral formula and obviously, we are working with their diet. For a period of time, we are using individual nutrients.

[Damien Blenkinsopp] : Great. Thus the importance of, even if someone’s not chronically ill, would you recommend they go to a practitioner such as yourself? If they feel this could be an issue for them. It is athletic performance or whatever it is, it’s still worthwhile going for this process with a practitioner to get it done right, right?

[Dr. Kara Fitzgerald] : Oh, yea. I think so. Absolutely. It’s really a lot of fun. It is! It’s very interesting to look at your biochemistry.

[Damien Blenkinsopp] : It’s a lot of fun when you get energy and performance back. You start thinking clearer. All these thing are really exciting.

[Dr. Kara Fitzgerald] : Not only that, Damien, but think about disease prevention. Now, we’re moving into the world of ethnogenetics, which I’m sure you’ve talked to your people about. Not only are you preventing disease in yourself, but if you are going on to have children, you are preventing disease in them and their offspring. On, and on, and on. If you think about ethnogenetics. It’s amazing what wellness will do to us. Not only us as an individual but really globally shifting. The planet and the generations to come, it’s so incredible. I would say that it’s a continuum of wellness. Optimizing athletic performance is not that different from treating the complex chronic disease. You’re still seeing underlying nutrient deficiencies. You might be seeing in the athlete increased oxidative stress. In fact, that’s common because they’ve got tons of mitochondria that are incredibly active. You’re going to be seeing some of those same imbalances. I used to, when I was in medical school, I was a road racer. I did a lot of, in fact, I liked criterium. I was working really hard at building up tons of mitochondria in my legs, in my quads and stuff. I enjoyed doing that at the lab. We had a lot of physicians focusing on wellness in the lab. Looking at data of athletes is so interesting and cool. Working on optimizing mitochondrial status. Making sure their nutrients are extremely dialed in so that you can shave a second or a few seconds off their time. After your season, often time, athletes notoriously get sick. Most students, they finish their intense period of training and then all of their event schedule, they often get sick. How do you prevent that as well? That’s something that we could do. So, sure. I’m more than happy to work on wellness. I think it’s a lot of fun.

[Damien Blenkinsopp] : Yea. Great, great. Would you say that the patients who get chronically ill, stick with it and work on this afterwards? I’m just interested from the standpoint, once they’ve learned about these tools, basically they see the benefits themselves. Just in daily life and being proactive.

[Dr. Kara Fitzgerald] : Yes. It’s like throwing the stone in the pond. There’s this remarkable ripple effect. Then their friends and their family say, “Oh, my gosh. Look at you. You look so much better. You have so much energy. Your skin is gorgeous. You’ve lost all this weight. What did you do?” They have this influence on those around them, just by being representatives of what wellness can be.

[Damien Blenkinsopp] : I’d like to point out, you said the way wellness can be. I do feel that a lot of us are walking around and we feel like we’re normal today, but if we went through these kinds of processes, we’d feel this level of being well. Which we haven’t actually felt before. Certainly the way I’ve felt on my journey. I feel like I’m thinking clearer than I ever have. Things like this. I think it’s a real shame. That we don’t realize that we could be better and that we could feel better. Because we’ve accepted some kind of norm. Maybe because it’s been going on so long.

[Dr. Kara Fitzgerald] : That’s right. We all acclimatize to whatever is in front of us. There’s that analogy where the frog. If you put a frog in a pot of water, you can slowly turn the heat up until its dead. Until you boil it. It will never, it won’t hop out. We get used to the disease process. We get used to feeling lousy. Just like the frog in the water. That’s actually an analogy that I learned from a patient. Who, incidentally, just became so wildly healthy. It just really changed his experience. He was writing to me and he said it’s like the frog in the pot analogy. The other thing is, this whole idea that lean on that we’re aging. Oh, I’m forty I’m supposed to be tired. I’m forty-five now, my bones are supposed to ache. My skin is supposed to look all saggy and gray. There’s this whole notion that we’ve built into the culture. Into the medical system. Because, really, the larger conventional medical model hasn’t had, does not have still, good tools around wellness. Therefore, all of these various signs and symptoms that we’ve been talking about, that are the early disease processes that we can change. They’re always attributed to aging.

[Damien Blenkinsopp] : Yea. Which is a real shame.

[Dr. Kara Fitzgerald] : It’s a real shame.

[Damien Blenkinsopp] : It’s a scape goat. We had Aubrey de Gray on the podcast previously and he talks about how a lot of these damaging processes, basically that are going on. It’s not aging.

[Dr. Kara Fitzgerald] : Yes.

[Damien Blenkinsopp] : We’ve given the name to all of this stuff, aging. But it seems like we’re aging faster because of today’s environment and the things going on today. It’s a shame that we just said “Ah, its aging. It’s normal.” Instead of trying to seize the day. So I just wanted to go back to a couple of things that we missed on your intest. You said you were using different chelators in some patients. Right, because if they are sensitive to the DMSA, which I’m guessing is because maybe they’re more mineral deficiencies. Or their detox system is having a harder time. Does it matter which chelator you’re using, in terms of what shows up in the tests? Are they standardized for DMSA or like so? For instance would anecetalsistine, which you said is a bit softer. Would that only chelate some of the metals. You would get a footprint or a pattern just for some of the metals and not some of the others?

[Dr. Kara Fitzgerald] : DMSA, so there are these, what they call binding affinities. Binding affinities vary depending on the agent that you use. Binding affinities simply means how tightly does that chelating compound bind the metals you want to look at. You can look up tables of binding affinity and see what’s going to hang on to the metals you want to look at most avidly. With the highest affinity. DMSA is really great and very well known for its ability to bind mercury. Less so lead, and less so some of the other metals, but it will bind them. It just doesn’t have as high of a binding affinity. Acetylcysteine is actually a little bit less. Now, it’s not going to bind as tightly as DMSA. Because, DMSA has structurally, if you look at it. It’s got a lot of sites for the metals to bind on. A lot of these Sulphur groups that the metals will bind on. If you look at it structurally, you can see why it’s so good at pulling out metals. Acetylcysteine is different. Structurally, it’s got only a single cell per group, instead of I think four on DMSA. It’s still going to. Acetylcysteine is just used in our body. We evolved using acetylcysteine and glutathione which is made from acetylcysteine to bind many different types of metals. Acetylcysteine is good, it’s just not going to have the same kind of affinity. It’s not going to bind them as strongly as a chemical. Now, DMSA is great for mercury. EDTA is going to be better for lead. Depending on what you do clinically. There are different cocktails or compounds that you can use. I don’t use EDTA in my practice because I don’t do IV. Really, ideally, if you’re going to use EDTA, you need to deliver it IV, intravenously. In order to really have it work. People use oral EDTA sometimes, but the data around using oral EDTA isn’t as good. Whereas the data on DMSA is very strong. It’s been used forever.

[Damien Blenkinsopp] : That’s good to know. I’m guessing the labs, because they ask you to write down which chelator kit you use, they standardize against the different chelators?

[Dr. Kara Fitzgerald] : Well, no. Generally, it’s so challenging. The lab, because they’ll have lab ranges for if you used any kind of a chelating agent. Ranges based on chelating used versus no chelating used. Because when you try to get specific. Like, for DMSA or for a specific ranges for EDTA, then you have to control how the protocol is administered. So everybody needs to use the same amount of DMSA and so forth. There are some laboratories that focus exclusively on occupational exposure. Toxicity in the workplace or something like that. Some of those places will have a very tight protocol that you can follow. Followed by ranges based on that. But, it’s a whole different arena. When you just had a massive cadmium dump in a battery factory or something like that. But for most of us, working with the less than occupational exposures. We’re doing the best we can. That’s what we have. Chelated ranges versus non-chelated ranges.

[Damien Blenkinsopp] : It sounds like its diagnostic enough for you to get your job done and identify the problems, right?

[Dr. Kara Fitzgerald] : Yes, yes, yes. Absolutely. Absolutely.

[Damien Blenkinsopp] : Right. So, we haven’t really talked about the other stuff. We talked a lot about the metals and the whole chemical side. Which we were taking about earlier where the pesticides. How do you approach the chemical side of detecting that? Does that come after the metals? If you’ve gone through the whole blood metals and before you thought there might be some metals you went for the urine, when would the chemicals? When would you start looking at them? Be suspicious that that might be an issue?

[Dr. Kara Fitzgerald] : Yea. Well, again, I’m going to assume that all of my patients have a burden. We really do. It’s been demonstrated. You can go to CDC and you’ll see. The people inside the area, in the farthest reaches of the globe, have some sort of organo- toxins, sadly. So, we all have that, so I always come in with that. Go through the clean living and get the nutrients and do all of those foundational things, and then from there. If what they’re presenting to me with clinically and if their history is compelling, then we move into to looking specifically at the organo-toxins. Genova, Metamatrixs, really developed awesome panels and you can get them now through Genova. You can look at the volatile organic solvents. You can look at PCBs, you can look at coroneted pesticides. You can look at many different toxins, organ toxins and I think that can be incredibly useful.

[Damien Blenkinsopp] : Great. Are those broad spectrum panels or are would you have to decide where you’re going to focus?

[Dr. Kara Fitzgerald] : You can get a broad spectrum panel from them now, that has a good price point on it. I would go there. I would go there because unless somebody gives you a really clear exposure history. For instance, my patient with ALS, who grew up in an orange grove. Unless you can really nail down what likely they’ve been exposed to, given their exposure history. Starting with a broad pattern, a panel is the best way to go. That’s what I recommend and do.

[Damien Blenkinsopp] : What percentage of your patients are you looking at these kinds of panels with?

[Dr. Kara Fitzgerald] : Not as big as I do with the metals. I would say, maybe at this point, maybe 20% of my patients I’m looking at these. It’s not that it isn’t a very useful tool, because it really is. Especially when I’ve got neurodegenitive conditions presenting to me. Where toxins are really. Thinking about toxins with those folks. Like with that early onset Parkinson disease. For her, she had this very obvious lead history. But for people coming out of Florida, or they worked on a farm. Some of these odd neuro-conditions really scream the need to have these kind of evaluations done. It’s another point that I wanted to bring up. This folds into our earlier discussion. That is, sometimes, when you do these foundational interventions and you really get the body functioning. You’re removing the toxins from the get go. Sometimes the body does it. If the body’s detox ability is intact, even in complex chronic disease, you can turn it around. People get on with their lives, and naturally remove them. You don’t have to go toward the more aggressive evaluations and detox processes.

[Damien Blenkinsopp] : So, it’s kind of like you are getting at a lot of things just with your foundation work we were talking about earlier. When you were saying you test for 20% of the patients. I guess these are the tricky patients. Where you are still sorting through it and you’re like, well we haven’t got it yet so we are going to have to keep on looking for the sources. What are you seeing comes up with these panels? Is it very, very different depend on where they come from? Where they’ve lived, like you were talking about. The specific examples there. Or do we all have a bit of these things in ours and how do you treat it? Do you have to be very targeted? How do you get pesticides out of the body, if it’s not doing it itself?

[Dr. Kara Fitzgerald] : For me, exposure history, you are going to get a lot of information. It can give you an idea. Gosh, a patient of mine, who really had some of the worse allergies I’ve ever encountered. Remember, allergies are a potent clue that there’s a toxic burden present. Grew up, literally, with a super fund river flowing through his back yard. Phenomenally. There was so many different toxins in this river. There were tanneries, leather tanneries around. Just all sorts of stuff in Montana. We needed to do a wide sweep. Incidentally, he had massive amounts of triclosan in his urine. Actually, it was by far, the highest amount I’ve seen. Which came from, not this super fund site. We saw evidence of body burden of PCVs and other chemicals in him for sure. But the triclosan came from those hand sanitizers. I’m just thinking of it now. This guy is a physical therapist by training. He sanitizes his hand after every single solitary patient, and he was using it as a toothpaste. They throw triclosan in toothpaste. It’s horrible. He had off the charts levels just from using a hand sanitizer and toothpaste. Just as an inside folks. Look and see if you’ve got triclosan around. If you do, remove it. Not only is it, will it increase allergies. All sorts of new data are emerging around it with regard to it being an endocrine disrupter. So, messing with out hormones and so forth. We can get triclosan out pretty readily. Anyway, Damien, organ toxins. I would recommend a broad sweep investigation to identify it unless there is a clear cut direction in their history.

[Damien Blenkinsopp] : How would you target these things and remove them. A lot of these things you’re talking about are fat soluble. Is that correct?

[Dr. Kara Fitzgerald] : Let me give you a really neat story. When we were, back at the lab when we started to put together our toxins panels, and we were really flooded in the research. So much data are coming out, every hour of every day, around diseases associated with toxin exposures. You can imagine, as we were developing these panels and we were in the research around them, we became really morose. Very, very, very, very depressed. What do you do? Everybody has PCVs and the half-life is decades and decades. What do we do? The research around detoxification is not yet as strong. It will become, because we have no choice but to face this. We got pretty depressed in the lab, just looking at these day in and day out and day in. Just really how up a creek we all were. How screwed we all were. There’s a light at the end of the tunnel. So these PCVs that are in our bodies that we can’t move out. The fact of the matter is, in fact, we are able to move them somewhat. One of the interesting stories was one of the guys in our lab had developed this farm raised salmon on a bagel habit. Every morning for breakfast, he would have a salmon, lox on a bagel. Every single morning. Its farm raised. Taste delicious. Man is it loaded with PCVs. It really is. So, all of us were experimenting on these panels ourselves because we were developing the assays.

[Damien Blenkinsopp] : Tastes great. I used to love that too.

[Dr. Kara Fitzgerald] : He gave his specimen, and his PCVs were really off the chart. They were so elevated in him. Again, it’s depressing, knowing the half-life. Oh my God, he’s stuck with these. What we did with him, was just put him on a good standard detox protocol. A good detox powder, good greens drink, nice super potent high fidonutrient green drink. A handful of various minerals and some brassica. Lots of those good brassica veggies and so forth. Measured a follow-up, and we absolutely saw reduction in his PVC burden.

[Damien Blenkinsopp] : Great. How long afterwards was the follow-up?

[Dr. Kara Fitzgerald] : It was a month. One month. He was moving it. The other thing, this is also sweating, exercise. Mobilizing fat will liberate PCVs into circulation. That is, if you are losing weight rapidly, and you’re not somehow doing a concurrent detox with that, that will become a problem. That’s why some people can feel awful when they lose weight. It’s also an opportunity for us to detox. In the weight loss process, you want to have care to make sure you are able to detox and that you’re moving those toxins that you’re going liberate from fat into the blood, that you’re moving them out. There are ways that we can do this. There is a small bit, emerging pool of research that suggests that we can move these guys out. There’s a group out of the University of Kentucky here, who have shown in animal studies, primarily, that just this. Combating the effects of PCVs which are very oxidative with essential fatty acids and with different fidonutrients, plant based nutrients. Will reduce the toxicity of the compound. Not only can we help remove them from our bodies but we also, reduce the damage that they cause. Those two ways of approaching it, is effective and it’s powerful, and it puts us back into the driver’s seat. We don’t have to be victims of this inevitable toxic burden that we have.

[Damien Blenkinsopp] : Great. That’s a great point to finish with. We don’t want to think. It’s not a great story to say you can take all these toxins in your body and there’s nothing you can do about them. Thank you so much for giving us that point of hope. Actually, that just that our bodies are naturally able to do this, if we work on the foundations we were talking about earlier. Providing what the body needs. So I just wanted to give you one last, quick fire question that we give everyone. What data metrics do you track for your own body on a routine basis? Is there anything that you follow up with monthly or six monthly, or once a year? That you like to keep an eye on for yourself?

[Dr. Kara Fitzgerald] : This is a whole other topic, and we’ll have to schedule me again. I love the nutrition physical exam. A really easy data metric. I should actually not laugh, but in the winter, I tend to get a little bit of eczema and I can track both how clean my diet is as well as how my nutrient status is. My essential fatty acids and in particular I find gamolenic acid to be well. Some of the physical changes that I can see in the winter, in myself, give me a nice picture of what I need to be doing differently. With regard to my own health, I like using, annually, this battery of testing that I do on my patients. You were talking to be about people coming to me for wellness. You absolutely can do it. I recommend it to my family as well as doing it myself. Let me look at all my nutrients, let me look at my toxins. Let me see how my mitochondria are functioning. Let me look at my amino acids, and so forth. You can cast this wide net, take a look at it, and correct it with dietary changes.

[Damien Blenkinsopp] : Great. Kara, thank you. I can see you are really enthusiastic about this, and it’s been a great conversation and thanks for bringing up so much new information and advice for the audience. Thank you very much for your time.

[Dr. Kara Fitzgerald] : You are welcome, Damien. My pleasure.

Leave a Reply

Today’s episode is about practical tools that we can use to improve our biology and how we can track those results to make sure we are getting the right answers. This episode can serve as an important source of information about N=1 experiments and biohacking.

N=1 experiments involve a single subject and they are entirely capable of providing statistical inferences about the efficacy or side-effects of treatments specifically on that subject alone. The aim of this episode is to provide very practical tips that are really accessible to you. Some of the topics covered are the Bulletproof diet, intermittent fasting, and the impact of oxaloacetate supplements.

“So we could run the same experiment…and your results can be different from mine, but it doesn’t mean that either are wrong, it just means that we’re all individuals. Our results apply to ourselves and we [need to approach it in] a different way in terms of how we want to improve or optimize something.”
– Bob Troia

Bob Troia’s quest for self knowledge, betterment, and optimization inspired his own self-tracking, biohacking, and n=1 experiments. Some of Bob’s experiments have included glucose hacking and tracking, telomere analysis, bulletproof diet (cholesterol/bloodwork), and central nervous system (CNS) training. He has had the opportunity to give several Quantified Self talks on his glucose tracking experiments. 

Bob is also a successful tech entrepreneur, and is currently working on a new venture, HuMend, which is developing a solution to treat musculoskeletal injuries using 3D printing technology. Bob holds a Bachelor of Science degree from Pennsylvania State University in Agricultural and Biological Engineering.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • Bob’s interest in quantified self and biohacking results from trying to uncover and understand what makes him tick and how to optimize and improve it. (Time 5:58)
  • N=1 experiments are implemented on one person. They are not scientifically applicable to the whole population. (Time 8:00)
  • One of Bob’s earliest n=1 experiments involved a paleo-like diet called the Bulletproof diet. (Time: 9:00)
  • There are a number of online services that can facilitate your bloodwork testing. (Time 12:55).
  • There is a big difference between traditional and functional medicine. The normal ranges for traditional medicine may not be applicable to individuals based on their unique genetic composition. Services such as InsideTracker and WellnessFX may give you a “range” for your results, but you may need a functional medical practitioner to further investigate the details. (Time 14:00).
  • Part of a low white blood cell count is not that your immune system isn’t kicking up; it’s that it’s being suppressed. (21:00).
  • An underactive thyroid is linked to elevated LDLs. Bob was introduced to some programs that support thyroid and adrenal functions, and that was a shortcut which led to improving numbers such as total cholesterol, LDL, and testosterone. (28:00)
  • Bob’s recommendation is to find a medical practitioner with more of a functional medicine background. (29:50)
  • Another of Bob’s recommendations is to find a medical practitioner who has an investigative mindset.(31:16)
  • Bob sees the philosophy of “Quantified Self” evolving into “Quantified Team.” (33:00)
  • Bob gets testing every three months. He is still investigating having more short-term testing, for instance on a monthly basis. (37:00)
  • The biomarkers Bob tracks on a routine basis range from basic panels, cholesterol markers, glucose, nutrients like calcium, magnesium, vitamin D, white blood cells, C-reactive protein, and an MDL test that can check for chronic infections. (38:00)
  • As part of a longevity strategy and to maintain optimal glucose levels, Bob recommends a supplement called oxaloacetate. (48:00)
  • Other recommendations include the Calm app and binaural beats (Holosync) as tools for meditation. (54:30).
  • Bob’s biggest recommendation is to prevent your data from becoming a hindrance. It is ultimately more about how you feel. People have the tendency to over think it, instead of just starting to do it.  (1:34:20)

Thank Bob Troia on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Bob Troia

  • quantifiedbob.com: Bob Troia’s personal self-tracking, biohacking, n=1 experiments, and Quantified Self tools and resources.
  • Bob on Twitter @QuantifiedBob

The Tracking

Biomarkers

  • Cortisol to DHEA Ratio: Cortisol is a stress hormone and DHEA is a precursor to testosterone and estrogen. Both are produced by the adrenal glands. Since they work in an opposing manner, they are more efficiently measured as a ratio. A normal ratio is approximately 5:1 to 6:1. An abnormal ratio indicates a problem with the adrenal glands.
  • hs-CRP (high sensitivity C-Reactive Protein): A marker of inflammation. The hs-CRP test accurately measures low levels of C-reactive protein to identify low but persistent levels of inflammation which is an indicator for cardiovascular disease (CVD), overtraining and other systemic inflammation issues. In a previous episode (episode 19), Dr. Garry Gordon notes hs-CRP may or may not be a sensitive enough marker of inflammation as it depends on the location and type of inflammation. Also, C-reactive protein is discussed previously in Episode 7 for tracking CVD risk.
  • Fasting glucose: Fasting glucose is one of the clinical markers for blood sugar regulation and can indicate a progression toward diabetes. In order to establish a baseline, Bob performed a fasting glucose measurement with eight hours of fasting before each morning.
  • HRV (Heart Rate Variability): HRV is one biomarker that is a good indicator for overall health and fitness. A high HRV shows that the parasympathetic response is dominant, and vice versa for a low HRV. A high HRV score – greater variability in the time gap between heart beats – is a good thing because it indicates a healthy, fit, well­-rested heart. Damien has found it beneficial to take his HRV readings every morning because a dip could be an indicator of additional stress load. We’ve covered HRV in many episodes (see here)
  • Telomere length: Telomeres are the protective DNA structures at the ends of chromosomes. Over time these protective structures shorten and degrade, as a result of the aging process in general for instance. By measuring telomere length, we’re able to identify how short they are against benchmarks, such as the societal norm, or sub-groups, for a typical age and gender, and use as a proxy for the aging process and how we are faring against it.
  • LDL (Low Density Lipoprotein): The traditional measure of ‘bad cholesterol’ that many doctors still use to evaluate cardiovascular risk, but for which research has now determined not to be the best predictor of cardiovascular risk. However, LDL is also associated with other risks can be a useful marker in general – such as an underactive thyroid as mentioned by Bob in this episode.

