Microbiome testing can be confusing: many companies, different technologies and a lack of standards make it hard to get actionable insights from the data. Find out how technologies and labs differ and what information is actionable from today’s microbiome tests.

In this episode we continue our discussion of the microbiome that we started in Episode 9 and continued with Episode 37. Today we try to help you navigate the confusing field of microbiome testing companies and discuss the pros and cons of different technologies.

Examples and lessons learned from our own testing will give you an idea of how a microbiome test can help you make decisions about your health. Finally, we discuss what we think the future of microbiome testing holds.

[Why microbiome testing is important] is that unlike genomics and genetics and your human DNA, which I find very fascinating, but there’s not a whole lot you can do to change it. Despite the fact that there are a lot of genes that are involved, there’s not a whole lot you can do if you find out that you’ve got the gene for this or that. Whereas with the microbiome you’ve got way more genes and you can change them. And I think those two things are part of the reason that I’m very excited about the microbiome.”
– Richard Sprague

Long-time software executive Richard Sprague discovered his love for science through microbiome self-experimentation, studying questions like “Can I improve sleep by feeding certain gut microbes?” or “What is the impact of a gut cleanse on my gut bacteria?”

Formerly “Citizen Science in Residence” at uBiome, a biotech company, microbiomics is of particular interest to Richard because it is easy to get access to a lot of raw data that let non-specialists like him make interesting discoveries at the cutting edge of medicine and science. Richard shares his experiments and insights on his Medium Publication called Personal Science and the Microbiome and his blog.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • Why is the microbiome interesting (5:40).
  • Microbiome testing is now more accessible to the public (7:45).
  • Different technologies for trying to understand your gut and what’s going on there and the pros and cons of these technologies. Technologies discussed include: Cell culture, PCR, 16S sequencing, metagenomic sequencing (9:02).
  • What is the different between a different bacterial strain and a different species and why this distinction is important when analyzing your microbiome (17:40).
  • Cutting edge new technologies to understand your microbiome better: transcriptomics, which looks at what genes are active, proteinomics which looks at the actual proteins and metabolomics, which analyzes metabolites (20:10).
  • The reasons why the results from different labs are different (27:30).
  • The different labs doing microbiome testing and compare notes on the ones they used (33:13).
  • How glucose response and the microbiome are interdependent and knowing more about your microbiome might allow you to predict your body’s glucose response to different foods (51:26).
  • The labs at the bleeding edge of transcriptonomics (57:29).
  • N=2 experiences with the labs used and how they interpret and compare the data they received (59:24).
  • The effects of his ketogenic diet on his microbiome (1:02:44).
  • Discussion of gut microbiome diversity, day-to-day variability and individual difference in the microbiome (1:15:54).
  • A self-experiment he has done to try and change is microbiome taking a probiotic and the effects of traveling and eating different foods on the microbiome (1:20:15).
  • A way to change the nose microbiome using kimchi (1:22:01).
  • Advantages of a varied diet over taking probiotic pills to change the microbiome (1:24:06.)
  • High-level thoughts and recommendations about using different microbiome tests (1:28:34).
  • Why everybody doing lab tests should try to get the raw data from the lab (1:36:30).
  • Discussion of what future technologies and applications will useful to get even more information out of the body’s microbiomes (1:38:23).
  • Improvements that would provide better data and insights from microbiome testing (1:41:44).
  • How travel impacts the microbiome (1:47:03).
  • Where to learn more about the microbiome (1:55:42).
  • Information about what Richard is tracking and his interest in traditional foods and medicine (1:57:37).
Thank Richard on Twitter for this interview.
Click here to let him know you enjoyed the show!

Richard Sprague

Recommended Self-Experiment

Use Kefir to Change Your Microbiome

  1. Tool/ Tactic: Richard found a real noticeable difference in the microbiome after drinking kefir, in particular a couple of microbes that he did not have before he started drinking kefir and that he has now. Interestingly, one is associated with recovery from Crohn’s Disease. See Richard’s academic pre-print paper.
  2. Tracking: to track the effects of adding fermented food like kefir to your diet you need to get your gut microbiome tested before the start of the diet and several weeks or months later.