Lab Tests, Devices and Apps

  • InsideTracker: InsideTracker is a personalized health analytics company with a platform that tracks and analyzes key biochemical and physiological markers, and applies sophisticated algorithms and large scientific databases to determine personalized optimal zones for each marker.
  • WellnessFX: WellnessFX is a platform that visualizes your blood test results over time, as well as detailed descriptions of each biomarker for an easy interpretation of your overall health. WellnessFX also offers personalized consultations with licensed health practitioners for even more insight into your health.
  • 23andMe genetic testing: A service that provides a DNA kit for collecting samples and analyzing DNA.
  • MDL (Medical Diagnostics Laboratories) testing: A one vial test that can expose different pathogens. Bob referred to this test as one that extends more than the traditional panel and can indicate the presence of chronic diseases.
  • LabCorp: Laboratory Corporation of America provides lab testing and services, with expertise in esoteric testing, genomics, and clinical and anatomic pathology.
  • DirectLabs: DirectLabs offers blood chemistry tests directly to you online at extremely discounted prices with results available in as little as 24 hours for most tests.
  • GeneticGenie: Shows your free methylation and/or detoxification profile after sending a saliva sample to 23andMe genetic testing.
  • Promethease: Compares a person’s DNA data with entries in SNPedia, a public wiki on human genetics. Also can use data imported from 23andMe.
  • TeloMe: A company that offers saliva-based telomere length testing and analysis.

The Tools & Tactics

Diets and Nutrition

  • Intermittent Fasting: Involves consuming most of your calories during a very small window, typically 6 hours and fasting the remainder of the day.
  • Paleo Diet A diet that mimics the nutrition of early hunter-gatherers, and consists of all lean meats and fish, fresh fruits, and nonstarchy vegetables.
  • Bulletproof Diet: A diet that involves skipping breakfast, not counting calories, eating high levels of healthy saturated fat, working out and sleeping less, and adding smart supplements.
  • Holosync: A form of audio technology that is said to induce brain wave patterns such as those of deep meditation.

Supplements

  • Oxaloacetate: Oxaloacetate, the common name for the molecule 3-carboxy-3-oxopropanoic acid and synonymous with oxaloacetic acid (depending on acidity.  is an intermediate of the Kreb’s cycle and the stage immediately prior to the formation of  pyruvate (viapyruvate carboxylase) and immediately after the NAD+-consuming conversion from L-malate (via malate dehydrogenase). It is thought to help with glucose metabolism and reduce variability as well as promote longevity due to being an intermediate of the Kreb’s cycle of energy production.

Tech

  • Muse Calm: A consumer EEG device and app that is designed to help you meditate effectively. Damien refers to his use of this.

Other People, Books & Resources

People

  • Dave Asprey: Dave Asprey, Founder and CEO of bulletproof, was mentioned by the guest as someone whose talks on the principles and logic of the “bulletproof” diet attracted him to the paleo-like diet.
  • Jimmy Moore: Jimmy Moore, a previous guest, is an expert on measuring ketones and optimizing ketogenic diets. Moore also spoke about intermittent fasting during his episode.
  • William J. Walsh: Walsh was a previous guest (episode 2) who is an expert on brain-related disorders. He was mentioned in this episode as helping to do certain labs that help assess micronutrient deficiencies or differences that are out of functional ranges including vitamin B6.
  • Ray Kurzweil: An American author, computer scientist, inventor, and futurist. Author of the books on longevity and extending lifespan Fantastic Voyage: Live Long Enough to Live Forever and Transcend: Nine Steps to Living Well Forever. Ray is mentioned in this episode as one of the proponents of solving a problem before going to sleep.
  • Aubrey de Grey: Chief Science Officer for the SENS Research Foundation, a not-for-profit organization funding research into longevity around the world. Aubrey de Grey is featured in episode 14.
  • Tim Ferriss: An American author, entrepreneur, angel investor, and public speaker. The Four Hour Body, authored by Tim Ferriss, is one of the early books that helped Bob.

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp]: Hello Bob, thanks so much for coming on the show.

[Bob Troia]: Thanks for having me.

[Damien Blenkinsopp]: How did you get into all of this Quantified Self (QS), biohacking, n=1 experiments? Is this something you’ve been doing for a while? Give us a quick background on what led you to this.

[Bob Troia]: Sure. I’m very different to some of your past guests, in that I’m more like your typical listener. I’m not an expert in a certain field; I’m an entrepreneur who’s been working with emerging technology for about the last twenty years and I just naturally had this curious mind. Even back in the time I was a little kid, it was always about taking things apart and figuring out how things work or putting them back together in a different way.
For me, going back to my teenage years and into college, I was an athlete, so I was always tracking aspects of workouts and training and diet, trying to figure out what had an effect on certain performances and just general improvements, whether it’s trying to gain weight or strength or run faster.
As I got older, out of college and began joining the workforce in the real world, I never got too out of shape, in terms of putting on tons of weight or anything like that, but I definitely wanted to get back into a better shape and I experimented with different diets and training, and again, I was logging a lot of these meals, workouts, and just trying to understand those effects.
So really you went from tracking for performance to getting back to a certain state, and now as you get older, you’re really looking to do it from the standpoint of longevity and maintenance. Because, for example, I had a program I did fifteen years ago where I gained a bunch of muscle and put on some weight, but it was just from a lifestyle perspective, I couldn’t maintain it from playing other sports.
But from a QS perspective, I was always tracking everything, whether it was notebooks, spreadsheets, etc., and about maybe five years ago I found a group of folks—I’m in New York City—like-minded people who were starting a meet-up around Quantified Self. I had never really heard the term before, but when I got together with these folks and they were exchanging stories, I was like, “Oh, these are my people.” I didn’t realize there were other people doing things similar to me in terms of trying to really track and understand and then optimize areas of their life. And so, for me, it really opened the door to this and from the standpoint of, even though we were doing this ourselves, our own n=1 experiments and tracking, when you’re meeting with other people, you can share tips and advice and stories and you can really connect around that.
So you have Quantified Self and then you’ve got biohacking, and they’re very similar but they’re also different in ways. So biohacking, there are people who might be in that school of thought who aren’t necessarily Quantified Self people. They’re just looking to somehow manipulate or get an advantage or optimize a biological impact, whereas Quantified Self people might be tracking non-physical elements of their lives. I found those groups sort of overlap, and for me, it was through some of the conferences that were out there, meeting people—whether it’s the first Quantified Self conference or there’ve been several biohacking conferences.
My interest in this has purely been from really trying to uncover and understand what makes me tick and then figure out ways to optimize and improve it. I’m no smarter, faster, more intelligent than anyone out there, definitely not. I’m still dealing with a number of issues like lingering infections and health issues, but I think it’s trying to achieve that state of being optimal is just something we can all strive for, whether or not we can actually get to it.

[Damien Blenkinsopp]: Yeah, absolutely. And how old are you? Just to give a bit of context.

[Bob Troia]: I’m just going into my forties.

[Damien Blenkinsopp]: Ok, cool. That’s pretty much the same place as I am. That’s interesting. So, just to give you a background in terms of your education and your work because I think that may have an influence.
I came from a business background and a lot of finance, and then management consulting, which is a lot of analytics, so I was doing a lot of this stuff in my work. And just like you, it naturally filtered in to fitness and then it started evolving into longevity and also into health issues when I got some health issues. So I’m just wondering how that compares to your background and if you think it influenced it, maybe your studies or your career? Because some people at home may be thinking, “Well I don’t have a degree in maths,” or “I don’t have an education in consulting or analytics,” or anything, but I think anyone pretty much from any kind of background can get into this stuff and at Quantified Self meetings you see a big variety of different people.

[Bob Troia]: Yes, so my background: I went to a school of engineering, so I definitely have a technical background. I’ve been programming since I was nine or ten years old just writing my old programs. Back in those days, you had to kind of make your own games, they didn’t really exist. So I have a technical background, that helps me from the standpoint of I can figure out a way to solve something, but I don’t have a data analytics background by any means.
From a scientific background we talk about experiments, and there’s a debate about the experiments we’re doing and are they following traditional experimental design? How accurate is the data? And I think when we’re talking about our own experiments, you have to sort of say, “Well look, I’m trying to structure this and control it in a certain way but it’s for me, I’m not trying to release this in an academic paper.”

[Damien Blenkinsopp]: Let’s take a step back, n=1 experiments, I’m not sure if we’ve brought up the term before on the actual podcast, but basically, it’s an experiment just on one person. It doesn’t mean that it’s scientifically applicable to the whole population as in the experiments and studies that are typically done. They’re trying to extrapolate things to say they apply to more than one person and they can be used, but with an n=1 experiment, you’re just trying to see what works for you.
Is that how you’d sum it up or would you look at it a bit differently?

[Bob Troia]: Exactly. So we could run the same experiment, for example, and your results can be different from mine, but it doesn’t mean that either are wrong, it just means that we’re all individuals. Our results apply to ourselves and we go after a different way in terms of how we want to improve or optimize something.

[Damien Blenkinsopp]: So, the reason I contacted you is you’ve already done a lot of different, interesting experiments, basically, and you’ve put those up on your blog, so I wanted to talk about a few of those.
Where would you like to start? Which one was your first major experiment? Was it the diet or the blood glucose?

[Bob Troia]: Yes, my entry point into Quantified Self and biohacking was starting a blog to essentially just share the information I was collecting. I thought maybe it could help other people or inspire them, get feedback on what I was doing.
One of the early experiments I was running was around diet. I hate to use the word “diet” because I wasn’t trying to lose weight. Again, being an entrepreneur, a CEO of a company, and being very active, playing sports, and working out, I got to a point a couple of years ago where I just was basically exhausted; I was broken down. Even though physically I was in shape, I was being successful in my work, everything was great, I couldn’t figure out why I just wanted to curl up in a ball on the weekend and do nothing.
And so I was looking at my diet, what I thought was a healthy diet, meaning there was lots of protein through like chicken, and low-fat, and lots of pasta and carbohydrates and all that, and it was working for me, but as I delved into looking at different diets—and this was when the Paleo movement was taking off and people were looking at rethinking the traditional food pyramid and saying, really you need to incorporate more healthy saturated fats and quality proteins—and so, for me, that was the kind of beginnings of that experiment.
I actually posted about it before I’d even started. I was like, “I’m going to try this and I’m going to post about my first 30 days.” Because you’re not going to see huge changes, but I think even just seeing how you feel as a result of making a minor change, and if it didn’t work, I would just have stopped and done something else.

[Damien Blenkinsopp]: So you set a period of 30 days and you selected a diet. How did you go about choosing the diet? Was it just one you were drawn to or were you looking for something specific, very different from the diet you currently have? I don’t really like the word “diet” either; I think we should really call it nutrition, which is more about what it’s about. But that’s where it is; everyone says diet. How did you go about selecting a diet and the period of 30 days?

[Bob Troia]: In terms of the diet, I was researching, again, the Paleo movement and let’s call it nutritional plans related to the Paleo movement, and I happened to come across the Bulletproof diet—one that I think a lot of people are talking about these days—which is the sort of tweaked version of a Paleo diet.
I’d encountered Dave through various conferences and he himself was running a podcast, so he was talking a lot about the principles behind the diet and the logic behind certain choices and how you structure it all. For me, that’s what attracted me, it was sort of mapped out, there was a lot of information that he had put together and again, it’s similar to a Paleo diet, and I said, “Okay, well let’s look at it. How am I going to change what I’m eating in terms of incorporating protein and protein sources?”
So we’re talking about grass-fed, grass-finished beef and lamb; getting adequate seafood; cutting out sugars and pretty much all grains; no gluten; which interestingly, I realized through blood testing—I had an allergen test and it showed that apparently I was allergic to wheat and barley, not chronically in a bad way, but there was an allergic reaction that kind of went up there, and beer is something that’s my favorite thing in the world.
So just even having to start making changes about what I was eating, people thought I was punishing myself, but I was like, “No. I’m eating this big, great, awesome steak and I’m having butter on it and I’m eating tons of veggies and oils.” So the diet itself, that’s the nutritional side of it, and then there’s also exercise and how do you support that.
Going to the gym six days a week, working out for 2 hours a day, can also contribute to being exhausted. I know you’ve done podcasts on HRV and things like overtraining, that’s very common and so by changing a workout program as well, to something that’s more high-intensity but shorter, you can get a lot of the benefits out of it.

[Damien Blenkinsopp]: Did you do both of these things at the same time? And did you do some kind of control before? Did you take your blood markers before based on your initial diet, which was what you were talking about before, the kind of low-fat chicken, whole pastas? I guess I’d call it the typical body builder’s diet, it sounded a bit like it.

[Bob Troia]: Yeah, I had been getting regular bloodwork prior to doing this so I had some data, not like every month or three months, it was six or twelve months, but I had a good baseline.

[Damien Blenkinsopp]: Where did you get this data from? Where did you go to get your labs? How did you do that, did you do it through your doctor or some service?

[Bob Troia]: A little of everything. The older bloodwork was tied to past doctor visits, physicals; they weren’t as comprehensive but they had some of the basic markers in there. Before I started with the diet, I did a round of bloodwork. There are a number of online services that facilitate your blood testing. You can basically go online and buy this sort of package, then they will set up an appointment. Depending on what state you live in, some of it you can do from home, so you can mail it in; some you go to a lab and they draw it and send it to them.
I used a service called Inside Tracker early on, so that was, I think, for some of the before bloodwork.

[Damien Blenkinsopp]: So that’s very similar to Wellness FX, which is the other well-known one. I think those are the two major ones in the U.S. There’s just a new one in the U.K. that’s trying to follow the same example. But, basically, they’re self-service labs, which try to give you a bit of package of advice with it as well? But you don’t necessarily have to buy that package of advice.

[Bob Troia]: Yes, it will take your results, and when you go to look at them online, they’ll give you suggestions. For example, if a marker is out of optimal range, it will say, “You might want to consider eating more leafy greens,” or some dietary choices.

[Damien Blenkinsopp]: So what’s good about those services is they give you those ranges, which are a bit more functional generally than others. Compared to the standard—if you go to LabCorp or some of the standard things—the ranges they give are probably wider in most cases. Is that what you’ve experienced? I don’t know if Wellness FX try to keep it a little bit tighter.

[Bob Troia]: Yeah, and that’s the big difference between when you talk about traditional medicine and functional medicine. The reference ranges are typically built around our population, which is a generally unhealthy population. So you might be in the optimal range for the general population, but you’re not really… So something like a vitamin D level, you might be considered in range, but a functional doctor might say, “No, you want to be way higher than that.”
The reference range is to some degree—Inside Tracker, Wellness FX—if you’re switching to like a Paleo diet, you might see your total cholesterol number jump up and it will kind of go in the red, but a functional doctor will be like, “That’s not important. What we actually want to look at is your LDL cholesterol and, in particular, the particle size analysis of it.”

[Damien Blenkinsopp]: So this is where even when you do have a service like Wellness FX or Inside Tracker, where they’re trying to provide this online information and support for your understanding of the markers, it’s not necessarily going to give you the best responses. There are, basically, more complex situations like you’ve brought up, where you can have high cholesterol and it’s not an issue at all; it’s just based on the type of diet you’re having, but in other scenarios it might be a problem. I’m sure Inside Tracker is the same, like Wellness FX, is like, “Uh, your LDL is too high,” but in its own conditions, it’s not necessarily so. So this is where it becomes really helpful if you have a functional medicine practitioner working with you or someone who’s aware of this stuff.

[Bob Troia]: Exactly, and I also think—not to single out those services—any service that’s providing just a syloid [check 0:15:39] snapshot of your overall lifestyle health, they don’t have access to all the information. They can show your bloodwork, but they don’t have like for example your genetic information, in 23andMe or something, so maybe there’s an issue there that’s genetic versus tied to a diet. Or having access to other bloodwork is great, but I support it with other types of testing that maybe will be something that was picked up through a saliva or urine or a stool test. So when you have all the information together, and that’s what your doctor will be able to look at with you, versus a service that only has one silo of information.

[Damien Blenkinsopp]: So when you started this, was there anything out of range or something that you focused on from the beginning in your results before you even changed your diet? Or was everything kind of standard and normal?

[Bob Troia]: Well no. Maybe I didn’t go back to the earlier bloodwork and notice it too badly, but when I put it all and tried to look at it side-by-side, things like testosterone were way down, really low.

[Damien Blenkinsopp]: What kind of level were you at?

[Bob Troia]: The 400s.

[Damien Blenkinsopp]: So is that the bottom of the normal reference range?

[Bob Troia]: Yeah, even lower. I probably had it tested and it even dropped below that, but it was considered very low. I think some of the reference ranges I’ve seen, they want you over 600; it just depends on what service you’re using.
I was noticing that my white blood cell count was consistently low, really low. My doctor—I had in my lab results, it showed the white blood cell count and usually they bold something if it’s out of range, to notify you like, “Hey, this is out of range”; it was in red and it said something like, “Bring it to the doctor’s attention,”—he was like, “okay, I’ve never seen that before.” And so that was something that we can talk further about.

[Damien Blenkinsopp]: I had a very similar situation that came up. My white blood cells were basically depressed, but they weren’t crazy out of range; they weren’t acutely problematic. My experience was that traditional doctors didn’t know what to make of that and it was basically, “Well your immune system isn’t responding as well as it should for some reason,” which isn’t so defined. I don’t think, in traditional medicine, if it’s slightly out of range—I don’t know how much you were, if you were just under the reference range or something?

[Bob Troia]: No, it was pretty low. Basically, under 2.

[Damien Blenkinsopp]: Yeah, that is pretty low, pretty severe. It’s interesting because did you discover this stuff when you started testing? Or did you feel like, you said you were feeling exhausted, but it doesn’t sound like you felt like you were sick or anything like that?