Kimchi for Sinusitis Treatment

In sinusitis sufferers the sinus microbiome is out-of-whack and the probiotic Lactobacillus Sakei is missing. L. Sakei can work as a sinusitis treatment if put into the nostrils. Kimchi is a natural source of L. Sakei. To experiment with kimchi to treat sinusitis Damien recommends the following:

  • Put a teaspoon in a container with kimchi and scoop up some of the juice.
  • Dip your finger into the liquid and put your fingers up both nostrils spreading the liquid.

More information on how to apply kimchi juice to treat sinusitis can be found here. The scientific paper underlying this approach is also available.

Tools & Tactics

Diet & Nutrition

  • Fasting: Fasting interventions can potentially change the microbiome. In this episode it was discussed as a tool or experiment in particular for any chronic issues/ unidentified health issues that no one knows how to solve.

Sleep

  • Good sleep is essential for the body. Richard experimented with potato starch to boost his bifidobacterium levels. The result of his self-experimentation can be found in his blog. Although this approach did not work for him, other people have seen positive effects and he recommends that people with problems sleeping try potato starch.
  • Damien is experimenting with three different approaches to improve his sleep:
    1. 10,000Lux SAD (seasonal affective disorder) light. Using this light for two hours every morning simulates strong daylight. This approach has worked for him and his theory is, that the strong light in the morning is a way of resetting his sleep cycle. SAD light use to improve sleep and prevent daytime sleepiness is discussed in this study.
    2. Going to bed really early also helps him to maintain a solid 7 to 7.5 hours of sleep per night. He now goes to bed by 9 pm.
    3. Taking a glycine supplement to reduce night wakings.1,2

Tech & Devices

  • 10,000 Lux Lamp: Lamp that replicate strong sunlight. Damien has been using this in the morning to reset the circadian rhythm and as a result improve sleep quality. These lamps are designed to be used with Seasonal Affective Disorder, by providing sunlight in dark months of the year.
  • Sleep Tracking Devices mentioned include:
    • Zeo: A popular fitness tracker that went bankrupt due to issues with its business model.
    • Fitbit: This version of the FitBit integrates sleep tracking.
    • Oura Ring: OURA is a convenient wearable ring that has become popular over the last year. The company is currently participating in studies to understand the accuracy of its sleep tracking. Damien uses it to track sleep duration only – the base metric.(Note: If you’re looking at buying this discount code gives you 75 Euros off “TNBBJDQX49J”).

Tracking

Biomarkers

The biomarkers discussed in this episodes are strains or species of gut bacteria that are part of the microbiome. Tracking these biomarkers require a microbiome test.

A good best practice is to get a baseline test followed by tests over time, especially if you make changes to your diet, travel or experience health issues, to see how the microbiome tracks.

The four major groups of bacteria are Firmicutes, Actinobacteria, Proteobacteria and Bacteriodetes. Changes in the abundances of each of these groups often associate with many health conditions.

  • Firmicutes and Bacteroidetes: are both key players in regulating gut metabolism, and are critical in understanding metabolism dysfunctions. See: “Diet–microbiota interactions as moderators of human metabolism” Nature 2016. The ratio of firmicutes to bacteroidetes from different lab tests was discussed, and has been discussed in the literature, but Richard is wary of relying on a single test, noting that his own ratio is highly variable day-to-day.
  • Bifidobacterium also known as Lactobacillus bifidus are ubiquitous inhabitants of the gut, vagina and mouth of humans. They are found in fermented foods like yoghurt and cheese. Bifidobacteria are used in treatment as so-called probiotics, defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host”. This scientific paper published in Frontiers in Microbiology summarized the current understanding of the health benefits of Bifidobacterium.
  • Spirochaete is a phylum of bacteria that contains many pathogenic species, including Borrelia species that cause Lyme disease. Testing for these pathogenic bacteria can reveal important information about one’s health. Damien put together a paper describing how one could use uBiome’s 16S rRNA microbiome sequencing as a pre-screen tool for Borrelia.

Lab Tests

Microbiome Labs Overview

With a number of different labs out there offering microbiome tests it can be difficult to decide which company to use or what the upsides and downsides may be. The table below provides an overview comparison of the different characteristics of each of the labs including.

uBiomeAmericanGutAtlasBiomedDayTwoAperiomicsViome
OFFER Cost $89 per test $99 per test £274 ($379) per test $329 per test $781 per test $399/ year
Breadth of Testing Gut, Mouth, Nose, Skin, Genitals Gut Gut + DNA (+ Metabolomics/ Blood Markers) Gut Gut, Blood, Urine and Oral Swabs Gut + Metabolism (blood glucose regulation) + Body dimensions
Service N/A N/A N/A Nutritionist consultation included N/A N/A
Geographies Served International International UK & Russia US Only International US, UK & Canada
Year Started 2012 2012 2017 2017 2017 2017
TECHNOLOGY PLATFORM Sequencing Type 16S 16S 16S Shotgun Shotgun RNA
Information Depth From Phylum to Genus From Phylum to Genus From Phylum to Genus From Phylum to Species and Strain From Phylum to Species and Strain From Phylum to Species and Strain
Type of Information Metagenomics
(What genes are there)
Metagenomics
(What genes are there)
Metagenomics
(What genes are there)
Metagenomics
(What genes are there)
Metagenomics
(What genes are there)
Transcriptomics
(What genes are expressed/ active)
DATABASE SCOPE Coverage Bacteria Bacteria Bacteria Bacteria Bacteria, Viruses, Parasites and Fungi. Bacteria, Virus, Parasite and Fungi
BENCHMARKING DATA QUALITY Benchmark Data Quality/ Scope Likely largest database currently N/A N/A The Weizmann Institute studies included over 1000 Israeli participants on glucose regulation and the biome. Currently have study underway in U.S. Large whole genome database covering over 37,000 microorganisms, 7500+ of which are known pathogens. Very early stage - likely most limited currently
OUTPUT YOU RECEIVE Actionable vs. Informational? Informational Informational: Detailed reporting. Informational: Limited information (only family/ genus level reported)

Actionable:
Many specific recommendations
Recommends Actions:
Rates each food according to your glycemic response
Highest level of granularity of species reported. Recommends Actions:
Rates each food
Transparency of Recommendations N/A N/A HIGH: Includes reasing and study references for most recommendations MEDIUM: Doesn't Explain Recommendations, but can assume comes from Weisman work HIGH: Discussion with researchers. LOW: No information given on which various inputs explain outputs or why
Raw Data Yes Yes No (planning to add?) No
(but planning to add)
Yes No
(No plans to add)
WordPress Table

Note: This is a high level analysis of the current technologies and labs on the market which are primarily focused on metagenomics. There are others that have yet to emerge commercially but will eventually create a broader and more complete landscape and understanding of the biome. These include metatranscriptomics, proteomics, metabolomics, and other meta data.3

Microbiome Lab Tests

  • uBiome Explorer test: Richard used to work for uBiome as a citizen scientist. They use machine learning, artificial intelligence, statistical techniques, and a patented precision sequencing process based on 16S rDNA sequencing to analyze the microbes in a sample.
  • American Gut: this project is run out of Rob Knight’s lab at UCSD and is one of the largest microbiome research labs in the world and the world’s largest crowd-funded citizen science project in existence. Anybody can join the project by making a donation.
  • Atlas BioMed: a UK based company does DNA and microbiome testing based on 16s rDNA sequencing.
  • Doctor’s Data Microbiome Testing: a clinical lab performing specialized testing.
  • BioHealth GI Screens: a company providing functional laboratory testing, including testing of the gut microflora.
  • Aperiomics: identifies every known bacteria, virus, parasite, and fungus in samples. Specializing in identifying pathogens and solving complex clinical infections.
  • Diagnostic Solutions GI Map: microbiome testing based on PCR technology.
  • Gencove: offers DNA testing to explore ancestry and tests the microbiome of the mouth.
  • Arivale: tests the genome, blood, saliva, gut microbiome and is taking lifestyle into consideration.
  • Viome: Analyzes the gut microbiome to help improve health, weight loss and wellbeing. Viome offers an annual plan that includes a microbiome test.
  • DayTwo Microbiome Analysis: provides personalized nutrition based on the to maintain normal blood sugar levels. The company studies individual metrics and gut microbiome and translates their findings into actionable insights. Richard’s review of DayTwo can be found on Medium.
  • Thryve Gut Health Test: assess gut health using 16S sequencing and provides personalized probiotics kits.
  • GI Effects Comprehensive Stool Test and GI Effects Microbial Ecology Profile Test: these are tests available via Genova.