[Bob Troia]: Yeah, that’s one of those things where I’m a person who’s never sick, I don’t miss work, I had to function at a certain level every day; essentially, what I was doing was I was getting through life almost with like a parking brake on. When you actually look at the information and see how it can change with time, so a lot of it, you sort of uncover it, but yeah, you might feel great.
I felt good until I was hitting those moments of just exhaustion. On a day-to-day level, I think otherwise—like emotionally and everything else—I felt fine. It was this exhaustion, which we can talk a bit later about, things like addressing thyroid and adrenal problems, which can really tie into that.
But just to get back to the story on the diet, so I did it for 30 days. I got my results and my total cholesterol went up about 100 points; my HDL, which is good cholesterol, went up, it was actually really high which is great; and triglycerides stayed in a pretty good range.
The doctor I was working with at the time kind of looked at it, we did some other testing—this doctor is actually someone who had some background working with people who are eating these sorts of diets and Paleo—but even there he was like, “Well, it’s a bit out of range but we’ll do some additional testing.” They thought the cause was purely that it was a fat malabsorption issue, meaning you’re eating all these saturated fats and your body needs to be able to process them and quit them out, if they stay in your body and float around, it will elevate your LDL.

[Damien Blenkinsopp]: So what was funny about that was when I started the Bulletproof diet—I’ve been following pretty much the Bulletproof diet, with some modifications here and there but mostly that, for about three years now—and I got exactly the same LDL number as you. Mine jumped to 232 and I went to see a traditional doctor to get my results in Bangkok and he was like, “You’ve got to stop eating saturated fat,” and that’s the traditional line on it.
So you had a doctor who understood a bit more about what those kinds of levels can mean. But it actually did freak me out a little bit when it went up to 232, I don’t know how you felt about it?

[Bob Troia]: I wasn’t too worried because I was expecting that to happen and then when we actually went in, this doctor knew to do a more detailed LDL test. There are different types of LDL in your body: there are these larger particles, which can float around your body, they’re not going to cause any issues; and the smaller LDL particles. When you hear about people having heart issues and just chronic heart disease and all that, it’s because these little particles are getting wedged inside of your veins and arteries. So when you look at the LDL particle size analysis, for me, it was completely the large fluffy ones, so it was actually not an issue.
But, when we looked at the white blood cell count, this doctor sent me to a phlebotomist, who’s a blood specialist, and we did a whole bunch of other blood tests. This was a renowned doctor and he looked at the results and saw it was low and started asking me questions about, have you been working around solvents and chemicals?
Part of a low white blood cell count is not that your immune system isn’t kicking up; it’s that it’s being suppressed. There could be something at play that’s keeping your immune system from activating, so when you think about it, well why was I never getting sick? Because being sick is an expression of your immune system kicking into action?

[Damien Blenkinsopp]: Yeah, this is interesting. I think this is something that a lot of people don’t understand. Let’s explain this a bit.

[Bob Troia]: I know people, it’s the wintertime, and they’re always sick, they’ve got a cold or the flu. I never got colds or the flu or anything, and I’ve always thought of it as being a sign of resilience. But really what it was doing is my body just isn’t mounting any response to anything.

[Damien Blenkinsopp]: So if your body’s not fighting, you don’t get any inflammation, you don’t get all the symptoms because there’s no war going on, basically, where there should be a war going on with you trying to beat the thing down.
I went through exactly the same thing, and I haven’t really been sick for a very long time also. But we’re talking about it being a negative, which most people think, “Wow, it’s great that you never get sick.” Do you get sick now? Have you started to get sick yet?

[Bob Troia]: No.

[Damien Blenkinsopp]: I mean, me neither, but I think it’s a good thing. I think it has something to do with all the stuff I’m doing to keep things at bay, although— maybe we could talk about it—I think you were taking reishi, we could talk about that a little later; maybe you’ve noticed some of the stuff I did.
So anyway, you went through this process and after the 30-day diet, was LDL the only thing that changed or was there a whole bunch of other stuff as well?

[Bob Troia]: Definitely there was a difference in testosterone level; it jumped up. There were other reference markers, things like C-reactive protein, which is an indicator of inflammation—I’ve always had it pretty low; that remained low. There wasn’t anything else that was too out of range, other than the white blood cell count after that and the cholesterol numbers changing. And there are a number of ratios. I had done some research and found you can do things like the HDL to total cholesterol ratio, or triglycerides to HDL, or HDL to LDL, and you’ll get a ratio. They’ve figured out certain ranges that if each ratio is below a certain amount, your risk for things like heart disease or other ways of being a predictor of those types of things can be diminished. In those cases, I was in the green for everything. So, even though my total cholesterol and LDL went up, my HDL had gone up so high and my triglycerides were low enough that the ratios were actually good ratios.

[Damien Blenkinsopp]: I think what you’re illustrating is that when someone goes and gets a bunch of these labs or something, sometimes if we find something out of range, if it’s an LDL or triglycerides or something like that, that’s kind of like the first step. Because after that that’s going to be like, “Okay, this is something to look into,” and then you look into more detail of that. So there are different types of LDL, as you were explaining earlier, or there are ratios of triglycerides, which are more important. So, often when we have something out of range, it’s really like a starting point versus a final point.

[Bob Troia]: And then to follow up on that testing, that doctor basically was saying that I had some fat malabsorption issues, so we did some follow-up tests, some stool tests basically, and it did show that there was a fat malabsorption issue happening.
Then we did some microbiology work on it, as well, which shows you your gut flora, certain bacteria that could be good bacteria or bad bacteria in your gut. It showed that, for example there’s a good species of bacteria you often see in probiotics, lactobacillus; I had like none, which basically allows for some other bad bacteria to maybe grow or thrive in your gut.
So you had to then start going back through time, and I’m like, “Well, I probably didn’t receive any probiotics back in the day.” Maybe ten years ago I had been bitten by a tick that I was getting treated for. I didn’t have chronic Lyme disease symptoms, but I spotted the bite mark and I went to a doctor right away and basically, he gave me a bunch of antibiotics to treat it. But those are the types of things that can just wipe out all your gut flora because antibiotics get rid of the good stuff and the bad stuff.

[Damien Blenkinsopp]: So, you decided after this 30-day test to continue with the same diet, the Bulletproof diet?

[Bob Troia]: Yeah, exactly. So I was like, “Okay, I like how I’m feeling, even just in 30 days. Let’s keep doing it.” Basically, I think it’s been a little over a year and a half, almost two years now since that first post when I was about to start it, so I’ve got a lot more history now, I’ve gone down that rabbit hole of looking at different issues and seeing what’s linked to what.
Because what they started uncovering was, we’re looking at things like cholesterol and elevated cholesterol and other things like might show up in bloodwork, but really there was combination of things happening, and it wasn’t diet related. Diet almost uncovered it; the diet didn’t cause it.
Related to some chronic infections that were lingering, as well as some thyroid/adrenal issues, so talking about things like energy and being exhausted, it wasn’t necessarily chronic fatigue but there are tests that can show your body’s response, and like I said, everything is connected to each other. So you kind of go down this path where you start with the bloodwork on the macro-level, and now you’re working your way towards like, “Okay, if we could fix this one thing, that’s going to help ten things.”

[Damien Blenkinsopp]: Yeah. So I’m sure all of the people at home are like, “Wow, that sounds like a lot of different stuff and it’s complicated, and how do you figure out that you have to look at all these things” if you want to either resolve health symptoms or improve your performance?
Just take a step back here, since you went on this journey—so it’s about one a half years ago, maybe a bit more—how do you feel in comparison to when you started?

[Bob Troia]: I feel great. I used that analogy earlier: you always think you feel okay or you have moments where maybe you didn’t feel great, but you still feel like generally, “I’m okay, I’m not getting sick.” And as you remedy some of these issues, you realize that you kind of had that parking brake on, you were getting by. If you were able to be achieving things at that level with those conditions, once you take that parking brake off you just feel even more amazing.

[Damien Blenkinsopp]: I’ve got a very similar story to tell. It’s like I didn’t realize my full potential, pretty much the whole of my life because there were some lingering issues all the way through. As you work through this stuff, you realize that your performance, your functionality, just your general well-being can be potentially at a much higher level than you’ve been used to and you’ve accepted this lower standard, and you don’t realize that you can really feel really great and really operate at a really high level if you get there.
I feel way, way better after—I was talking to you just before about—taking steps up; you fix one thing and it takes you a step up in terms of energy or whatever is lacking for you, and every time you fix one thing it takes you up that other step, and slowly you get more and more out of life and out of performance and everything.
So, in terms of the diet now—you’ve been doing it one and a half years—has that really worked for you? Has that changed other things? You were talking about testosterone; have there been any benefits that you’ve noticed or that have been recorded? And how often have you been tracking your progress with that?

[Bob Troia]: We fast-forward now let’s say a year and a half from when I started, again, we talked about the initial 30-days or so and seeing things like total cholesterol going up a hundred points or so and LDL. After the year and a half, I did a round of follow-up work and my numbers actually went down to levels that were lower than before I even started the diet. Things like total cholesterol and LDL; my HDL still was higher, and testosterone was almost double from before I started.

[Damien Blenkinsopp]: So these are all positive changes by the sounds of it.

[Bob Troia]: Exactly, and this was really due to introducing some program around thyroid and adrenal support because an underactive thyroid has been linked to elevated LDL. It’s almost like that’s a shortcut that I had to spend a year and a half trying to get to because we had to try out and figure out a bunch of different things.
My doctor was basically, “Okay, here’s what we’re going to do. We’re going to support your thyroid while we deal with these chronic infections because it’s putting too much stress on your body and we need to support your adrenals and thyroid,” and sure enough, those numbers went right up.

[Damien Blenkinsopp]: We were talking about this just before the show and how important it is: you found a doctor that could work with the things that you had uncovered. You got these tests that weren’t kind of right and you wanted to explore them and find how to fix them and work on them, probably in quite a bit of detail. You sound like a guy who is really interested in performance and stuff, and you were trying to optimize.
That isn’t normally what doctors are there for, and so most of them would be like, “Well, I don’t normally work on this stuff.” So how did you go about finding a doctor that had the same mindset as you and was going to work with you on the way you wanted to with this?

[Bob Troia]: Yeah, it was a long process. When I first got into the biohacking side of things and looking at getting some of those tests and data, I was working with my local primary care physician, just someone local, and I could do some of the testing but the person wasn’t necessarily experienced in digging into those numbers; they just knew reference ranges. Then I moved on to another doctor.
Through research I was trying to find people with more of a functional medicine background. I know you’ve done some interviews around functional medicine, but it’s basically going from treating the symptoms to treating the causes or identifying the causes. So I found someone that was local, and when I first started doing some of this bloodwork and some of this testing, he was good at identifying certain things, but I think there was a point where that was it, he couldn’t really dig deeper.
Then, just by talking with other people I know and introductions, I came across another doctor who within a 15-minute phone call was like, “Okay, I’ve seen this ten times before. We’re going to test for these things, I’m pretty sure that this is the issue at play,” and sure enough, more just because that person was so used to seeing that.
And what’s great, even with a functional doctor, is they don’t have to be in your town. My doctor is in Austin and I’m in New York. We set up Skype calls every month; we can do a lot of this stuff virtually. We still see each other a couple of times a year face-to-face, if we run into each other at a conference or something like that, but it’s been great.

[Damien Blenkinsopp]: Yeah, I’m the same. I work with several doctors on different issues based on their expertise, so it’s kind of bringing the point that you just referred to, is when they get something and they’re like, “Oh, that looks like something I’ve seen before.” If you have an initial discussion with a doctor and they can get that feeling for it, that’s really good.
The other thing I look for is someone who’s got this investigative mindset because—if you’ve got some just small issues and you’re not sure what they are and there’s no clear answer, or you’re trying to improve your performance or energy levels and you’re not sure what’s there—if there’s not a straight answer, you need someone who’s going to try to sift through the data, have a bit of an investigative approach to it, and maybe even go and check out some research or something.
So I’ve got a bunch of friends who’ve come across problems in their lives and they’ve eventually found a doctor who’s got a bit more of a detective, investigative mindset and will go and do homework and look around and look at different tests until they find an answer, which isn’t necessarily everyone’s mindset when they’re looking at this. I don’t know if you’ve come across that kind of mindset before with someone you’ve worked with?

[Bob Troia]: From the standpoint of having a different experience with different tests?

[Damien Blenkinsopp]: Yeah, just having “I don’t know what the answer is right now,” but let’s investigate and just keep working on it until we find some kind of answer. Because I think the reality is, the world of biology is really complex. A lot of the terms we’ve brought up today and a lot of the things you’ve been talking about, it can be really, really complex to uncover little things that are holding you back in different ways. So it’s a bit like a maze and a puzzle sometimes that you’ve got to solve.
If you just look at the straight tests sometimes, you’re not going to get any clear answer. We were talking earlier about stool tests and I’ve probably done about ten stool tests right now, and sometimes an answer comes out. So sometimes you need someone to look through and dig through the data and keep going for a while, rather than relying on something they’ve seen before.
Whereas you brought up the example where if you find someone who’s had direct experience with your specific problem, I find it’s a kind of specialized approach. If you look at the business world of consulting for instance, they have specialized consultants versus general consultants, and the general consultants are problem solvers, they go in there and investigate, they’re like detectives; whereas the specialized guys really know their stuff really well.
I kind of see the world of doctors as a bit similar. You can find the general guy who’s going to investigate, maybe he’s a functional medicine doctor and he’s just going to keep investigating and looking at stuff, and he’s going to figure it out by problem solving; whereas the guy who will really be specialized in one area will really know it really well and he’s seen 500 different patients, or perhaps they’re athletes, trying to achieve the same goal and helping them with that.

[Bob Troia]: Yeah, where I see everything with Quantified Self going ultimately, is this concept of a “quantified team.” You’ll have your doctor, and your doctor can look at data and give you some information; you’ll have someone who can analyze data, like we were talking earlier, we’re not all data scientists. We can collect this information and have it, but to do correlations and really in-depth analysis, most of us don’t know where to start with that.
Having almost a coach or an interpreter of that information can sit between you with your doctor, or if you’re an athlete or something you can articulate that with other coaches etc., and I do see this idea of almost like a team. Instead of it just being you and your doctor, you’re going to have a group of people that will all work together to be that sort of team, but I think they each bring a different skill set to the table.

[Damien Blenkinsopp]: Yeah, that’s a great way to put it, I hadn’t heard that before, but that really is a great way to put it and it will be interesting how that takes place. I guess I kind of already have some kind of team going, I don’t know about you, but I hadn’t thought about it like that. I guess that’s just the way it’s evolving naturally.
Okay, it sounds like you were just frustrated that you weren’t solving things and you kept on looking and meeting people, and it was more like networking that you managed to meet someone that was relevant to you.

[Bob Troia]: Yeah, in my case it was. For me, I also have a really strong personal interest in understanding how human physiology works. So I’m sitting there reading books, consuming information; I’m not a scientist, I’m not a doctor, but I like to be able to understand. If someone shows me the lab tests, the doctor is going to explain things to me but I want to understand it at a deeper level. That’s just my curious nature. I think a lot of folks probably don’t want to dig that deep, but that’s just an interest of mine.

[Damien Blenkinsopp]: I’m the same way. For me, I kind of see it as my responsibility and, depending on what you want to get out of your body and your life, I see it as a really good investment of time. The more you understand your biology…
When I think back to four years, five years ago, and I was already working on fitness stuff like you and optimizing it with numbers and stuff, but now I have so much control over my body, just all sorts of functions that I didn’t realize that you could control; I thought they were things that just happened. We were talking about energy dips; I have my own adrenal fatigue documented that I’m working with. But when you learn a few tricks and things, even if you do have adrenal fatigue and you’re working on recovering from that, you can actually avoid those periods of exhaustion—which I guess some of your exhaustion you talked about before was either thyroid or adrenal related?

[Bob Troia]: Yes. You were talking about a certain test you take; it’s like a saliva test that, over the course of 24 hours, you basically can plot a curve to show your cortisol and DHEA response. I had a similar situation where it was showing my cortisol levels were actually pretty close to what the reference should have been, it mapped pretty closely, but when you looked at the ratio of cortisol to DHEA, it was completely out of whack. It rings an alarm saying, “Okay, there’s something going on with adrenals here,” and supporting it.

[Damien Blenkinsopp]: I found that a really valuable test and I feel like everyone should do it, especially driven entrepreneurs, anyone who’s just working too hard, basically. Too many hours a week or too stressed, and I think that’s pretty much everyone these days. It seems like everyone is stressed that I talk to, they don’t sleep enough and they work too hard, and often they’re working the weekends or the evenings as well, or in the mornings, if they can fit it in.
So when you think about all of that, I think a lot of people could maybe check that test out and they might find that there’s something they can do there to improve their energy levels and so on.

[Bob Troia]: Yeah, and with regards to the diet, I was also incorporating intermittent fasting. Essentially consuming all of my meals in a six-hour window each day.

[Damien Blenkinsopp]: Just out of interest, we’ve talked a little bit about intermittent fasting with Jimmy Moore a little bit when we were talking about ketosis, but which hours of the day do you choose to eat at and why?

[Bob Troia]: My window for intermittent fasting is probably I’d say between 13:00 and 19:00 or noon and 18:00; it depends. You try to time it so that you start right after your workout, but the way I was doing it was you sort of cheat because in the morning if you do a sort of special coffee, which I’m sure you’ve talked about before, with butter and MCT oil, because you’re getting fats in your body, you’re getting the calories but you’re still in ketosis.
But with regards to intermittent fasting, if you had adrenal/thyroid issues, you should not be doing it. I’ve had to cut it down to a day where it was on a weekend or a day I wasn’t working out because it is stressful on the body, and for me it was like, why add the stress that you don’t need right now until you’ve fixed the other issues?

[Damien Blenkinsopp]: I think that’s an important thing because intermittent fasting has become a bit of a trend. It seems very much in fashion these days, but for some people it’s not right for, or at least not right to be doing every day. Like you could do it from time-to-time, but doing too much of it, like you said, depending on where you’re at, can be a bit problematic as can the type of training that you did.
I was just wondering, how often do you get your blood labs done now? I guess you started to do it more routinely when you started the diet and everything, but how often do you do them? And which markers are you keeping an eye on primarily?

[Bob Troia]: I would say in terms of ongoing testing, every three months. If I’m addressing something more short-term, I can test on a monthly basis, but I would say three months is my good window because if I’m addressing something, that’s usually enough time to get an update and see where my markers are at.
In terms of what I’m checking, so those can range from basic panels, where you’re doing like we talked about, cholesterol markers, glucose, nutrients like calcium, magnesium, vitamin D, all those sorts of micronutrients, then getting into things like white blood cells, [and] C-reactive protein; that’s more of a traditional panel.
When I’ve had to dig deeper, I would do these additional tests. One is called an MDL test, where they can check for chronic infections and stuff, but it’s all done through bloodwork, so you can dig a little deeper. The main issue is these tests cost money. You either need a good insurance plan or you have some way to get those costs down.

[Damien Blenkinsopp]: So is that what you recommend? For you, three months is about right cost-benefit for those sorts of labs?

[Bob Troia]: Yeah, and I think you could basically, there are these at-home services that we were trying to launch that you could draw it every day if you want. Maybe there is a case where you are trying to do a before and after of something, but to go to a lab and do a full panel, for the average person, I think even six months is fine. But if you’re trying to deal with any issues or you need an update, I think for me, three months is a pretty good window.
Also, some of the testings, so Wellness FX or Inside Tracker, they have certain panels and for even the most expensive panel of the highest n=1 they have, there’s a limit to what they can provide. So what I’ve found through my doctor was by him ordering some of the tests, we can do much more comprehensive panels.

[Damien Blenkinsopp]: Had you been using Inside Tracker for those basic blood markers most of the time? What have you been doing for the routine tests you do?

[Bob Troia]: The routines had been on and off with Inside Tracker. I don’t know if you talked about the weird laws that exist in this country about all these testing services?

[Damien Blenkinsopp]: The weird laws that exist everywhere.

[Bob Troia]: So for example, with Inside Tracker, I was using that for the basic panels and when I needed to do some additional things, they would send me to a LabCorp facility, which is like a big chain of laboratories—you go there and they can do it all. In New York State, they can’t do it.
So there are rules about what they can and can’t do. I couldn’t just go there and set up the appointment; my doctor, however, could arrange and say, “Go to this lab,” and he could actually negotiate lower prices for certain things. So you might see on your bill that this bloodwork cost 2500 dollars, but you’re going to pay 100 dollars or something out of pocket, and suddenly you hit your insurance thresholds.
My point is, it’s tough because I love the convenience of those types of services, and it’s just that I happen to live in a state where it’s really difficult.