Analysis of the Different Labs

Granularity of Output from the Labs

This graph shows the level of granularity of information different labs provide to the customer in terms of number of species and genus. Some labs like Atlas Biomed only report genus level. The comparison shows that Aperiomics is able to identify more species due to the higher depth of sequencing the lab uses.

Source: Damien’s lab samples

Analysis and Graphs from Richard Sprague

Results from different microbiome testing labs can vary by quite a bit and therefore be confusing. Some of the variety in tests results can be explained when samples are taken at different times. This graph shows gut microbiome diversity over a period of one year.

microbiome labs


Changes in the gut microbiome over a one year period (Richard Sprague)

But variations can even be observed during the course of one day as the following chart shows.

microbime labs

Daily variations in the gut microbiome (Richard Sprague)

But even having the same sample tested by different labs can lead to different results based on the different methods they use. To interpret data from different labs it is important to focus on the bigger picture, do the lab tests find the same type of bacteria in the same order of abundance. A chart that Richard shared emphasizes that point. The results shown in the table are from the same day, swabbed from the same tube submitted to both companies. The results are different but not extremely different. The top phyla are the same and the abundances are in the same order.

Microbiome labs

Comparison of gut bacteria phyla and relative abundance in a sample tested by Day Two and uBiome (twice) (Richard Sprague)

 

Other People, Books & Resources

People

  • Elizabeth Bik (@MicrobiomDigest): Richard recommends following Elizabeth on Twitter. She is one of the smartest microbiome scientists he knows, and is very prolific on Twitter. She reads all the publications, and will let you know the ones that matter.
  • Rob Knight (@KnightLabNews): Rob Knight is a Professor in the Department of Pediatrics at the University of California at San Diego, among many other things he is a member of the Steering Committee of the Earth Microbiome Project and a co-founder of the American Gut Project. This article in the science magazine Nature gives an overview of his work.
  • Eran Segal (@segal_eran): is a computational biologist at the Weizmann Institute of Science. He has shown that there is no “One size fits all” diet, and that the very same foods can be good for some and bad for others. He is also one of the founders of the company behind the DayTwo microbiome labs. Eran was interviewed on Quantified Body with another founder of DayTwo, Lihi Segal, here.
  • Chris Kresser: A functional medicine practitioner and founder of the California Center of Functional Medicine, a group of doctors that treat patients with a wide range of chronic health problems, from digestive disorders, to chronic infections, to autoimmune disease, to hypothyroidism.

Books

  • The Personalized Diet: The Pioneering Program to Lose Weight and Prevent Disease: a diet book by Eran Segal and Eran Elinav that explains why one-size-fits-all diets don’t work and helps readers customize their diet to lose weight and improve health. Robert recommend it specifically because it gives suggestions for how you can test yourself using just a cheap glucose meter.
  • Wired to Eat: Damien recommended this book by Robb Wolf which starts with the 30-Day Reset to help people restore normalized blood sugar levels, repair appetite regulation, and reverse insulin resistance. You can also listen to Episode 49 of this podcast for more information. This book also features standard Paleo – based recipes and meal plans for people who suffer from autoimmune diseases, as well as advice on eating a ketogenic diet.
  • The Longevity Diet: Discover the New Science Behind Stem Cell Activation and Regeneration to Slow Aging, Fight Disease, and Optimize Weight: book by Valter Longo. Valter is the director of the Longevity Institute at USC in Los Angeles, and of the Program on Longevity and Cancer at IFOM (Molecular Oncology FIRC Institute) in Milan. The book describes the 5 Day Fasting Mimicking Diet which promotes longevity, overall health, and reduce excess fat.

Other

Full Interview Transcript

Click Here to Read Transcript

(0:04:43) [Damien Blenkinsopp]: Richard, thanks so much for joining the show. It’s great to have you here.

[Richard Sprague]:My pleasure, I’m a big fan of your podcast. I’m actually a little bit humbled that you’ve asked me to come here and talk today.

[Damien Blenkinsopp]: Well you shouldn’t really be humble because you’re a real data geek when it comes to some of this stuff. So we’ve known each other for a long time because of that.

I can’t remember how we connected? Do you remember how we first connected?

[Richard Sprague]: I’m not sure either. It’s probably some quantified self thing. But I’ve been listening to your podcast since the beginning.

[Damien Blenkinsopp]: It wasn’t in person anyway, it was online. I think you must have posted you know what, I think you posted some uBiome analysis, one of the first blog posts, trying to analyze it or something and I found you on Twitter. It might be something like that.

[Richard Sprague]: It could be.

[Damien Blenkinsopp]: Okay great, so we’re going to talk about the microbiome because Richard, as I just mentioned in the intro, has been looking into this a lot. And really the first thing is just to get you guys up to speed on all of this, because it’s starting to become quite a complex question.

(0:05:40) We hear a lot about this in podcasts and health podcasts all the time. I think it’s quite a lot more complex than we generally hear. So, Richard, what do you think? What’s going on with all of this? Why is it important, and why are the labs important right now to try and quantify it?

[Richard Sprague]: You’ve had several podcast interviews with people who’ve been working in the microbiome science, but to me the way I would summarize it is that unlike genomics and genetics and your human DNA, which I find very fascinating, but there’s not a whole lot you can do to change it. Despite the fact that there are a lot of genes that are involved, there’s not a whole lot you can do if you find out that you’ve got the gene for this or that. Whereas with the microbiome you’ve got way more genes and you can change them. And I think those two things are part of the reason that I’m very excited about the microbiome.

The other thing is that partly because of that scientists are finding out all kinds of new relationships and associations between the microbiome and just about any human condition you can imagine. Everything from allergies and obesity to Alzheimer’s disease, to mental health issues like depression or schizophrenia.

There’s a relationship with the microbiome there; we don’t understand what they are, but in the last couple of years some really awesome new technology has come online that makes it possible not just to be able to go and see what the microbiome is in an individual person, but now it’s coming to the point where it’s at consumer level pricing. So that you and I can go and figure that out as well and not just wait for some scientist to go and figure it out.

[Damien Blenkinsopp]: Right. It’s actually interesting because basically since 2014 there’s been quite a few different labs coming out and these are really some of the firsts.

I mean, genetics was the first with 23andMe and players like that, but it’s one of the first areas where it’s consumer driven testing rather than coming from the medical world, and coming from physicians where they control all that stuff. But really uBiome, which was one of the first commercial players, came out and said this is going to be a consumer driven model at first.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: Yeah. So it’s, I mean I think that’s the other reason there’s a lot of chat about it as well, because it’s more accessible to the general population.

(0:07:45) [Richard Sprague]: Yeah, that’s right. And in particular I think the 16S, I call it the Hack, made it possible to do something that people weren’t expecting to happen technologically so quickly.

Because if you think about how long and how much money it took to sequence the first human genome back in 2000. You know, that was billions of dollars and involved the cooperation of hundreds, maybe thousands, of scientists around the world.

Well, now we’re talking about at least 10 times, maybe 100 times more genes in a single human being for microbes, and they’re from thousands, maybe tens of thousands of different species. Well, how in the world would you ever sequence all of those genes? It just seems like an impossible problem.

But somebody discovered this trick several years ago that let’s you just look at 200 base pairs on one partial gene, and you can get a rough idea of what’s going on. And that just revolutionized things, because it made it possible now for people to get a hint of what all those microbes are doing.

And that just revolutionized the field. And what’s cool is like you say, since about 2014 it’s been possible for the rest of us to go and access that same kind of technology for basically under 100 dollars.

And that’s just opened up all kinds of new, interesting discoveries.

[Damien Blenkinsopp]: Yeah, yeah. So, we’ll get into why the 16S works, and how it works, in a bit.

(0:09:02) Let’s take a step back because obviously there’s quite a few different technologies out there. When you go to see physicians, when you’re using these technologies, when you’re trying to understand your gut and what’s going on, there’s a fair amount of options. And there’s different options that are being used.

So, Richard could you just give us a quick overview of what kind of technologies are being used currently?