[Damien Blenkinsopp]: So New York is a bit more difficult. As far as I know, I think there’s one other state. New York always comes up as a specific state where this self testing is more complicated. There are also a bunch of other services you can use, like DirectLabs and other self-service websites that basically you can hit up and order testing. In fact, I found most tests these days I can order.
But as you say, sometimes it’s worth either you working with a functional doctor or someone from your kind of team and he’ll be ordering them for you. There is a cost-benefit to that often, I think, versus ordering them directly. And of course, he’s going to be checking them and looking at them, and he’s got his experience looking at tons and tons of tests of these types and he’s also probably got a mountain of data in all of the tests he’s stacked up over time, which I found this kind of thing is really valuable as we’ve talked about before.
But it is changing and that’s one of the things we’re going to look at in this podcast. Things do change over time and all these new services start coming out more and more.
So in terms of intermittent fasting, that’s something you cut down to fit with your personal situation, where it kind of comes back to an n=1 experiment thing, where it’s really a personal thing and what suits you. How did you know to change that? Was it because of one of your tests? Or was it a feeling and then you looked at it?

[Bob Troia]: No, and in that case, actually, intermittent fasting worked great for me in terms of body composition and I was able to confine my meals into that window and still get everything I needed to eat. It was more just after talking with my doctor, we said, “Hey, let’s do everything we can to support your thyroid and adrenals. Let’s take as much stress as we can take off your body.” And so we decided to cut back the intermittent fasting just for the sake of let’s just remove a potential stressor.

[Damien Blenkinsopp]: It sounds like a great idea, so that’s some of the stuff I do as well, try to reduce all stress. So, that’s intermittent fasting. One of the other interesting things you’ve played about was blood glucose.

[Bob Troia]: Yeah, I was one of the early 23andMe customers, so I know that now if you sign up for them to get your genetic testing done, they don’t give you access to these research and tests that can say you’re more likely to develop this condition or have this response to this medication.

[Damien Blenkinsopp]: So, just to be clear on that because I bought in the early days like you, so I still have the health interface. I think the difference is just the interface they present to you; they don’t present the information summarized about your health, is that correct?

[Bob Troia]: Well I thought they ran into some FDA issues where they can only show people their ancestry information now.

[Damien Blenkinsopp]: I think it’s in terms of display but you can still download your whole…

[Bob Troia]: Yeah, you can download your raw data, but there’s no interpretation of it.

[Damien Blenkinsopp]: That’s right. Basically, we see a health panel because we got in early and they’d already shown it to us so they’re still allowed to show it to us, or I guess they promised us so they made some deal with the FDA that they’re allowed to keep showing us it. But they’re not changing it; it’s just what we saw from the start.
And then you guys, if you do download the data, then you can run it through some open source tools, but they’re not as nice and summarized, you have to do a lot more work with those if you want to get to some of your health issues.

[Bob Troia]: I’ve used Promethease, is one, and Genetic Genie.

[Damien Blenkinsopp]: Genetic Genie is a bit more simple actually, but Promethease is a lot of detail and a lot of work to get through it. Did you find it the same?

[Bob Troia]: Yeah. I thought the Genetic Genie was interesting though because it got more into a methylation analysis, which was for me kind of an interesting set of data that I wasn’t getting from anywhere else.

[Damien Blenkinsopp]: But you can get that from Promethease. You get everything basically from Promethease because it’s a bigger open source thing. The Genetic Genie guys are focused on a few different issues like detox and methylation, so they’re looking at specific panels. And there’s another website Ben Lynch mentioned, which looks at specific panels like that.
Anyway, so there are ways you can use this data from 23andMe and you can get different sets of health issues looked at by going to different sites basically, and putting your diet in there. So the data is still there if you want it; it just takes a bit more work than it used to.
In terms of the blood glucose, you found an issue that you wanted to look at?

[Bob Troia]: So going back to the blood glucose, my 23andMe data showed I had an elevated risk for Type 2 diabetes. It was about a 10% higher probability, meaning the average person has I think 26%, so it’s already a pretty high likelihood, and mine was 36%, and I know I have a few members in the family, like uncles and grandparents, that have developed it over the years. So I just got interested in looking at my glucose response and wanted to understand the effects on glucose and what affects me, and I’m going to take whatever proactive steps I can because I don’t want to develop it at any point in my life. So really this experiment just started as, let me just understand my blood sugar.
I went and bought a 12 dollar blood glucose meter, I ordered it off of Amazon, and you get the test strips and you prick your finger every morning. It’s a little meter that just says your blood sugar level. So I would do what’s called a fasting glucose measurement, that’s basically, I think you have eight hours of fasting before. Every morning, the first thing as soon as I wake up, I would just take a reading. I started establishing a baseline just to understand and get some basic levels.
I was reading up about different supplements and things people have been taking to better regulate glucose, both stabilizing it—so you have less swing of fasting glucose—but also overall, just bringing it down. My fasting glucose was around 85 mg per deciliter which is considered okay, but when you see these organizations like Life Extension Foundation, they actually want people down and closer to 75 – 78.

[Damien Blenkinsopp]: Jimmy Moore, when he was on, he was saying that his is pretty low, it’s around 80 and that’s where he keeps it. So when I looked at your data, what I found was interesting is that’s the blood test you got initially, 85 was it to start off with? And then when you started tracking it, what did you see? Because I was really surprised. I didn’t know that it worked like this when I saw your numbers.

[Bob Troia]: I did a 30-day baseline and in some days, I’d wake up and it could be 80 or so, and then there were other days where I would wake up and it could be about 105, there’s a bit of a swing.

[Damien Blenkinsopp]: Do you think that’s the accuracy of the device? Did you look into it? Because I didn’t expect big swings like that. When I’ve had my tests done in the past, which is just the three-month routine like you, I will have 85 and then maybe there were some times where it was 95, and I’d be like, “Oh, I don’t like that. I don’t like the fact that it’s up there.” But it seems from your data, that it’s actually swinging up and down every day. Is that normal or was that the device? Or is that just kind of how we are generally?

[Bob Troia]: I think in terms of the device, I did a bunch of research and listen, none of these are going to be completely accurate. I think the one I chose was probably within 5% accuracy. Because when you think about it, who are the people who are using these devices? They’re people who have diabetes, typically, so their glucose is so high that whether it shows them that they’re at 160 mg per deciliter or 150, they’re still too high. So the lower ranges that we’re talking about, you know, 5% is still okay, but some of these meters can be 10% or more.
And to your point, yeah I think that if you’re not controlling it consistently each time in terms of I take it almost the same time in the morning and I’m taking the sample from the same location, I’m not squeezing my finger too hard because if you squeeze the blood out of a little prick you give your finger, that can affect it. So I took a baseline and then I started supplementing.
I came across this supplement called oxaloacetate and it’s all natural, it’s part of the Krebs cycle, which is a whole cycle of conversion going into vitamin C, and it’s found in a lot of plants. It’s concentrated into a pill form so you take one every morning. I took one every morning, and over the course of the next 30 days I kept doing those fasting glucose readings, and I actually saw, “Wow, it actually reduced that swing that we’re just talking about. It condensed and the overall trend went down.” So it actually stabilized and lowered, which is really cool.

[Damien Blenkinsopp]: So why do you find this cool? Because I guess we’ve got to take a little step back. We talked about blood regulation with Jimmy Moore, but what kind of benefits were you looking for from this, yourself? Is it because of your genetic profile that you were basically managing your risk as you saw it? Is that what you feel the benefit is for you?

[Bob Troia]: I think long-term, it’s part of a longevity strategy. I can say very easily that today my glucose was in what’s already considered a good range, but it wasn’t optimal. I was trying to understand not just how could I bring it down into an optimal range but also what things affected it. Because once you’ve collected all this data, you can then look at other aspects of your life and go, “What affects these values?”
So for example, plotting your values on a chart over time is one thing, but if I average out what does Monday look like versus Friday, there’s a difference. Monday’s the beginning of the work week, more stressful; Friday’s end of the week; Saturday’s the weekend. For me, I could see it just very visually, there were these trends. I also noticed that if I exercise—I play a lot of soccer—and if I have a soccer match—I usually play in the evenings—the next day, no matter what, even if I went out with the team and had drinks or did whatever, my value the next day goes way lower. I only uncovered that by taking other data from other areas of my life or looking at my calendar and going, “Huh, that’s pretty interesting.”

[Damien Blenkinsopp]: Well you said you’ve got this detective mindset. How did you go about that? Was it you were looking for ideas?

[Bob Troia]: Yeah, because you have the data—now you have this repository of these values—and now you’re trying to figure out ways to correlate it with other areas of your life. For example, I was looking at exercise. I decided to look at my calendar and I superimposed dates that I had to travel cross country, like fly, and guess what? During those windows of time, I was taking measurements throughout the entire process, it definitely spiked. So travel for me is stressful, it actually took a few days to get back to those pre-existing baselines.

[Damien Blenkinsopp]: Wow, because that’s a big deal. And travel is something we say is stressful but it’s not often we hear some data on it. This proves that travel is stressful for you. But that sounds like a pretty clear case for you. An n=1 experiment you could probably say that you are going to be stressed next time and you can kind of prepare for it.

[Bob Troia]: And then with the experiment, I then stopped taking that supplement for example and just kept taking markers for another 30 days and I tried to replicate it, and when I replicated it—the beauty of these n=1 experiments are you often fail or maybe you set up to prove a theory and you fail but you learn something different so it’s not a failure per se—it didn’t work.
What I realized was it was a combination of things. It was last winter, we had gotten a bunch of snow in New York so our soccer season had basically gotten cancelled because we play outdoors all year round and the field is covered in ice and snow and so they were like no games. So that exercise that I was getting, I wasn’t getting. Also I had changed my commute from going into an office and having to walk to the subway and walk to the office, to working from home for a period of time.
So I actually then looked at my step data, not that I ever bothered tracking steps or looking at my step data for a health related reason, but I did notice that my activity was actually decreasing. So what does that say? The low hanging takeaway there is: if I exercise my glucose will go down, which is probably a “No, duh,” kind of thing but for me, it just showed the direct benefit, a short-term and a long-term trend.

[Damien Blenkinsopp]: You’re just making me think of something, and we’ve kind of touched on this before in podcasts, but when you were shown that direct benefit, it makes it clearer for you and it makes you more motivated to act upon it. Now you feel like you’ve got this extra additional motivation—tell me if this isn’t you, just me projecting—but I feel when I understand something a lot clearer, when I’ve seen the data, then it’s a lot easier for me to keep up that habit because I understand it to a clearer point of view.

[Bob Troia]: Absolutely. I think part of the folks like us who are doing all of this, I guess we’re like these A-type personalities and we’re trying to not only understand all this but we want to reduce this to the most simple terms, like what’s the one thing I can do to get to the same result? It’s not about creating more headaches, you’re trying to optimize and gain more time in your life, not take up more trying to do all this tracking.

[Damien Blenkinsopp]: Exactly, yeah let’s talk about it because it probably sounds like a lot of work. Do you feel like it’s a lot of work? Could you talk a little bit about how much time it takes to get the labs or track things or analyze it?

[Bob Troia]: I would say what takes the most time is probably the analysis, just sitting down with the data, because like you said, you have to have this sort of detective mindset often times because you have information until it makes itself clear to you in some way or you want to test out a theory. Most of the things I’ve done are almost in retrospect, where I collected information already and then I’m trying to figure something out versus I’m constructing an experiment and these are the variables. I’m pretty bad at that; I’m almost better at the reverse—here are the results; let’s figure out what created that result and go backwards.
From a time perspective, I think even collecting information, so going for a lab test and getting your blood drawn takes a few minutes; it’s not that big of a deal. For most of my data, I’ll wear a device on my wrist that’s collecting a lot of passive biometric information all day. I think the goal is to not create a lot of burdensome things on yourself.
I know there are a lot of people who track all the meals they eat, like they use MyFitnessPal or something, and they know a lot about the meals and track their calories, and I’ll do that every once in a while for a few days, just as a gut check. I’m not going to do it every day, it takes too much time. For me, it’s a headache. I eat consistently so I’m not too worried about it. Once I do a gut check or a sanity check, I know its okay.
But I think that’s the problem, I think a lot of people feel like this becomes so burdensome and takes up so much time, I think you have to pick your battles. There are certain things that you want to do every day and if it takes you a minute to do it, that’s great. Other things are being done passively, so you’re collecting that data and it’s just a matter of finding the time to sit down and analyze it.

[Damien Blenkinsopp]: There are very few things I do. I saw you noted on your blog, I think, you’re interested in meditation and you were looking at doing some—I don’t know if you’ve done any yet.
I’ve been using Calm for a few months now, I got it in September or something, and so I try to do that every day. I’ve, over time, been able to improve my scores with this EEG device, basically it’s a consumer EEG device and it’s got an app which shows you when you’re in one state versus another. I found it useful because I want to meditate anyway, but going back to what you were saying, I want to make sure I’m spending my time productively, and for me, the extra effort of tracking it has a huge impact in terms of improving my meditation.
Meditation is different for different people, but for me, I’ve been experimenting with binaural beats, which I think you mentioned too, the Holosync one, and I found that’s working for me. But I like to know stuff is working for me before I commit to it and I put that extra energy in it, so I did a few experiments and it seems to be working for me so I’m sticking with it. I’m just trying to give people a mindset in terms of time like you were saying.
But if something doesn’t seem to be working, you just kind of drop it, and then the stuff that does work, you’ll keep it because it’s beneficial. So some of this just kind of works out itself: you’ll keep the stuff that is beneficial, so it’s worth the time. Like I take my HRV readings every morning because when I see a dip, I know there’s some kind of problem coming or I should chill out for a day if I don’t want to get really tired or something.
The things that are beneficial I think you find that they stick and you make the time for them automatically, and the things that aren’t, you just kind of work them out of your routine. Is that similar to the way you found it? Or how have you gone about it?

[Bob Troia]: Exactly the same. I think there are certain tasks you can do that take up very little time. Like I had a little routine in the morning, when I wake up I’d do a handful of things or before I go to sleep, but then there are other things I’ve done where whether it was a piece of technology or I was trying to understand myself better, but once I did the analysis or once I gathered data, I have a box full of devices, you throw it out and you’re like, “Great, that was useful.” I think people get hung up on the gear a lot of time, and I think often you can figure out solutions that don’t require the technology per se. You could take a spreadsheet and something like little body fat calipers can give you a body fat measure and you don’t need a 200 dollar scale to do that.

[Damien Blenkinsopp]: That’s right and there’s all this excitement around the devices and everything at the moment; all the companies are investing in it. Of course because that’s what the market is, but so far, there aren’t any crazy, awesome devices yet; there are a few interesting ones here and there and it’s a thing in progress.
I’ve done some of the similar ones to you, I had the Basis watch. I wore it for a year, it broke and then I didn’t buy a new one because, honestly, I didn’t do that much with the data. It would be kind of nice to know my activity levels just to check that I’m keeping up and it’s a nice convenient way just to know that. Do you still use your Basis watch?

[Bob Troia]: Yeah, I have it on right now, and for me I was looking for something that gathered the metrics, and I felt it had the most robust set of data, even though they didn’t give you the data. We can talk a bit about it—I figured out a way to get to the data and I wrote a script. Given my technology background, I was able to write some code. I put it up on an open source website that people can use to download their Basis data.

[Damien Blenkinsopp]: Yeah thank you for that. I think that’s how I first found you, actually, because I was looking trying to get my data and I found your website, and I was like, “Oh, thank God someone’s solved this.”

[Bob Troia]: For something like that, that’s just passively collecting so I might not look at some of those numbers for a few months. Like right now, I’m actually about to go over all of my sleep data from 2014 and I’m going to do an analysis on looking at trends—how is my sleep by day of week or different sleep stages. I’m going to factor in when I look at things that happened in my life and did it affect my sleep. I don’t know what the answers are going to be, I’m not going into it with any preconceptions so that’s almost for me it’s going to be more like developing more self-awareness. I might be like, “Well look, I have this many sleep cycles but I don’t remember my dreams. What’s going on there? Why am I not remembering dreams?”

[Damien Blenkinsopp]: Has that been happening to you lately? Because I’ve had that a year and I’ve only just recently come across information that’s been helping me to figure it out.

[Bob Troia]: I have no problems sleeping. I’m actually a solid sleeper—I get eight hours a night—I have friends who are jealous of me, but does it mean I have quality sleep? I think it’s good, but for me, with dreaming, it could just be as simple as I started keeping a notebook next to the bed. As soon as I wake up in the morning I would try to think, and it was really hard for like the first week. And then maybe after a week, in the morning I’ll remember some minor detail of one dream, but then in the afternoon, other things will start coming back to me. So you have to almost train yourself.

[Damien Blenkinsopp]: So in your case, it was trainable? You could basically get your dreams back and it was a focus on dreams?

[Bob Troia]: I almost think it has a little bit of intent when you go to sleep of putting yourself in that mindset of you want to dream and then waking up and just being able to recall that information; it’s almost like an attention thing. It’s no different than you’re talking and I’m tuning you out.

[Damien Blenkinsopp]: That’s interesting. So the information I came across was a little bit different. It was through Tess actually. We had this guy called William J. Walsh—I don’t know if you’ve come across him before—on the podcast on episode 2. He does these labs that help you to assess basically micronutrient deficiencies or differences that are out of his functional ranges, and mine came up out of range. One of the things that it shows is an imbalance of B6, and when you have an imbalance of B6 then you tend to stop dreaming. So I think once I’ve rectified mine, it might kind of fix itself. But it’s interesting; I might try the experiment myself with the intent thing to see if that helps as well.

[Bob Troia]: Yeah, let me know how it works. Again, it’s something that I’ve started probably since the beginning of this year. I’ve just been more aware of trying to develop, but I think there will be value in it regardless, and it’s not something that really takes any money or time. You just need a pen and a notebook.

[Damien Blenkinsopp]: I’ve always loved that idea of trying to think of a problem you need to solve before going to sleep. I think Ray Kurzweil does this and he’s one of the guys who says he always does that. Just solving things in your dreams is a great way to do stuff efficiently that you wanted to do.
Coming back down to the practicalities; you’ve been doing this for quite a while now, what are the biggest time wasters you’ve found in the experimentation process about learning about stuff that works for you and what doesn’t, basically, and collecting data? Have you found that there are things that you were doing that are time wasters and you decided not to do them anymore? Or what have you learned about n=1 experiments? What do you do today that might be different to when you started out?

[Bob Troia]: Obviously on the testing side of things, I wish someone had given me the shortcuts and said, “Do this, this, and this.” I have a lot of people come to me asking, “Just give me a list of five things I need to do.” It’s often not that easy because we are all different, so it’s not like it’s a clear linear path; it’s very branched.
For me, it would have been if someone early on could have identified some of the issues, it would have saved me a lot of trial and error just trying to uncover. That was probably why I started doing a lot of it myself in terms of trying to understand it better.
Time wasters, this is more just from the standpoint of looking at your data, everybody wants this hub: “Upload all your data and we’ll be the place for you to access all your information.” The problem is, for most people, like we said earlier, we’re not data scientists; we don’t know how to run correlations, we don’t understand all that. And so, you’re uploading your data to these places but then what? It’s just there.
Or I look at it from the standpoint of, if it can’t collect all of my data it’s useless to me. Take Wellness FX, they might be like “Okay, you can manually input all of your blood lab tests in here,” but maybe I’ve got some additional fields or something in it that it doesn’t support. Well now it’s not my complete record, so now I’m like, this isn’t really valid for me. I feel like I’ve wasted some time going through the process of getting data and massaging it and uploading it to certain places to try to have this hub. So I’ve had to do a lot on my own, make my own little ways of gathering it.

[Damien Blenkinsopp]: Do you use Excel?

[Bob Troia]: Yeah, and I’ve got things imported into databases so I can run correlations against it.

[Damien Blenkinsopp]: But I guess for the people at home, they should stick with even a Google Docs spreadsheet, anyone can use that; it’s very similar to Excel. I have a huge monstrous Excel, which is scary. A database would probably be a better way to do it if I could get my head round that.