[Richard Sprague]: The first one is culturing. And that’s been around for hundreds, arguably thousands of years, because you essentially, if you know that there’s a microbe involved and if you know which one you want, it’s well understood what kind of things they eat.

So you just take a little bit of a sample, and you put it into a Petri dish and you wait to see what happens. And, scientists know how to culture a lot of the microbes that are important, in particular the pathogens. And that’s kind of the classic way to do it; even today it’s still the gold standard. If you have some kind of medical issue where a doctor wants to confirm for certain that you have such-and-such pathogen, everybody will trust the culturing results.

So that’s kind of the first thing. The problem with culturing is that it only works on certain organisms. And they have to be alive, and it takes a while. It might take several days, or weeks in the case of some microbes.

So the next step was the development of PCR, which is if you know which microbe you’re looking for, you can put into a special machine, polymerase chain reaction, which is well understood technology that’s been around since the early 1990’s.

And they will confirm or deny whether a particular sequence of DNA base pairs are in there or not, which is another way of saying a particular microbe. And that works very quickly; that’s a few hours in some cases. And you can find out for certain whether a particular microbe is there. So the big advantage there is speed.

[Damien Blenkinsopp]: And also the accuracy, because you can really pinpoint something and if it does show up in the test, you can be sure it’s there.

Whereas even with the cultures, I think one of the issues is contamination. Because you’ve got these Petri dishes growing stuff, who knows sometimes. I’ve done some cultures in the past for different things, and I’ve been very suspect about the actual results that came out in the end. I was like, I think…

[Richard Sprague]: Yeah, you have that contamination problem with everything. The bigger issue with culturing and contamination, I think, is that sort of by definition you’re just sitting there waiting for something to happen. And sometimes it happens, sometimes it doesn’t. And, for example, if the pathogen of interest, if it somehow died on the way to the Petri dish, for no good reason, you’re not going to find it

And vice versa if the lab technician somehow exposed something or other to this or that on the way to the Petri dish then you’re going to see something you weren’t expecting.

So the next step up is, we were talking about 16S sequencing. It’s called 16S because there’s a line on the centrifuge when you take a sample and you spin it around enough, there’s a like that’s called the 16S line, which is if you skim off the goop that you find there, you will get one particular gene called the ribosomal rRNA gene. That is part of the genome that’s responsible for building the ribosome, which is an essential part of the way that all cells work.

Well, in bacteria it turns out that all bacteria use a very similar gene. We call it the 16S, the ribosomal gene. And because bacteria are all going to have that same one, in evolutionary terms it’s called conserved, throughout evolution, that it becomes possible to be able to tell the differences in bacteria based on slight variations in that gene.

The gene itself a couple thousand base pairs. But it’s one particular part of that gene called the B4 subunit that’s only, I think it’s 200 base pairs. And so if you just sequence those 200 base pairs, you got a pretty good idea of which microbe it is. Because all the different bacteria that have ever been found on Earth will have that 16S gene, and they will differ just slightly.

And if you’ve got a reference database to be able to see which one is which, and especially if you know that this came from a human gut, right there you’ve suddenly been able to eliminate having to do a gazillions of sequences. Because, sequencing something for only 200 base pairs is pretty cheap, you’re able to get the whole cost down to less than 100 dollars.

[Damien Blenkinsopp]: Yeah. So they called this hyper-variable because, I mean the interesting thing about this is that that region just varies greatly. So that’s why you’re able to identify these different genus of these sometimes species, if it happens to be a species that has more variation on that. But that’s really the key to it; it just varies so much that you’re able to identify the different things in it.

[Richard Sprague]: Yeah, and it’s pretty cool. It’s a really amazing shortcut, when you think about it.

[Damien Blenkinsopp]: Right

[Richard Sprague]: That you’re able to go from literally millions of genes, down to exactly which biome species it is. That’s pretty cool.

(0:13:44) [Damien Blenkinsopp]: And so those were the first tests that came out with the uBiome, the American Gut and some others. There’s Atlas BioMed now in Russia and the UK as well, but I’d say most of the labs are using it, the 16S. Is that the one you’ve seen because you’ve seen some others in their states, and new ones that I hadn’t come across.