[Bob Troia]: Spreadsheets are a perfect way to get certain data. Pretty much anything you collect you can import into an Excel doc or a Google Doc and then chart it and do whatever you need to do with it.
But in terms of time wasters—well it’s not so much time but it’s almost like a money waster I’d call it—there are a couple of things. There’s the shelf-life of a lot of this technology and tools. You buy this new cool gadget or whatever, and it’s like planned obsolescence. You know in a year it’s going to be outdated or someone’s going to come out with something new, or you just wanted to be the first one to have this shiny object.
I got a device that analyzes your posture throughout the day, and it was fun, I did it, it kind of showed me some insight on understanding that better, but at some point I’m like, “I’m done. I’ve used it. I’m done with it. I’m not going to wear this every day.” It happened with the Zeo sleep tracking, they were an EEG-based sleep monitor. The problem with their business was more from a consumer issue, where people were buying the product because they had sleep problems and the device said, “Yes, you have a sleep problem,” but it didn’t really give them a solution so people were like, “Well, thanks.” There’s that level of things and then I’ve also been burned a number of times on these crowd-funding campaigns with companies, and it’s not so much it’s their fault that they were doing anything shady…

[Damien Blenkinsopp]: It’s the nature of it. It’s like a pre-startup situation.

[Bob Troia]: Yeah, and so my policy now is literally I’ll just wait for the thing to come out because you know what, you’re still going to get it if it’s out.

[Damien Blenkinsopp]: So just to outline what you’re talking about; what are the issues that come up when you’re buying those things?

[Bob Troia]: I think there are a number of issues. Like you said, they’re startups typically, so if they’re developing a product, they probably have no experience building a piece of hardware, so they don’t realize all the issues that can happen along that process from manufacturing to distribution, so when they say we’re going to ship in March and it’s January, they probably mean March the following year. Nothing ships on time.
I’ve also had issues where there was a blood testing service that was coming out that was doing blood spot tests, so you have these little index cards and you can put a drop of blood on it and you can send them in at any time you want. I bought the top of the line pack because it gave me three years of blood tests and they started letting us send in our samples and they were collecting them, so I wasn’t doing other bloodwork because I was sending them monthly samples. And then they got into trouble with the FDA, who were basically “You cannot operate,” and so the company has just been in limbo.
There was another company—did you ever talk about telomeres?

[Damien Blenkinsopp]: Actually, I did want to talk to you about that. We touched on it with—do you know Aubrey de Grey? We talked about it a little bit. It hasn’t been published on my podcast, but by the time this comes out it will have been, so it’s kind of time travelling here. He’s been on and we talked about that, and he was pretty pessimistic about the use of this, but I’d love to hear your experience with the practical experience of that because I was wanting to get mine tested, and I think I still will just to see where they’re at compared to the norm.

[Bob Troia]: So a telomere is basically if you look at your DNA strands—just to give an analogy, it’s the one I’ve always been given—if you think of a pair of shoelaces and at the end of your shoelaces there’s a little plastic tip. Think of your DNA strands as having those little plastic tips but as you get older, they’ll fray and eventually fall apart and then your strands will shorten. So it’s kind of a sign or a marker of aging, because at some point your cells can only divide so many times and then they just die.

[Damien Blenkinsopp]: It’s the idea of this countdown. You know those little countdown timers that start at a hundred or something and then it chips away one each time, and when it gets to a certain level you don’t have any life. It’s like losing lives on a videogame.

[Bob Troia]: Exactly, you see the health wearing down. But in this case, this company was providing a service where you basically spit into a tube, you mail it in, and through your saliva they do a telomere analysis.

[Damien Blenkinsopp]: Which company was that?

[Bob Troia]: They were called TeloMe.

[Damien Blenkinsopp]: You say TeloMe; are they not here anymore? Or are they still here?

[Bob Troia]: They’re here—well I’ll get to that part—but basically, there’s a parent company that was more clinical, they would do testing more for labs and all that, and this was a consumer initiative they were doing. So the idea was you would spit in this test-tube, mail it in, and then you get a report and it shows you the analysis of certain telomeres that they’ve identified and it says where you sit in a reference range. So I got my results, the problem is, they can only compare me to other people who have used their service.

[Damien Blenkinsopp]: And who has used this service?

[Bob Troia]: That’s the thing. So I wrote them back, they sent me my results and I was like, “Uh, these don’t look too good. So you’ve got me compared to my age range, well how many people have you had so far that are my age range?” And they were like, “I think five or six.” I’m like, “Great. So you’re giving me results on a small sample size.”

[Damien Blenkinsopp]: Are the markers they’re using—this is something I’m always interested in—that have a lot of research behind them? So you can at least go and look at the studies, or they should be giving you the information of those studies, “In the studies this is shown to be good in healthy populations and bad in people with cancer,” or whatever, some kind of data on it.

[Bob Troia]: Well again, this was a case where I crowd-funded this initiative, which got me like a three-test pack. The idea was that I was going to do an experiment. I was going to send in my sample, do some things, wait a few months, and send in another sample to see if I was able to change the expression, or the markers of aging. When I went back to do it, I found out that the company no longer existed. Well the parent company still exists, they can’t operate in the U.S. though, [and] they got shut down by the FDA. So I was like, “Give me my money back,” and they don’t respond to you. They’re in Europe doing their thing but they won’t acknowledge or give you any information about the testing service.

[Damien Blenkinsopp]: I guess it’s not even the cutting edge, it’s a bit of the bleeding edge of all of these labs. Because the FDA is still figuring out what it’s going to do with stuff and what it’s going to allow, and as you’ve pointed out, already three companies have been told they’re not allowed to do stuff at least for the moment until they figure more things out.
There’s a lot of that going on and so I find sometimes a test will be available and then it’s not available and then it’s available again. That’s happened to me on several occasions, where a place I’ve got a test initially isn’t available there anymore and I have to go somewhere else to get it. It’s kind of like the bleeding edge right now, and if you’re going to get into the more specialized stuff, like telomeres or stuff like that, it’s going to take some navigation, I guess, and expect some of these problems.

[Bob Troia]: Like I said, I don’t necessarily fault the companies all the time because they’ve run into some regulation or things like that, but I guess from my standpoint it’s like you are gambling. Funding these initiatives, they may come out some day, but it’s often not going to be what they were positioning themselves as, whether they pivoted or did something different.

[Damien Blenkinsopp]: We should look at crowdfunding as a bit of a gamble because it’s a pre-startup, it may not come out. And the thing I’ve had it there’s often a huge delay. I think I’ve bought a couple of things and it just took about six months to a year longer than I thought. I got Biomine Basis when they first went to crowdfunding. I don’t know if Basis was crowdfunding or if it was just pre-orders, anyway, it was a pre-order and it took about a year and a half to get it. It was a long time but I got it eventually, and maybe it wasn’t exactly what I wanted.
I think now the way I look at it is it really is the bleeding edge and if you want to play around with some of this stuff, I guess at the moment you’ve just got to consider that’s going to happen a lot. You’ve got to do more due diligence.
We were talking about the markers and the lab tests, the surprise you had with the telomeres, and I think that’s a pretty key thing because you could be getting useless data as well.

[Bob Troia]: Absolutely, and they wouldn’t have told me that unless I asked them, and I think with regards to crowdfunding, I’ve met a lot of great people in the space of QS and biohacking, and if it’s a company that I think is working on something cool and I’m happy to support them. But when there’s something where it’s a new technology or a new service, and it’s almost like do you want to be the first, but does it mean being the first today? You make that payment or crowdfunding donation and then you’re like, “Alright well I’ll see you in a year and a half.” I’d rather just be like I’ll wait a year and a half and then I’ll pay 20 dollars more for it.

[Damien Blenkinsopp]: That’s what I’m doing now. Every time I catch myself going to click on a crowdfund, I’m like, “Look, why don’t you just wait. You can buy it in a year when it’s actually there.” That’s kind of the way I’m looking at it these days, I think it’s from us tried and tested people. I don’t know if everyone’s going to start feeling in that way soon.
There was one called the Omega I was pretty excited about, I don’t know if you saw that one. I don’t think it’s come out yet still because it tracks a few more things.

[Bob Troia]: There was also one called Angel Sensor, which basically is creating a wearable, like a wrist-worn, almost like a Basis, but the entire platform is open source. So it has a bunch of sensors and then you can build your own apps. You can just grab the raw data, and so I was like, “Wow, this is cool,” so I crowdfunded it, and apparently, they were sending out some updates a few months ago about it but I think it’s one of those things were they’re like, “Oh we will be coming out in March,” and then they’re like “We will be coming out in July.” So I think it’s ongoing to come out at some point, but I crowdfunded that over a year ago, maybe a year and a half ago.

[Damien Blenkinsopp]: I guess the other way we could look at it is, this area is going to grow and we’re helping it. If we contribute to crowdfunders, we’re helping it happen faster. Eventually these wrinkles and bleeding edge is going to start calming down as bigger companies get more involved and the environment gets better for these devices as the market grows and so on, and we’re kind of helping to fund for the startup if we’re contributing to these crowdfund campaigns and so on.

[Bob Troia]: Absolutely, and even from a technology standpoint, like you said, it’s moving along so fast. This is what we call planned obsolescence. You buy something now that you already know in a year it’s going to be smaller and better and faster, so you just want to have access to it.
The analogy I use, I’m a musician, so people have home studios and they’re into music and musical equipment, and they can go down this same kind of rabbit hole where they’re buying more gear, more expensive things, they’re like, “If I get that microphone, I’m going to sound so much better,” and I see that happening with biohacking. I see this new gadget comes out or a new tool and they think it’s going to make them better in a certain way. But ultimately, it’s up to them and their behavior that’s going to affect it. So I think sometimes we get too caught up in just the bright lights and shiny things. I think there’s always a simpler way to do it.

[Damien Blenkinsopp]: And even the lab tests, there’s like tons and tons of lab tests you can get down and they can be really specific and complicated, and sometimes it just takes the most basic ones to figure stuff out. And lab tests can start really racking up if you get into specialty tests; you can be paying thousands of dollars just for one lab, so you have to be careful. That’s what I’ve learnt over time as well, I’ve spent a fortune in specialist labs and sometimes I was tracking them too frequently and things like this. We were talking about the cost-benefit earlier; I had to really learn how to spend my money wisely when it comes to those things.
So in terms of other people that you would recommend to talk about practicalities, is there anyone else you’ve come across like you that’s done a lot of this stuff in real life? Or other people that you’ve learnt a lot from in this area who you think would be great people to talk to?

[Bob Troia]: I’ve come across and met so many awesome people over the last few years. Are you talking more about people that have some sort of public presence?

[Damien Blenkinsopp]: Yeah, someone other people could connect with them and find their stuff.

[Bob Troia]: The first place to look would be just going to the Quantified Self website, quantifiedself.com and they tend to show meet-ups from all around the world and they film them, and so you’ll see lots of great talks. Those will typically then link out to that person like they have a blog or a website or something where you can get more information on it.
When I got started in all this, I think some of the early folks that I was reading, folks like Tim Ferriss, Four Hour Body was a big thing for me to kind of start peeling back the layers of the onion.

[Damien Blenkinsopp]: Tim Ferriss is a good guy to follow. He still talks about different stuff he’s doing here and there.

[Bob Troia]: I know he’s got a podcast that deals with a lot of other things, but I was talking more around when I started reading that book, and a lot of people that are out there doing podcasts, they’re branching out into other areas. If you’re talking just on the biohacking/QS side, there’s one guy who basically does nothing but talk about HRV. He’s done all sorts of n=1 experiments around understanding himself through how is HRV affected based on other parts of his life.

[Damien Blenkinsopp]: That sounds cool. Do you know his name? Or we’ll put it in the show notes afterwards.

[Bob Troia]: Yeah, quantlafont.com. I’d have to look up the spelling of that. There’s another guy, [unclear 1:13:16] in New York, he’s got a blog called Measured Me. He’s blogged on and off over the past few years and the thing you’ll see is that different people tend to focus on certain areas, so I think he’s more into tracking mood and understanding emotions and those types of things versus other people that might be getting more into the biohacking, getting into data from the physiology standpoint of things.
In terms of others, are you looking for specific names of blogs?

[Damien Blenkinsopp]: Whatever comes to mind. If those are the ones you’ve come across or if you have other examples that might be useful to the audience basically, if they’re interested to learn more about this kind of stuff.

[Bob Troia]: I think a great resource for understanding this more is quantifiedself.com. They have forums as a community and a Facebook group. I know Bulletproof Executives, so if you go to bulletproofexec.com.

[Damien Blenkinsopp]: So he’s been talking about his diet and his coffee today for example.

[Bob Troia]: Yeah, but there’s a really, really active forum there that’s all broken up by anything you could think of. If you want to talk about any little sub-topic of biohacking, there’s going to be some conversations in there because the community itself is aggregated there. So beyond coffee, you can get some really great conversations there. And those are like the main places. I think look for meetups in your city or nearby; connect with other people that are like-minded. That for me has been the greatest. When you meet people face-to-face, you build those relationships.

[Damien Blenkinsopp]: And there’s a conference, you mentioned you’ve been to a few conferences. So you went to Quantified Self and did you go to the Bulletproof one?

[Bob Troia]: Yeah. Quantified Self tend to do two conferences a year. They do one usually in the Bay Area—I think there’s one this May—and they’ll do one in the fall in Europe, usually in Amsterdam, so that happens twice a year. And then the Bulletproof biohacking conference just happened a few months ago in L.A. I’ve been to the first one was a couple of years ago where there was a group of maybe 30 or 40 people, it was really small, and this year it was probably like 400 or 500 people. To me, it’s not that more people are into it. I think everyone’s always been into this stuff, I think they’re just finding each other.

[Damien Blenkinsopp]: Yeah it does seem like that and when you were talking about the forum on the bulletproofexec site, there is a lot. I was looking at it a couple of days ago and there are some really heavy post threads, with 10,000 posts or threads. There’s a lot of information in there now; it’s been going for a few years so like you said, there’s a lot of information and you can connect with a lot of different people there as well. But I found, like you, that conferences I can interact more with people face-to-face. It’s a great way to meet people into this stuff as well.
So you did mention your routines, I wanted to ask you if you have some kind of daily routine about tracking metrics, like first thing in the morning or in the evening? Or is there anything you do every day which you find useful in terms of tracking data or doing any of this stuff?

[Bob Troia]: I would say on a daily basis the trick is to allow as much of it to be passive as possible, so things like having some devices collecting biometric data or having something in my home that can measure my indoor environment passively, just those types of things are happening so I can always go back. Even just your smartphone is tracking my position so I can actually map out where I’ve travelled throughout the day. I’m just collecting that data, whether or not I use it.
But in terms of the morning routine, today for example, I woke up, and the first thing I’m doing is part of my thyroid program is I have to check my morning temperature every morning, so I have a thermometer right next to my bed. So as soon as I wake up I pop in the thermometer. I actually was using an old-school, non-mercury thermometer, it was like a glass one, but now I’ve moved to this Kinsa, which hooks to your smartphone and it takes it really fast so instead of having that thermometer in your mouth for five minutes, you can just do it in thirty seconds.
I do that, I get my temperature done; it’s already in my phone, I don’t have to write it down anywhere.

[Damien Blenkinsopp]: Wow, that’s a nice little hack, I didn’t know you could do that.

[Bob Troia]: It’s pretty cool. And then if I’m doing something like we talked about HRV, so while I’m lying in bed, I have a dresser next to my bed and have my Polar chest strap and my phone’s already there, I put on the chest strap and do a three-minute reading. We talked about HRV, you want to see where you are in relation to your baseline.

[Damien Blenkinsopp]: Do you do the standing or the lying down?

[Bob Troia]: Lying down. When I wake up in the morning I try not to even shift. If I’m under the blankets or over the blankets, I don’t change it, I don’t’ want to affect it. And then I’ll get out of bed and I’ll weigh myself because I have scales in the bathroom. Again, I have one of those wireless scales so automatically the data is uploaded and you don’t have to think about it.
Then if I’m doing any glucose related tracking like I’m in a window where I was like, “Okay, this is the month I’m going to track again,” I’ll take a quick reading right then. And then throughout the day, I guess depending on my schedule, in terms of what I would track, if I had blocked out time on a given day to work on any kind of mind-training, so it could be things like space repetition or dual n-back, there are pieces of software that help improve short-term memory or recall, I’ll use tools and do that for maybe 30 minutes. The trick is just finding the time to do that.

[Damien Blenkinsopp]: So me personally, I’ve gone through phases of n-back and also the luminosity; right now for instance, I don’t do either. Have you done these in phases like you’ll do for them for a while and then other times you’re not doing them? Or is it just a constant ongoing thing that you’re doing?

[Bob Troia]: I would say more with the dual n-back. Space repitition it comes down to what I’m studying with it. One of the things I’m actually working on right now, it’s more of a long-term experiment, [and] I’m trying to get better at playing poker. I’m trying to come up with ways of memorization techniques and try to become better at it. I’ve been going through a lot of exercises and reading these books and doing these tests. Take away any of the actual active playing cards, you have to build your working memory up.

[Damien Blenkinsopp]: That’s pretty cool. I’ve actually been looking at that stuff recently myself and starting to work on it. Like minds.

[Bob Troia]: For example, if you go to the gym or you’re working out, you might just be tracking your heart rate. My workout itself, it’s still for me either a notebook and a pen just writing down what am I doing today, or I type it into my phone.

[Damien Blenkinsopp]: So are you still doing the Body By Science? We had Doug McGuff on a while back and I saw you were doing that as well. Are you still doing that or are you doing something a bit different now?

[Bob Troia]: So I started off doing the Body By Science type of workouts, and then through that and through meeting folks in the biohacking space, I got connected with these folks that are doing a different type of training that’s built off what’s called isoextremes, which is essentially mostly body weight-type exercises where you’re pulling into a position. So the idea would be you have to do a wall sit where you basically go against a wall and you get down to a squat and you’ve got to hold yourself there for five minutes. But what you’re really doing though is you’re trying to pull yourself down not hold yourself up, and so there are a whole bunch of workouts around that. It’s more neurological training.

[Damien Blenkinsopp]: It sounds like you’re really intensely holding the muscles. It’s really intense effort.

[Bob Troia]: We could have a whole other conversation about that stuff because it also involves an electronic modality that you basically hook up these electrodes that are in very specific positions in certain polarities that allow your muscles to lengthen while you’re doing these exercises. Basically what you’re doing is you’re training your muscles but you’re also training your nervous system. Over time, it has a lot of impacts, everything from reaction time and speed, not just the physical benefits.

[Damien Blenkinsopp]: I find all of that stuff awesome.

[Bob Troia]: To me, that’s more like the bleeding edge stuff because I actually go to the gym with this stuff and people look at me. I always have someone coming up to me like, “What is that?” I have to explain it and eventually you start seeing the same people there so then they leave you alone, but you always get these funny looks.

[Damien Blenkinsopp]: One time I was in Bangkok and I was doing this specific exercise, and I actually came from the Body By Science guys, which was a very slow pull-up of one minute—I don’t know if you saw that before. Anyway, I was doing this one minute pull-up and this guy came up to me at the start and he starts asking me, “What are you doing?” I was in the middle of my exercise and it takes a lot of effort because it’s really intense, and he wouldn’t leave me alone, he was like, “Tell me what you’re doing,” literally for the whole minute. Afterwards I was like, “Man, seriously I’m exercising. I know it looks kind of different but…” So it does look different, and it does get people asking what the hell are you doing, you’re looking a bit strange in the gym.

[Bob Troia]: Yeah, I was doing an exercise where I was doing, imagine doing a curl, like you have a curl bar, and let’s assume you’re at the top position, you have to slowly lower it from the top position down all the way to the bottom but you have to do it over the course of five minutes. So people are looking at you like, “What the heck?”

[Damien Blenkinsopp]: Yeah, exactly, and it’s so hard. That’s very similar to what I was talking about. It’s really, really hard in terms of mental. That’s what I love about those things, like you were talking about the neuromuscular part, it’s really charging your mental capacity and you learn to push yourself way beyond where you start from and it’s just a mental game at first I find, and so they’ve looked into benefits of concentration and things like that once you learn to push yourself further than you thought you could go.
This has been such a great practical chat. I think this is the most practical chat we’ve ever had in terms of real life stuff and people doing it every day, so it’s great to hear about your routine. Also, just because that’s really useful to people like how could I implement this in my daily life.
If you were to give someone one recommendation that you think would be useful to them in their use of data to make better decisions about their bodies, health, performance, longevity; what would that one thing be?

[Bob Troia]: The biggest recommendation, I would say, don’t let it become a hindrance, meaning I think it’s ultimately how you feel. Its one thing to say I have a goal and I’m trying to achieve something, how do I get there. But if you’re going the opposite way and trying to understand your current state and what got you to that current state, I think as we talked about, figure out is there a way to do it without it becoming a burden. It’s like say even exercise; there’s no such thing as bad exercise, technically, as long as you don’t hurt yourself. So I think people can over think it, instead of just starting to do it.
I think if you’re just looking to improve your health or longevity, those are very different things, so I could give you a tip that’s diet-based where I would say, “Cut out sugar,” or something, but I think, for me, it’s more like the mental state you’re in to do it. These are people that have already made the decision they want to do this so start off and don’t let it become a hindrance; don’t try to do 20 things at once.
That’s a big answer but I was talking more like I think there’s a lot of information out there; I think you have to assess where you’re at and what your goal is. I think health is a very general thing, everybody wants that longevity, but there might be some people who are looking for a performance-based performance versus other people who are more focused on longevity.

[Damien Blenkinsopp]: So I guess what you’re saying is try and focus on what’s really important to you to start with to keep it simpler.

[Bob Troia]: Yeah I think people might even be coming at this not from the standpoint of “Something’s wrong with me and I need to fix it.” There might be people who are just “I like where I’m at and I want to be better.” And I think that mental state, I think you’re still striving to become better but I think you’re just coming at it from a different angle.

[Damien Blenkinsopp]: And the beauty of this is I think it’s really like this long slope. When you think of it as black and white, unhealthy healthy, but it’s really not; it’s this long slope and I think all of us can do better. You can push yourself up further to be better and you can be quite good like you’re saying.

[Bob Troia]: And I think people they’ll see something that doesn’t look quite in line, and instead of freaking out or stressing themselves out, if they feel okay I think ultimately that’s the gut check you always have to take: How do you feel? It could be physical, it could be mental, maybe your stress is due to things like your job or relationships or friendships, so the things that are outside of that, and so actually your biohack itself might be “Improve your relationships.”

[Damien Blenkinsopp]: Yeah, exactly. Great point. Okay Bob, so where would we find you? Where’s your blog? And is there anywhere else you’re hanging out online where we can find you and learn what you’re up to?

[Bob Troia]: Yeah, I detail all these happenings on my blog, at quantifiedbob.com. I have a Facebook page, a Twitter account, all under Quantified Bob, Google + as well, if you’re into that.

[Damien Blenkinsopp]: Where are you most active? Would it be the Twitter?

[Bob Troia]: Yeah, Twitter is the most active. And if you ever want to connect to my real life persona, myself, it’s just bobtroia.com. I tend to keep more of this stuff on the other account just to separate. That way, there are people who care about this that don’t care about my business stuff. But it’s very clear that I’m the same person but I just split my conversations up.

[Damien Blenkinsopp]: That’s cool. It seems like you’re a pretty diverse person—fitness, music, entrepreneur, tech—all this stuff going on.
Bob, it’s been great to have you on the show with all this practical information. It’s great for the audience at home. Thank you so much for making the time for it.

[Bob Troia]: Great, thanks so much for having me.

Leave a Reply

Recently, transcranial direct current stimulation (tDCS) or the non-invasive targeting of weak direct current (DC) to specific brain regions has received media attention. Among the scientific research community, tDCS has been a subject of great interest owing to its usage ease, relative inexpensiveness, and encouraging research results on a range of functions. Studies have seen tDCS accelerate learning, reduce symptoms of dementia, and improve attention in those with Attention Deficit Disorder (ADD). Understandably, a coinciding rise in the DIY community has also prompted an increase in consumer devices available for home use in hopes of mimicking tDCS’s potential neuroenhancement abilities.

This episode’s tracking will look at how to use different types of brain scans to understand the impact tDCS is having on the brain. In circumstances such as these, where the long term consequences are not known or understood, the tracking becomes even more important.

“What tDCS appears to do is to essentially turn the amplifier up, or the volume up, just a little bit on the brain areas that are receiving stimulation from the outside world. [Thus] you get a slightly larger reaction in the brain to stimuli that are coming in through endogenous pathways as a result of this exogenous tDCS stimulation.”

– Dr. Michael Weisend

Dr. Michael Weisend is a neuroscience pioneer in the research and broad range application of tDCS. He is an expert in the neurophysiological mechanisms of learning, cognition, and memory and has developed and advanced non-invasive brain stimulation strategies under neuroimaging guidance to enhance memory and other aspects of human performance. He has worked with the U.S. Air Force, Defense Advanced Research Projects Agency (DARPA), and the National Institute for Health (NIH).

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • In order to stimulate the brain to enhance performance, areas of the brain being stimulated should be matched to the places in the brain that are active (4:11).
  • Through image subtraction, the essential difference between two brain states (tired vs. rested, inattentive vs. attentive, novice vs. expert) can be identified. Once identified, the goal is to target stimulation in order to aid in the transition from an undesirable brain state to a desirable state (5:54).
  • Dr. Michael Weisend’s lab has mainly focused on learning. It will shortly start work with subjects with lingering symptoms from traumatic brain injuries (6:28).
  • In the near future, tDCS will have an impact in depression (7:10).
  • tDCS is inexpensive and could be a wearable for many (8:40).
  • Because of advances in neuroimaging, current is able to be placed into critical brain structures for specific tasks (9:50).
  • tDCS employs direct current (DC), which turns on and stays on at a steady rate; while machines found in physical therapy use alternating current (AC), which alternates current up and down (13:42).
  • DC current, instead of directly causing an activity, is thought to “turn the amplifier up, or the volume up” on the areas in the brain that receive stimulation from the outside world (15:32).
  • Using DC in tDCS allows for less variables to be involved (18:35).
  • There are various theories on what different brain wave frequencies mean, and different frequencies are thought to do different things. For instance, sleep and waking have different wave activities at various cyclic points across a spectrum (19:55).
  • Research has looked at a subject’s ability to find a target. Similar to the game Where’s Waldo, a subject looking for a specific individual would have to go through hours of imagery in order to complete the search, while simultaneously balancing essential components critical to the search. By studying multiple variables in conjunction with tDCS, Dr. Michael Weisend is able to see if, for a variable amount of time, subjects would make fewer errors (22:00).
  • In the case of traumatic brain injury, the damage is subtle and hard to find via conventional scanning. A more specialized test, the diffusion tensor imaging MRI, can often reveal damage to the network (24:15).
  • There are three places where to target stimulation: (1)where you sense (2)where you process and (3)where you act (27:45).
  • When the brain is stimulated, it is more reactive to natural environmental stimuli. In theory, when the brain is in a more reactive state, there will be a greater number of active cells. This allows for additional opportunities for neuroplasticity to take place. In other words, because more cells are firing and more cells are wiring, a more rapid acquisition of information, able to be measured by changes in behavior, take place (29:30).
  • MEG measures the magnetic energy produced by the brain, while EEG measures the electrical energy (33:00).
  • Carefully using tDCS, Dr. Michael Weisend has doubled the rate of learning in a Where’s Waldo type task (39:00).
  • Dr. Michael Weisend is biased for two reasons against the consumer devices: (1) devices currently out there do not take care of the electrode-skin interface; and (2) devices for home use have not been tested for safety or effectiveness (43:10).
  • There is an active debate in the neuroscience community as to whether electrical brain stimulation is more like caffeine or more like a cigarette. There currently are no imaging studies looking at the effects of long term stimulation with tDCS (45:07).
  • Could tDCS enhance performance? It could reduce the perceived effort. With the current level of understanding, however one might decrease performance instead (46:20).
  • In the future, Dr. Michael Weisend sees combined therapies, or closed loop therapies, leading the field (52:39).
  • White matter changes have been seen with tDCS; however, no grey matter changes have been observed (54:20).
  • Dr. Michael Weisend uses the original Polar Loop to track steps on a routine basis to monitor and improve his health, longevity and performance. He also looks at the actigraphy for information about sleep, and downloads the information to analyze if he is reaching his goals.
  • Dr. Michael Weisend’s biggest recommendation on using body data to improve your health, longevity and performance is to meditate a few minutes every morning. He recommends to think through your body, and mindfully self-check.

Dr. Michael Weisend

The Tracking

Biomarkers

  • Magnetic Fields: are assessed by magnetoencephalography (MEG). Neural activity in the brain results in measurable currents and magnetic fields. Magnetic fields produced by the brain are measured in the unit Telsa (T).
  • Electrical Activity: is assessed by electroencephalogram (EEG). When enough concurrent electrical activity is generated by neurons firing, simple periodic waveforms are distinguishable. Rhythms generated by electrical activity are measured by their frequency and amplitude. Frequency is expressed in the unit Hertz (Hz) while amplitude is recorded in microvolts (μV).

Brain Imaging Devices

  • Diffusion Tensor Imaging: a magnetic resonance imaging technique that captures how water travels along neurons in the brain. This test reveals damage to the neuronal network in traumatic brain injuries, which other scans may miss.
  • Electroencephalography (EEG): a method to record the electrical activity of the brain resulting from current flows within the neurons of the brain.
  • Functional MRI (fMRI): is a functional neuroimaging technique using magnetic resonance imaging (MRI) to measure spatial localization of brain activity through detection in associated changes in blood flow. Dr. Michael Weisend only sometimes uses fMRI, because it is an indirect measurement of brain activity.
  • Magnetoencephalography (MEG): is a functional neuroimaging technique to map brain activity using magnetic signals. Dr. Michael Weisend prefers to use MEG compared to other techniques because magnetic fields are less distorted by tissue or bone and the MEG allows measurement of neurons turning on and off hundreds of times a second, thus allows ongoing measurement of activity.
  • Functional MRI (fMRI): is a functional neuroimaging technique using magnetic resonance imaging (MRI) to measure spatial localization of brain activity through detection in associated changes in blood flow. Dr. Michael Weisend only sometimes uses fMRI, because it is an indirect measurement of brain activity.
  • Structural MRI (MRI): provides a picture of the brain. The MRI signal generated is dependent on characteristics of different tissue types within the brain. For instance, gray matter has certain cellular properties different from white matter and these differences are visualized by contrasts expressed in a MRI image.

Consumer Devices

  • Muse Headband: a consumer EEG device, used by Damien, to track different frequencies of brain waves.
  • Thync: Dr. Michael Weisend looks forward to this company’s consumer electrical brain stimulation device. He hopes their “safety record is as stellar as they hope it will be”.

Terms

  • Alpha Wave: the alpha rhythm is the most prominent EEG wave pattern of a brain that is awake but relaxed. When moving from lighter to deeper stages of sleep (prior to REM sleep) the pattern of alpha waves diminishes.
  • Alternating Current (AC): current that alternates with time in voltage.
  • Beta Wave: occurs at the highest frequency (Hz). These patterns are found when the brain is alert. Paradoxically, these rhythms also occur during REM (Rapid Eye Movement) sleep.
  • Closed-loop system: a system capable of diagnosing electrophysiological abnormalities and treating them promptly.
  • Delta Wave: are low-frequency (only 1-4 Hz) that increase during sleep. When moving from lighter to deeper stages of sleep (prior to REM sleep) the pattern of delta waves increases.
  • Direct Current (DC): flow of electric charge (current) in a constant direction.
  • Gamma Wave: a wave pattern with activities in sensory processing.
  • Grey Matter: areas of the brain containing unmyelinated neurons and other cells.
  • Neuroplasticity: the ability of the brain’s neuron network and synapses to change.
  • Sine wave: associated with an AC current. Dr. Michael Weisend describes it as “just a fancy word for something that goes up and down equally around zero amps, or zero volts”.
  • White Matter: areas of the brain containing myelin coated axons.

The Tools & Tactics

  • Transcranial Direct Current Stimulation (tDCS): is a non-invasive targeting of weak direct current (DC) to specific brain regions. This low-intensity electrical current is passed at a constant rate from electrodes applied to the head. This type of brain stimulation induces currents able to regulate neuronal activity. The effects of tDCS can be modified by the size and polarity of electrodes used, intensity of current, and the period of stimulation.
  • Transcranial Alternating Current Stimulation (tACS): is non-invasive targeting of alternating current (AC). Dr. Weisend explains, this is different from DC, because waves or rhythms are entrained into the brain. For example, if stimulated with 10 Hz, the stimulation will have a frequency of going up and down 10 times per second. Once to the brain, this frequency will produce a sympathetic rhythm at 10 hertz, but may also enhanced in amplitude. Thus, with tACS, determining the appropriate frequency of AC for the task is an additional variable.

Other People, Books & Resources

People

  • Luigi Galvani: is credited for the discovery of bioelectricity.
  • Roi Cohen Kadosh Ph.D.: has studied tDCS to enhance mathematical ability and found data indicating that brain stimulation may enhance one type of math, while decreasing an individual’s ability to perform another type of math.
  • Andrew McKinley Ph.D.: is a colleague of Dr. Michael Weisend, who has demonstrated that giving sleep-deprived individuals brain stimulation can have the same benefit as a cup of coffee.

Books

  • The Organization of Behavior: originally published in 1949, Donald Hebb first wrote the old (but still true) adage “cells that fire together, wire together” in this book.

Resources

  • DIYtDCS website: a blog, described by Dr. Michael Weinstein, that stays up-to-date on literature and has conducted interviews with the top scientists in the tDCS field.

Other

  • ElectRX Program: a DARPA program aimed at identifying and studying biomarkers to monitor body and organ function. It will also look at what equipment is needed to monitor, and then interact with the system electrically to change its function.
  • Nootropics: are a wide variety of both pharmaceutical and non-pharmaceutical enhancers to improve one’s cognitive abilities. There is little known about their long term effects.
  • Pavlov’s dogs: initially, a bell and food were presented together. After a few times, the bell alone would cause salivation. Thus, Pavlov’s dogs learned to salivate to the sound of a bell in anticipation of food.

Full Interview Transcript

Click Here to Read Transcript
[Damien Blenkinsopp]: Michael, thank you so much for making time for the show.

[Dr. Michael Weisend]: Oh, you’re welcome. No problem. How can I help?

[Damien Blenkinsopp]: You can help with clarifying a lot of crazy stuff.

So, to define what you’ve been doing, it sounds like you’ve worked with a lot of different neuroimaging technologies in order to find out how to apply tDCS technologies to accelerate learning. Is that a fair summary of what you’ve been up to?

[Dr. Michael Weisend]: Yeah. When I do work on the brain stimulation stuff, I always assume at the outset that I’m dumb, not that I’m smart. And so the way that you need to approach stimulating the brain in order to enhance performance is to match the places in the brain that are active with the places in the brain that are being stimulated in order to maximize the effect.

So we have used magnetoencephalography, that measures the magnetic fields that your brain generates when it becomes active. We have used EEG, which measures the electrical part of brain activity. And then we’ve also used structural and functional MRI. Structural MRI gives us a picture of the brain, and functional MRI gives us a picture of the brain that includes the places where you are using oxygen in order to support brain activity.

[Damien Blenkinsopp]: Great. Your goal is to see which parts of the brain are active, and trying to stimulate the same parts to kind of emphasize activity in those areas. Is that correct?

[Dr. Michael Weisend]: That’s correct. So what we do is we examine the brain in two conditions. So, in the first condition, you want something that is not optimal. So it could be tired, it could be inattentive, it could be a novice.

And then we measure the brain in second conditions. So you could measure it when somebody is performing at expert level after a bunch of training, or you could perform the neuroimaging after a good night’s sleep, or you could image when somebody’s paying very good attention.

Then you take those two images and you subtract them. Once you subtract them, you have the essential difference between the two brain states. And for us, that is where we have targeted our brain stimulation. Is to find the difference between brain states, and try to target stimulation in order to aid in the transition from an undesirable brain state, to one that is more desirable.

[Damien Blenkinsopp]: Great. To give the audience a broad idea of what this could be applied to, I saw a TEDx presentation where you outlined, I think it was five different applications you saw as viable. I understand that not all of them have been attempted yet, potentially. But what were those, and which ones have you actually already attempted to, or done some work on, and it’s been effective?

[Dr. Michael Weisend]: So, we have mainly focused on learning in my lab. We’ve also done some work with vigilance, and we’re about to start work with subjects who have traumatic brain injuries and lingering symptoms from those.

In the TEDx talk, I was trying to make things very understandable to the general population because, as a neuro nerd, we kind of talk in code sometimes, stuff that’s not understandable to everybody. Not because they’re less smart, it’s just that we have different vocabularies because we walk in different shoes every day.

One of the places where I think that tDCS will have an impact in the very near future is in depression. So there’s some very good work out of the National Institute of Health in Washington D.C., and out of several labs in Sao Paulo, Brazil, who say that you can alleviate the effects of depression by stimulating the cortex between your ear and your eye, kind of on the top of your head. We call it dorsal lateral pre-frontal cortex.

[Damien Blenkinsopp]: And it’s been pretty effective. So, some of the other areas you noted down, just for example, which you already kind of mentioned, was being tired, being stressed. Which of course is a huge thing these days, because who isn’t stressed, and we hear a lot about the health impacts of that.

So that’s an interesting thing. Slow; being slow, being forgetful, and you’ve mentioned sad and depression. And then even treatment of certain brain disorders, or diseases potentially.

[Dr. Michael Weisend]: Yes.

[Damien Blenkinsopp]: So this is kind of looking at the future, and you’re TEDX presentation was aimed at the layman. I thought you did a great job, it was very understandable, even by me. So, yeah. I think you achieved that objective, and I encourage the listeners to go and check that out, before, potentially, you listen to this. It might be a good intro to get started with .

I thought what we’d now is take a little step back and talk about tDCS. What is tDCS? Where did it come from, how long has it been around? What’s kind of the basis for using this versus some other potentially similar technologies? Why are you focused on this one?

[Dr. Michael Weisend]: I can tell you why we’re mainly focused on it, and that’s because it’s inexpensive and it’s very light, and it could be put into a wearable for just about anybody.

So, where did it come from? Well, Luigi Galvani, back in the 1700s, used to shuffle around on the carpet and generate static electricity, and then touch the nerves that were attached to frog muscle in order to demonstrate that electricity caused the muscles to move. And there’s even some stories, some anecdotes, from the ancient Greeks and Romans, where electrical fish, electric eels, were touched to people’s heads in order to get rid of headaches.

So, we’re not talking about something new here. This has been around, it was used in the 1800s to try to cure paralysis. Some very good work was done on this in the 1960s that we rely on still today.

But there’s been a dramatic increase in the number of locations. I think primarily due to the fact that we have now abilities, based on neuroimaging, to look into the brain and actually do a really good job of trying to place current into critical brain structures for specific tasks, instead of kind of taking a guess at where those critical pieces of brain might be and placing electrodes in locations on the head that are based on lesions in literature.

So, the lesions in literature approach will get you so far, right? So, the lesions in literature approach more or less is the idea that if you take a piece of brain out, and a function stops so, for example, speech stops, or being able to move your hand stops then there’s this kind of fallacious idea that that function resides in that spot. And so people have turned that on its head and said, well if function resides in that spot, and we put electricity into that spot, we should change the function of moment, or speech, or what have you.

But there’s a problem with that, and if you want to think about this in a kind of a colloquial way, let’s talk about where right turn is in a car. Right? Is it in the driver’s brain? Is it in the driver’s hands? Is it in the steering wheel, is it in the steering linkage, is it in the front wheels? Right, where exactly is it?

And so, in that case, that’s a lot like the brain. Because in order for you to speak, there has to be a whole bunch of ares working together. And in order for you to move your hand, there’s a whole bunch of areas that are working together. Function does not reside in one single spot in the brain. Behavior is supported by a network of areas that work together.

[Damien Blenkinsopp]: That’s very interesting. So are you talking there about the connections between, say, the hand and the brain. And these days we also hear about the gut brain access, and the relationship between the gut and the brain.

Of course, you’re focused on specific areas of the brain, but do you think one day that we would be looking at stimulating other parts in tandem? I understand that you’re not stimulating the hand and the brain at the same time in your work, you’re focusing on the brain. So, could you sort of extrapolate a little, that idea?

[Dr. Michael Weisend]: Exactly what you are talking about now, where you stimulate in the periphery in order to influence the central nervous system or influence the connection between the brain and the central nervous system is right now the topic of a DARP request for grant proposals.

So it’s of the Electrx, E-L-E-C-T-R-X, program, or electrixs program, and they’re looking for a couple of things. One, what are the biomarkers that you might monitor in order to know that something’s amiss in a system. And two, what are the pieces of equipment or the gizmos that you might use to monitor, and then interact with the system electrically in order to change function.

[Damien Blenkinsopp]: I just thought of an analogy for people at home, because they’ve probably seen some of the info commercials on TV. You know the old electricity stimulated ab belts people would wear to get abs, Six Pack Abs machines. I’m not sure if they every worked, but is that exactly the same technology?

[Dr. Michael Weisend]: It’s not the same exact technology. So tDCS is something that turns on and stays on at a steady rate. So if we say two milliamps, it comes on slowly, comes up to two milliamps, stays at two milliamps for a period of time, and then ramps back down to zero. The ab machines or, if you go to PT they can do this too, it is physical therapy they can stimulate your muscles in order to make them move, to break up spams and stuff like this.

And those machines work on an AC current. Or, an AC current is one that alternates up and down. It’s like the electricity that comes out of your wall socket, but at a very low, low, low level. Right? You wouldn’t want to try this by sticking wires into a wall socket, you’d kill yourself. And that AC current can ramp up quickly and ramp down quickly, and it’s that ramp up quickly and ramp down quickly that causes the contraction of the muscles.

[Damien Blenkinsopp]: So do muscles work rather than an on off basis, they work on an AC because it goes negative, positive.

[Dr. Michael Weisend]: Yeah. What you’re essentially doing there is you’re causing, the AC current causes the release of neurotransmitters at the neuromuscular junction. So at the place where the nerves come into the muscle, there’s a gap between the end of the nerve and the beginning of the muscle, and there’s a substance that travels across that gap to cause the muscle to contract.

It’s called acetylcholine. It’s what’s called a neurotransmitter. And so the electricity, the AC current simply causes that acetylcholine to be released, and the muscle to contract based on the same mechanism that it would if impulses came down the nerve.

[Damien Blenkinsopp]: Great, great. Thank you for the clarification. Now coming back to the brain.

So we’re using tDCS, which is a direct current. And roughly how much time do you typically apply it for, or does it really vary according to what you’re doing? And what is the reasoning for a direct versus an AC? It’s a constant stimulation versus intermittent stimulation of the brain. What’s the reasoning behind that?

[Dr. Michael Weisend]: There are people who use AC currents on the brain. Those also cause changes in behavior. We use DC current in this case, because the way we think tDCS works is that instead of directly causing activity in the brain, what tDCS appears to do is to essentially turn the amplifier up, or the volume up, just a little bit on the brain areas that are receiving stimulation from the outside world.

So, when I think about this, I think about two terms, right. One is endogenous stimulation, which means from a natural pathway inside, and exogenous stimulation, which is from outside and maybe not through a natural pathway. So, if you take tDCS, it is an exogenous type of stimulation where you put it on the head. A whole bunch of electricity goes through the scalp, and a little tiny bit of it gets through the skull, and into the brain.

And that little tiny bit causes the neurons, we think, to be slightly more reactive when there are stimuli coming in through endogenous pathways, like the eyes and the ears, and smell, and etc, etc. Touch, right. So, in that case, you get a slightly larger reaction in the brain to stimuli that are coming in through endogenous pathways as a result of this exogenous tDCS stimulation.

With an AC current, you’re doing something different. So the AC current, essentially, if you put in a sine wave a sine wave is just a fancy word for something that goes up and down equally around zero amps, or zero volts then what you do is you’ve entrained rhythms in the brain.

So if the stimulation is at 10 hertz, it means the stimulation is going up and down 10 times per second, then you will, in the brain, get a sympathetic rhythm at 10 hertz, which is either enhanced in amplitude or generated de novo from whole [unclear, caw 17:33]. And so in that way, you have to with TACS, which is the alternating current, you have to know first that you’re getting electricity into the right areas, but then you also have to know that 10 hertz is important for your task. Or 12 hertz, or 40 hertz, or whatever you’re going to put in.

So, again, we go back to this place where I assume I’m dumb, and what I do is I put in the simplest thing I can think of and in this case it was DC current that would enhance a reaction to naturally incurring stimuli in the environment, without the baggage of having to know now not only where to put it, but also what frequency is important for the task. So it just starts getting more and more complicated as you start adding in things like, oscillations, random noise. There’s a variety of things you can add in.

[Damien Blenkinsopp]: Basically, it makes more sense to focus on tDCS because there’s less variables involved at this stage. And it sounds like we’re still on the cutting edge, and to introduce more variables is just going to make the task that much more difficult to actually use effectively, or to make research start paying off, in terms of coming up with answers. Is that the theory?

[Dr. Michael Weisend]: Yeah, that’s it exactly. I prefer to keep it as simple as possible, and try to work out the simple stuff before we, walk before you can run.

[Damien Blenkinsopp]: Exactly. Great, great. I think people have also heard of different frequencies of waves in the brain. I own a Muse, this device EEG consumer device you’ve probably heard of. And that tracks some of the different frequencies, alpha, beta, delta. Delta waves in the brain. So we’re just talking about some frequencies.

Are they related, because it sounds like when you wear these EEG devices that it’s tracking the whole brain, right? It’s like we’re having the same frequency of waves for our whole brain. But it sounded like, when you were just talking about this, that we can have different waves and different areas on the brain, and it’s actually a bit more complex. So what is the kind of model that exists today?

[Dr. Michael Weisend]: Different frequencies are thought to do different things, and it’s most clearly seen in sleep. So, in waking, you have beta activity, alpha activity, gamma activity, all across the spectrum. But when you go into sleep, you go through periods where you drop out lots and lots of the other frequencies, and you get delta, which is one to four hertz. And then when you dream, when most people dream, you come back up and your brain almost looks awake again. And then you drop into this delta.

So, what do the difference frequencies mean? Well there’s all kinds of theories out there, but I would say one that I think has really kind of held water for a while is that the oscillations are the way that different pieces of brain talk to one another.

Okay, so if you are engaging this network that we talked about before, like left turn in a car, you have to have oscillations that are complimentary in pieces of that network that are talking to one another. And it might not be that they’re the exact same frequency, but it’s important that they happen together.

So you might see alpha, or beta activity in the occipital lobe when you’re looking through an image, and that might elicit gamma activity in the frontal lobe, or one of the temporal lobes. But they are temporally related, and they are related by what’s called phase, where when the cycle of one is going up the cycles of the others are in a specific relationship to that. They can also be going up, or it could be driving that phase down.

[Damien Blenkinsopp]: Okay. It sounds pretty complex.

[Dr. Michael Weisend]: Oh, it’s the most sophisticated math in neuroscience right now, is trying to figure this out.

[Damien Blenkinsopp]: Okay, right. So, again, focusing on just stimulation versus non-stimulation, versus all of the different frequencies. You used a variety of neuroimaging technologies to try and target which areas were effective for which tasks. Which tasks have you been looking at? Like which kind of case studies, where have you worked on, to give people an idea of what kind of applications in learning you’ve been looking at?

[Dr. Michael Weisend]: We have done a lot of work for the US Air Force, and the US Air Force has images to look through for targets of interest that you might want to track, you might want to forget about. Whatever that’s going on on that day.

So, in order to think about, what is that game really about, it’s really like Where’s Waldo. Right? So let’s say that you are looking for a specific individual. If you’re looking for a specific individual, you’ve got to go through hours, and hours, and hours of imagery in order to complete that search. So, the things that are critical to completing that search are vigilance, knowing what the target looks like, knowing what the target looks like when it might be disguised.

So, we’ve looked at all that kinds of stuff to see if we can get people to, essentially, play the Where’s Waldo game for a variable period of time, and in that period of time make fewer errors, in terms of either losing the target or mis-identifying a target, or kind of falling off the wagon in terms of attention. All of those things are what we’ve looked at primarily.

We’re working now with people who have traumatic brain injury, and in this case we’re looking at veterans who have traumatic brain injury. In those veterans with traumatic brain injury they report lingering symptoms in terms of memory, attention. And that’s why we think we can have an effect, is because we can, in a healthy person, we can have the effect on memory and attention.

And so we’re now going to try to push that stuff out to people who really need it. To get back to a space where they can function in society as a healthy person, instead of trying to enhance the abilities of already healthy people.

[Damien Blenkinsopp]: So when you’re talking about injuries, is it structural damage, or is this post-traumatic stress disorder, or is it a kind of variety of different symptoms reports of which aren’t necessarily structural? So there’s not like bits of the brain actually missing or atrophied, or is there a range of different conditions?

[Dr. Michael Weisend]: So it’s a range of different conditions. It’s almost always the case that somebody who has lingering symptoms after traumatic brain injury has at least damage that is subtle. It might not be visible on conventional CT scanning, CAT scanning, or conventional MRI, but if you do some highly detailed and highly specialized scans, it is often noticeable. And one of those techniques in MRI is called diffusion tensor imaging.

The brain is connected, one end to the other and side to side, by fluid filled tubes called axons. And those axons carry electricity from one piece of the brain to the other in this network, like we talked about for right turning a car. So, you can imagine that your car wouldn’t turn very well if you pulled part of the linkage apart that moves the front wheel. So you can turn the wheel all you want, but the front wheels might not respond.

So in people with traumatic brain injury who have lingering symptoms, a specialized test called diffusion tensor imaging can often reveal that damage to the network, which is not obvious in more conventional, easily done, turn-key or canned scans that you would get at your local hospital.

[Damien Blenkinsopp]: Let’s talk about the different ways you’re quantifying changes here. Just to give people [an idea].

Are we talking about functional versus structural? Is the important thing you see as the functional aspect? Because the structural technologies I think most people are used to are the CT scan, the MRI, magnetic resonance imaging, which basically gives you a map of the structure of the brain.

If you add a bit of contrast, it will come up with some of the white matter, which is still basically the structure of the brain. It doesn’t necessarily say which bits are active versus which bits are non active. And in technological language, they say functional in terms of trying to understand how the brain’s actually working, whether it’s active or non-active.

So is most of the work you’re doing looking at understanding whether it’s active or non-active, or are you also looking at the structural changes? Because another thing that comes into this is plasticity, and neuroplasticity, which has over the last ten years has become something. There’s a few books about this, and it’s been quite hopeful in terms of saying, if we do get structural damage then we have this ability to regrow, redevelop, and overtime we can develop our brains. And so it kind of gives us this optimistic look of the brain that we can kind of adapt and grow it the way we want to.

I guess the other question behind this is also when you’re stimulating it, are you actually affecting neuroplasticity, and trying to emphasize an area of the brain to actually grow structurally? So that’s a lot of questions all wrapped up into one. I don’t know if you can remember all of them.

[Dr. Michael Weisend]: There were some tricky questions in there. But let’s start by the difference between structure and function.

So, structure is looking at your TV, or computer monitor. There’s a nice space there, and the reason that light appears in the specific places it does is because of the way it’s wired internally. But without function, the picture is black. Right? You don’t have a picture.

When we look at function what we’re doing is we’re looking at the places. Not only locations, which are defined anatomically, but by when those little pixels in the brain, the areas in the brain that are analogous to the pixels, turn on and off as a result of either being stimulated, or sensing information in the environment, processing that information, and then acting upon that information.

So, those are the three places where we can actually target stimulation. Where you sense, where you process, and where you act. You might think, and it is the case, that if we were going to try to influence behavior, we could pick one of those things to look at.

So you might try to say, let’s make people more sensitive to differences in light and dark. Maybe that will help them play Where’s Waldo. Or what’s more critical is pressing a button fast. So, then you might look at the place where people act. Or you might say, what’s most important is how you interpret the information. And so then you might target stimulation to look at where it is being processed in the brain.

So now if we move on to one of the next questions, which, I’m sorry, I forgot. So we were talking about…

[Damien Blenkinsopp]: I threw in plasticity in there as well.

[Dr. Michael Weisend]: Neuroplasticity is a fancy term for something that is very simple. And that is a change in the brain that sticks. No more complicated than that. And we call changes in the brain that stick, we call that learning. So neuroplasticity is a way that the brain captures information and holds it to change behavior.

[Damien Blenkinsopp]: Okay.

[Dr. Michael Weisend]: With neuroplasticity, how does that work? So let’s think about how that works first. So there’s an old adage, and as far as we know it’s still true, but it was first written about in 1949 in a book by Donald Hebb. He said this in very fancy terms, but what it boils down to is cells that fire together, wire together. Okay?

So if you think about Pavlov’s dog. Pavlov’s dog learned to salivate to the sound of a bell in anticipation of food being given to it. So how does that work? Well it only works, actually, if the bell and the food are presented together.

So once you have the bell and the food presented together a few times, then what you have is the bell starts to cause salivation just like the food caused salivation. And it’s when those two things are presented together the brain changes its wiring to connect them, so that you can now change behavior.

So what the heck does tDCS have to do with any of this, right? So now think about what we talked about before, where we said when you stimulate the brain you make it more reactive to the natural environmental stimuli. So, when it’s more reactive you have a greater number, at least in theory, a greater number of cells that are active. And you have additional opportunities for this plasticity to take place, because more cells firing, more cells wiring, and a more rapid acquisition of information that you can measure by changing behavior.

[Damien Blenkinsopp]: So it’s basically when the brain’s operating, you’re encouraging one area to take the lead versus another.

[Dr. Michael Weisend]: Yeah, I think that’s a good way to summarize it.

[Damien Blenkinsopp]: Alright.

[Dr. Michael Weisend]: All that fancy crap, why is it there.

[Damien Blenkinsopp]: We made it. Okay. Well thanks for all these clarifications, it’s great. So what technologies have you played around with, and which do you think are the best for what you’re trying to achieve here?

The one that I saw mentioned one time was the functional MRI. Another one was the MEG, which is something I hadn’t heard of before, actually. EEG, I saw as well, which I feel like was an older technology and not as accurate, but I don’t know. That could be just like branding and marketing, and it’s got into my head, and it’s firing the neurons in that kind of area, so I feel that way.

So when you’re looking at these technologies, which do you feel are the most useful for your work at the moment, and is that going to develop soon into different ways? Are you going to be using different, more accurate technologies which is going to be able to further this kind of work?

[Dr. Michael Weisend]: So I prefer magnetoencephalography to the other techniques for a couple of reasons. So, magnetoencephalography measures the magnetic energy that your brain generates. When you think about electrical activity, electrical activity is always accompanied by magnetism.

You can use your right hand to visualize this. If you point with your thumb at something, and imagine there’s an electric current running along your thumb on your right hand, then there’s always a magnetic field that wraps around any current that would travel in the direction if your thumb. There’s always a magnetic field that wraps around it in the direction that your fingers naturally curl on your right hand.

So, with EEG, what we’re measuring is that electrical current that’s running along your thumb. With MEG, what we’re measuring is that magnetic field that is wrapping around your thumb. So, why would we do that the technology’s way more expensive and way more difficult to maintain?

The reason we do that is because your scalp and skull are transparent to magnetic fields, but your scalp and skull are opaque, or mostly opaque, to electrical energy. Okay? So anything you see with EEG, is kind of blurry and smeared out. But the things you see with MEG are a very clear reflection of what’s going on in the brain.

But it comes with a cost. Everything, there’s no free lunch, everything comes with a cost. So, MEG has a lot more information, and as long as you take the time to figure that out then you can learn additional things about the brain.

But, in some cases it’s too much information. It’s one piece of brain talking on top of another piece of brain, on top of another piece of brain. And it’s very difficult to sort out.

So EEG gives you kind of an oversimplified picture, MEG gives you an overly detailed picture, and there’s no Goldilocks area there, where this one’s just right. You lay down your bets and you go with one of the other.

I err on the side, again, that I’m dumb. And so I want the maximum information I can get to try to learn the most. And so that’s why I prefer MEG.

[Damien Blenkinsopp]: Great. And, as you said, it’s a lot more expensive. And it’s newer.

[Dr. Michael Weisend]: Yeah.

[Damien Blenkinsopp]: You haven’t mentioned fMRI. I’m guessing that you’re not using that so much. And fMRI is very different, right? It’s about blood flow, and blood oxygenation levels. That obviously is a very different approach to tracking function.

So do you say that is relevant, because obviously in the press these days functional MRIs are the big thing in terms of behaviors, and pretty much all the brain studies that are reported these days contain these fMRIs. So how do you look at that, and why don’t you use those? It seems like you don’t use those.

[Dr. Michael Weisend]: Yeah, functional MRI I use a little bit, not a lot. But I’ll tell you, I have a couple of issues with MEG, oh, no sorry, with fMRI. One is it’s not a direct measure of neural activity, it’s an indirect measure of neural activity.

Having said that, it also has very good spatial localization of an activity. Now superior to MEG or EEG. If what you’re about is all spatial, then you can’t get better than fMRI.

What I argue is that not only is the spatial location of stuff important, we also get the on. and the off, and the frequency, and all that stuff with MEG and EEG. So I just feel there’s more information there, and I prefer them for that reason.

[Damien Blenkinsopp]: So basically, blood flow moves slower than electricity activation. So you’re looking at the thing that’s moving the fastest, and as you’re saying, it’s the first measure, rather than a secondary proxy.

[Dr. Michael Weisend]: Yeah.

[Damien Blenkinsopp]: Great.

[Dr. Michael Weisend]: Neurons can turn on and off hundreds of times a second. And so, MEG and EEG can both measure that, but [with] fMRI the maximum time resolution is on the order of seconds.

So, if you use the analogy of the ocean, if you take a picture and you see the waves coming in, that’s MEG, EEG. If you took a film and then averaged it all together so that there were no waves, right, all you got was the general level of the water. That’s fMRI.

[Damien Blenkinsopp]: So all of these technologies we’re talking about, EEG is used in the consumer world today, but the fMRI and MEG aren’t because they’re just damn expensive. So they’re not used for diagnostics as yet.

In terms of that, how applicable are they? Because we do this research with them. Is the research you find directly applicable to everyone? So if you analyze someone in the military, you analyze his brain. And we were just talking about plasticity, and when they talk about plasticity they often talk about how sometimes different areas of the brain can be doing the same thing.

So I was wondering, do you feel like everyone’s brain is this kind of a standard you can rely on? If you establish a pattern by analyzing 10 people in the military, can you now say that if you want to work on that same activity, that same task, and improve the learning, could you now apply that pattern you’ve established to anyone in the world? Or are there limitations to how broad this can be applied?

[Dr. Michael Weisend]: Well this can depend on your task, right? So if you’re interested in where is the piece of brain that moves the finger? That’s pretty standard across different people. If you are interested in languages, like reading languages, well that’s pretty uniform in the Western hemisphere, but in the Eastern hemisphere, where characters are more prevalent, then it’s a little less like Western hemisphere style.

If you are now interested in what makes this person more reactive to, more anxious than the next person, now we’re talking about each individual person learning about each individual person. So, it really kind of depends on your question what level of detail you need to go into, and the analysis.

For us, we’ve tried to focus on things that are on the level of language, where we can get good generalization across people of similar cultural background.

[Damien Blenkinsopp]: Great. Well, let’s talk about some of the specific results you’ve seen, because we’ve talked a lot about all the modalities.

Now what’s the kind of rewards you’ve seen for this activity? What kind of improvements have you seen compared to controls? What benefits do you basically see in this technology that you’ve actually kind of proven and carried out case studies and research, and you got the data behind them?

[Dr. Michael Weisend]: So we’ve replicated several times that we can, by careful placement of tDCS and implementation in a specific task, we can double the rate of learning in a Where’s Waldo type task.

Another thing; a very good colleague of mine, who works at the Air Force Base, Andrew McKinley, has recently demonstrated that you can give people who are sleep deprived the exact same benefit as a cup of coffee by doing brain stimulation. One of the interesting things about that is that and I alluded to this in my TEDx talk you don’t have all the effects on the liver and the kidneys and the lungs and the brain, with brain stimulation that you might have by taking a drug to influence being tired.

So, when you drink a cup of coffee and you are benefiting from the wakefulness as provided by the caffeine, there’s as much caffeine in your elbow as there is in your brain. And what we do with tDCS, really, is take the elbow out of the equation, and direct the stimulation at the organ that is most responsible for behavior.

[Damien Blenkinsopp]: That’s great, because I mean, caffeine is a great example there. I myself am a bit tired I’m jet-lagged from travel so I’ve had a couple of coffees today. And I also have documented adrenal fatigue, so it’s not the best idea for me.

But for me, if it was proven that I could use a tDCS unit at the moment while I’m fixing my adrenals, it probably would be a pretty wise idea, because then I could quit coffee and use tDCS when I had to get some work done.

[Dr. Michael Weisend]: Right.

[Damien Blenkinsopp]: And so, if used, is it applicable for people at home? Can they have a look at the research and use a home tDCS unit and actually apply that today? Or have we got still a little way to go in terms of, let’s just take that specific application right there.

[Dr. Michael Weisend]: Well I would say tDCS at present is a very nice, kind of cute, kind of interesting, laboratory trick that under specific controlled conditions, we can demonstrate it has an effect. If we select out lots of variants in the studies.

So, for example, if somebody hasn’t eaten normally, we reschedule them. Or if somebody had a big night out last night, and they’re a little hungover, we reschedule them. If somebody says they have some either brain disease or are taking some drug that might influence the brain, we don’t allow them into the study. So when we do our studies, we try to operate in as pure a space as possible.

And I don’t think there is a single example yet of the application of tDCS or any other brain stimulation technology in a population that takes all comers, regardless of the issues that they bring through the door, whether it be, you know, addiction, or ADHD, or tiredness, or a hangover. I don’t think there’s a single study that takes all comers and still demonstrates a good effect.

That’s important for the DIY market and consumer market because it has to have its effect when anybody comes through the door. If you buy one and it doesn’t have an effect, you’re going to be upset. That’s a hurdle that has to be jumped before we’re ready for the consumer market, I think.

[Damien Blenkinsopp]: There’s a DIY tDCS movement that started up just recently, right? I actually heard you talk on one of their podcasts. Versus, before that, there’s basically a few companies selling units.

What is the difference between those? Is DIY more about constructing your own units and kind of figuring out the positioning, versus in the units that were bought before that were basically set up for the consumer market, and so they’ve been pre-established by some companies and with a better research backing?

[Dr. Michael Weisend]: Yeah, there are a couple of companies through which you can buy tDCS units now. There’s not a single company who has a validated device for their technology, that doesn’t exist. I mean, these are literally people I’m biased here, so you take into account that I’m biased.

And I’m biased for two reasons. First reason; the devices that are out there don’t take care of the electrode-skin interface. I have the scars on my arm to prove that you can do this in a dumb way and hurt yourself.

So, I look at my forearm now and I can count, as we were trying to generate good technique with electrodes, I can count six scars on my wrist where I burned myself very badly. The electrode-skin interface is critical to take care of, or you’re going to scar yourself up. And that’s not good.

The second reason I’m biased against DIY home use is that the devices that are available have not been run through any studies, for safety or effectiveness. And so I really worry that because we don’t have documented safety, effectiveness, and feasibility that what is really going to happen is there’s going to be a bunch of people who fail to get their desired effect, burn themselves, and it affects the ability of other people who are being careful to move forward to get this technology into the hands of consumers, patients, and other interested parties that might be able to benefit from this.

[Damien Blenkinsopp]: Great. So to kind of go with that, what kind of advice would you give to someone who’s interested in playing around with this? Is there any safe way to do this now? Because we’re talking about safety here. So safety concerns. And I guess most people are going to be a little bit wary of applying electricity to their brains.

Beyond skin burns we’ve talked about skin burns could there be potential other damage? Say you stimulated the wrong areas? Or, maybe some of these units enable you to turn the charge up higher, and is that something that could cause some kind of brain interruption? I’m not going to say damage here, it’s a big word, but could it cause some kind of issue for you?

[Dr. Michael Weisend]: I believe that’s possible. So I just came from a conference in New York last week, and there’s an active debate in the community whether electrical brain stimulation is more like caffeine, where, “Nah, let it go, let’s see what happens.” Or, more like a cigarette, where, you let it go, you see what happens, and you discover down the road that you might not have done something correctly, or you might have hurt some people.

What is it? Is it more like caffeine, is it more like a cigarette? There’s not a single study right now, not one, that has done imaging long term stimulation with tDCS, and then brain imaging again to find out if the technique ultimately does cause changes in the brain that might be deleterious. We just don’t know. So, we’ve got to be careful about that.

What I would say to the DIY community is that long term study doesn’t exist. The other thing I would say to the DIY community is the exact same thing I said to people I met in Los Angeles a while back, with people for the Olympic Team. Pole Vaulting team, in particular.

And they were asking if we could use tDCS to enhance performance, because, little did I know, but I guess pole vaulting is one of the most cognitively demanding sports in track and field. Where you have to put a giant sequence of things that are done perfectly together in order to get a good pole vault.

[Damien Blenkinsopp]: Well I’m guessing also, in terms of neuromuscular activation, tDCS could be helping increase your strength, basically, by enhancing neuromuscular activation. Is that part of that too?

[Dr. Michael Weisend]: Well it reduces your perceived effort. That helps with things like fatigue. But what I said to them was, what do you want to ingrain in your brain? Is it the case that if you have a bad pole vault, you want that to stick? My guess is no. But if you have a good pole vault, you want that to stick.

So, I worry that right now, given our level of understanding, if you just put it on somebody’s head and they go pole vaulting, what if you make bad technique stick? And be hard to get over? You might actually hurt your Olympics team, or your Olympic athletes. You might decrease their performance instead of increase it. And so, I was pretty dubious about that, and I said I don’t think we’re ready to do this with you guys. I’m sorry.

[Damien Blenkinsopp]: That’s a great example, and it sounds like it connects with the argument that’s currently going on in neurofeedback at the same time.

[Dr. Michael Weisend]: Yes.

[Damien Blenkinsopp]: Because they’re asking, okay so we’re not sure of where we’re going. So there’s different neurofeedback technologies. There’s some that just try to enhance what you have, kind of like help your brain to know what it’s doing, and then there are others which are kind of pointing in a direction. And people are a bit nervous about the one’s pointing in a direction.

Which I guess what you’re saying is I don’t know which direction in most of these applications we should be pointing the brain. You know, should we be activating this more? We’re making an educated guess with the MEG and the other technologies right now.

How confident do you feel in those applications, or are you feeling this is going to be a research, and potentially a medical use, where people are actually going to get big benefits? It’s not just going to go from healthy to a performance increase, but it’s, you know, “I’ve got some health issue, I’ve got some brain issue, and maybe I can get back to normal.”

So that’s generally where technologies start, because it’s in a more extreme, desperate situation, and there’s a bigger upside to using technology. It’s like, am I going to be a little bit non-functional for the rest of my life, or am I potentially going to get back to normal functioning? So could you highlight what your opinion on that is?

[Dr. Michael Weisend]: However you decide to alter your brain, there’s no free lunch. Right?

So there’s very good data out of Roi Cohen Kadosh’s lab at Oxford that if you apply tDCS to enhance mathematical ability in one field, or in one type of math, you decrease your ability to do a different kind of math. And that is potentially an issue, in the case that how would you best apply this for your specific application?

Well in the DIY market, you don’t even have this choice. What you’ve got is one electrode configuration, one type of electrode, one recommended spot on your head. You don’t even have the freedom to apply this to your specific situation that you would like to change. So I’m worried that what’s out there now, especially for the DIY market, is gimmicky and quirky, and maybe dangerous.

I mean, there’s very little in the way of harm. The side effects are very low with tDCS, but I worry that there’s always somebody that’s going to pushing that limit, and pushing that limit, and having limited options. Maybe turning the current twice as high, using it twice as often. Soon you’re going to have somebody who hurts themselves, and then we all feel bad about that. Nobody feels good about that.

[Damien Blenkinsopp]: Right. Great, thanks. Alright, so tips for someone who is going to do this at home anyway, [despite] listening to this interview, which I’m sure there’s people out there, because I see a lot of talk about tDCS, and one of my buddies has been playing around with it.

So, if they were going to track something that might help them to know it’s actually improving, versus worsening what they’re up to, are there any biomarkers or anything like that you would advise they watch so that they can tell if it’s probably a positive versus a negative? Or is it kind of very difficult because it’s quite task specific, so you kind of need to look at whatever the task is, and try to measure somehow that you’re getting better or worse at it?

[Dr. Michael Weisend]: So, I would say there’s two things that we know we’re fairly close to clinical application on. One is depression. So you might want to have somebody monitor their mood, and do mood ratings every day to find out if when they use tDCS does it alter their mood. And I would say the other thing that you might have somebody do is to monitor their perceived effort.

So let’s say that you go to the gym, and you get home and you feel awful, and you get old and fat like I am. You go to the gym, and you’re tired and sore, and don’t feel so good the next day. So, does your willingness to return to the gym, does that change when you use tDCS? Or your willingness to engage in a task that’s difficult for you? Does that change?

Pay attention to that kind of stuff. I hope that if you are going to go ahead and use this against my recommendations I do not recommend this at all you do it very carefully. Take care of your electrode-skin interface, and monitor something that we know for a fact has, well we know that in a carefully selected population we can have a meaningful effect.

[Damien Blenkinsopp]: Thank you. That struck me as very meaningful measures, which could hopefully avoid them going backwards for a long time if it actually does turn out negative, and hopefully give them some positive feedback.

In terms of this whole area, where do you see it going in the next five or ten years? Or where would you hope it goes?

[Dr. Michael Weisend]: I hope a couple of things. So, first I hope that companies like, there’s a company called Thync that is going to come out with a consumer device for electrical brain stimulation here within the next couple of months. And so, I hope that Think’s safety record is as stellar as they hope it will be.

I also think that you’re going to have combined therapies, or closed loop therapies, that are going to lead the field. So, let’s say that somebody is sitting there at their computer, and when we monitor their eye movement what we notice is that their eyes are not paying attention to [the] task. And so we could turn on tDCS in order to help them stay engaged with tasks when we notice that they’re deviating from a task.

I think those are applications that might come. So especially I hope that the safety’s good, because I know people are going to push it out there whether we like it or not, and I hope that people start thinking about ways to put the stimulation in a closed loop to help people when they need help, and turn it off when people are doing fine.

[Damien Blenkinsopp]: Great, thanks. What’s the most exciting thing you think, in terms of opportunities? So you looked at the downsides there, and hoping that the downsides I can see, you’re like, “Oh, I hope this doesn’t cause a mess.”

So, what would be the upsides over the next five or ten years for you? If you were to get involved in research, or if some of your projects were to work well and maybe develop over the next ten years, what would be the exciting opportunities for you?

[Dr. Michael Weisend]: I would say that the traumatic brain injury work really has me quite excited. So in traumatic brain injury, there really is no good therapy. There is a whole lot of, try it a different way, take this drug to deal with problem A, take a different drug to deal with problem B, take a third drug to deal with problem C. And hope that those drugs interact in a way that’s friendly and works.

Something else like multiple sclerosis. I mean, [there’s] really no good treatment. I keep hoping that one of these brain stimulation technologies is really going to enter that space and make a difference for people right now that really have no, no good treatment available.

[Damien Blenkinsopp]: Have you seen structural change influenced by tDCS? So, like if you stimulated an area for a while if it had atrophied at all, would you potentially see some de-atrophying, or growing back, or anything like that?

[Dr. Michael Weisend]: We’ve seen white matter changes with tDCS. So, white mater changes are the wires that connect different pieces of the brain, and it looks to strengthen them.

[Damien Blenkinsopp]: So white matter is myelin?

[Dr. Michael Weisend]: White matter is axons that are coated with myelin. So it’s the part of the neuron that’s coated with myelin. And so, it looks like the myelin coating is getting stronger.

Now, this is not yet verified by a lot of studies, but I had a conversation with a researcher from Harvard last Sunday night. They have seen similar things to what’s going on in our lab in Dayton, Ohio. So we’re actively working together to see if we can understand better how we might be affecting myelin and white matter using tDCS.

[Damien Blenkinsopp]: Right. But there’s no grey matter changes?

[Dr. Michael Weisend]: Not that we’ve seen.

[Damien Blenkinsopp]: Okay, great.

[Dr. Michael Weisend]: Not that we’ve seen.

[Damien Blenkinsopp]: So, in terms of someone at home learning more about the types of tDCS, and potentially some of the other things you’ve been talking about today, where would you direct them to? Or what would be good sources of information where they could learn more, and get more into depth? Especially if they’re going to potentially use this, [or are] thinking about using this. Is there anywhere you would direct them to learn more?

[Dr. Michael Weisend]: Well, if it’s a DIY person, there’s a website called DIYtDCS, and it has a whole bunch of audio interviews and blogs by a guy who really does keep up, pretty amazingly, with the literature. I can’t keep up with the literature, but this guy does a great job.

So, there’s a great deal of information there, there are some good interviews by a lot of real top flight scientists. So that’s a good reference, and I would pay attention to the idea that every single person who is on there who’s a top flight scientist worries that this is going to hurt somebody at this point, and that we need to be very careful.

[Damien Blenkinsopp]: I mean, it sounds a little bit comparable to nootropics. There’s a wide variety of nootropics out there today, and we don’t know the long term effects of them. For many of them, sometimes it’s even anecdotal. Some people say they work, and some people say they don’t.

Would you compare it to nootropics? I don’t know how much you know about nootropics, but it’s another approach to stimulating and changing. Another approach [through] chemistry rather than stimulation. But would you say it’s as risky, or potentially the same?

[Dr. Michael Weisend]: Well I would say nootropics is not a new idea, right? I would say caffeine is nootropic. So, is it the same, is it difference? I would say people are often pushing the limits of their capability, and would like to be able to go that one more step.

And so, in that sense, I think, the nootropics and the brain stimulation stuff are really partially the same desire of individuals to better themselves, and to be able to push that one more step. And so, I’m all about that. I just think that we need to approach it in a reasoned and careful way.

[Damien Blenkinsopp]: Great, great, thanks. Rounding off into, I’d love to get to know a little bit more about. You know, you’ve obviously taken a very vigorous approach to this area. How about yourself? Are there any data metrics that you track for your own body on a routine basis, to gain insights or improve health, longevity, performance, or any other concerns?

[Dr. Michael Weisend]: Yeah I wear a band on my wrist all the time that tells me about my steps, and it also does actigraphy that gives you some insight into sleep. And I look at it every day, and I download the information. It looks like I’m reaching about half my goal all the time instead of the goal I should be shooting for.

[Damien Blenkinsopp]: I see you smiling there, so it sounds like you’re happy that your meeting those goals.

[Dr. Michael Weisend]: Yeah, well I mean, it’s better than zero. And it also, it kind of helps you think about being more healthy. It kind of prompts you.

So my wife and I are very much, the little town we live in has restaurants that are about a mile and a half away, a grocery store that’s about a mile and a half away. And we often walk to the restaurant or walk to the grocery store. And I’m not sure we would have done that if I didn’t have this little thing on my wrist bugging me all the time saying, hey, get out of your chair and go do something.

So, I use that kind of thing. I mean, we all use devices that help us regulate our activity. I mean one very simple example is an alarm clock. It aids in your sleep-wake cycle. Another thing that people often use is a meal at a scheduled time. It helps them to set the tempo of their day, or to set the day up so they are meeting expectations. So, there’s all kinds of these little things that we use, that we monitor, that we impose upon ourselves in order to help us get to where we want to be.

[Damien Blenkinsopp]: Great. Can I ask which tracker are you using on your wrist there?

[Dr. Michael Weisend]: Yeah, I use the original Polar Loop. That’s what I typically use. And I use it just because I thought it had the best cosmetic appearance. That was the whole… It was the least obtrusive, least clunky looking…

[Damien Blenkinsopp]: That’s true. A lot of them do look a bit clunky. I guess that’s where Apple’s trying to come into the market, to de-clunkatize it.

[Dr. Michael Weisend]: Well, Apple’s had a history of doing that well when they lead. I’m not sure they have a great history of doing that when they follow. So, we’ll see how that all works out.

[Damien Blenkinsopp]: In terms of tDCS, actually, have you used tDCS yourself? Is it something you have applied to yourself, or are you basically, ìI’m not going to use this technology, it’s far too dangerous.

[Dr. Michael Weisend]: I’ve put it on my head for demos, and I’ve put it on my head to test paradigms. I will not do anything to a subject that I wouldn’t do myself.

[Damien Blenkinsopp]: It sounds like you’ve done a lot then.

[Dr. Michael Weisend]: I’ve probably had it on my head 50, 60 times, for sure.

I do not use it if I need to focus to get something done. And I do not use it if I wake up in the morning and I’m super tired, and I think I need a boost. I don’t think we’re quite there yet, but I’m not afraid of it at all. I put it on my head, stimulated in multiple different ways, to try to basically reassure myself that I wasn’t going to do something stupid to some other human being.

[Damien Blenkinsopp]: That’s a great attitude. Now I’m guessing you’ve got the unit that has good electrodes that aren’t going to burn you now.

[Dr. Michael Weisend]: We’ve developed some electrodes that have never caused a burn.

As a matter of fact, electrodes cause such a little bit of skin reaction that not too long ago we did a demonstration on a film crew that came from New York, from a place called Vocative. And when we took the electrodes off, the skin was a little bit red. And I said to one of my graduate students, take this gel and test it, I think the gel is going bad. And in fact it was.

[Damien Blenkinsopp]: Is that something you could license? Is that a technology that you need to license to other companies?

[Dr. Michael Weisend]: Well we’ve applied for a patent for that stuff, and I am actually in active discussions to do some of that kind of stuff.

[Damien Blenkinsopp]: Okay, last question here. What would be your number one recommendation to someone trying to use some form of data to make better decisions about their body’s health, performance, and longevity?

[Dr. Michael Weisend]: I would say I think about this all the time and I actually regularly do this is when I get up in the morning, have a standard routine, and just kind of meditate for a minutes. Or think through your body, top to bottom, how am I feeling today? What are the things that I could do better if I wanted to feel a little differently?

So it’s almost like a self-check, right? Like you’re doing a system test. Don’t get up at the last minute, run out the door, find out ten minutes into your drive that you have a headache, or your guts don’t feel right today. But get up, have a nice standard breakfast, and just kind of think through from the top of your head to the tip of your toes about how you’re feeling today, and what would be the thing that you might do today to make yourself feel better tomorrow.

[Damien Blenkinsopp]: That’s great. So is that actually a semi-meditative practice, or are you just being quiet, and just trying to be internally focused and trying to see what’s up. Being self-aware kind of thing? Or is it focusing on your breathing, using one of the techniques. Or is it just kind of your own mindfulness, trying to be aware of your body?

[Dr. Michael Weisend]: I think it’s very much mindfulness. So, just yesterday I went out and chopped wood for three hours. So this morning I get up and I’m a little sore. And I think to myself, where am I sore, why am I sore. And it turns out, for god knows what reason, my hands are the things that are really the sorest, from gripping the stupid ax handle while it was wet.

And so, when I think about this, what I think about is now, well, I should stretch my hands, I should be careful to make sure that I’m not repeating that same kind of motion today, if I can avoid it. Just, making sure that you think it through what’s the step you are going to take to make it better, and then actually carry it out.

[Damien Blenkinsopp]: Great. Thank you Michael. I actually start my day with something similar, or at least I try to. I don’t succeed every day, I don’t know if you’re better at that than me. But some phases when I’m more stable. When I’m traveling a lot, it really tends to suffer. Now I’m just kind of getting back into it, and it really makes a difference for me too, just a similar practice to yours.

[Dr. Michael Weisend]: Yeah.

[Damien Blenkinsopp]: So, I can vouch for that from personal experience also. Thank you for the wealth of information. Also, all the tips on safety, being practical about this, and just you’re depth of information today. It’ been super insightful. Thank you very much.

[Dr. Michael Weisend]: Oh, no problem. Glad to help.

Leave a Reply