[Richard Sprague]: That’s right. I mean there are lots. It’s not that hard for a lab to do 16S sequencing. In fact probably most universities do this routinely. So anybody who’s got an Illumina gene sequencer can do 16S sequencing. It’s not, the basic ideas are pretty well understood.

Also the pipeline, the software pipeline where you go from the output of the gene sequencer to actually telling you which part of the taxonomy it is. All of that stuff is available on Open Source software. Just about anyone, any feasible lab can go do it.

[Damien Blenkinsopp]: For me, when I was first getting my uBiome stuff I was trying to understand it better and I just accessed the Open Source stuff. And actually, you think it’s going to be super complicated. I didn’t do a degree in bioinformatics or anything, but actually it wasn’t that complicated.

I managed to look into, and you’ve been doing a lot of that and posting your results up online as well. That’s how you got into it. So it’s actually very accessible, which is great as well.

[Richard Sprague]: That’s right. And it’s pretty easy if you have questions to find bioinformatics experts around who will answer your questions. Because like I said, this whole technology and the basics behind it pretty well understood.

(0:15:04) So, that’s 16S. The next step up requires a lot more detail and a lot more sequencing. People call it metagenomic sequencing. And essentially what you’re doing is you’re taking the entire sample, you blow it up people say you shoot a shotgun at it and you get all these little parts flying out.

And then a computer takes, it’s almost like a big jigsaw puzzle and reassembles it. And the advantage of metagenomic sequencing is that now you’re not just looking at that one 16S rRNA gene, you’re looking at all the genes. And so it’s a lot more comprehensive.

[Damien Blenkinsopp]: And then you can get species, strain level identification.

[Richard Sprague]: That’s right.

[Damien Blenkinsopp]: Because the one thing I struggled with when I was doing a few little projects on this was sometimes if you’re unlucky and you’re trying to identify some certain species or definitely strains or even genus in some cases the 16S can’t work. It’s very difficult to get that type of level of granularity of information out of it sometimes.

[Richard Sprague]: Yeah, that’s right. And unfortunately that matters. So one of the reasons why something turns into a pathogen, it turns into a pathogen and your body isn’t able to fight it off because it may be only off one or two base pairs.

So there are versions of E-coli that are only a couple of base pairs different than the ones that are highly pathogenic. And that’s because the bacteria are able to mutate much faster than a human can. Obviously it takes us a whole lifetime before you pass on a genetic mutation.

Whereas the bacteria do this all the time. So, unfortunately most of the pathogens that you’ll see out there are just a couple of base pairs different, and you can’t tell them apart with 16S.

[Damien Blenkinsopp]: So when you say a couple of base pairs, that’s the strain level? Is that the level of strain difference?

[Richard Sprague]: That could be the strain level or the species level, it depends where on the gene the mutation happened.

(0:16:50) [Damien Blenkinsopp]: So strain for the guys at home is the absolutely tiniest, basically if you think of a human mutation, that’s kind of a strain. Do you say that’s correct Richard?

[Richard Sprague]: Yeah, the way I would describe it is that you take a dog or a wolf, both are part of the genus canine. Okay? It would matter a lot to to whether it’s a dog or a wolf at your door, it matters a lot.

So just knowing the genus didn’t help you a whole lot. The species will tell you now that it’s a dog versus a wolf. The strain would tell you that it’s a poodle or a bulldog.

[Damien Blenkinsopp]: Yeah, that’s a good example.

[Richard Sprague]: Now, there are lots of cases where it might make a big difference whether it’s a Rottweiler or…

[Damien Blenkinsopp]: A poodle, yeah.

[Richard Sprague]: Yeah. So you’ll need this kind of metagenomic sequencing to be able to tell that level of difference. And unfortunately a lot of times it matters.

(0:17:40) [Damien Blenkinsopp]: Yeah. So I had on a PCR test, just in November, fibrocholera. In other words, cholera turned up in my test. And I was looking at it like, this can’t be.

You start looking into it and you’re like, wow. I had diarrhea, stool problems, for about a week, which was very unusual, liquid diarrhea. And so I looked into this and thought, I can’t have had cholera.

And when you look into it, there’s only two specific strains of that with small modifications which cause the epidemics. The other ones, they’re dangerous, they’re not nice, they give you diarrhea for a week and it’s not nice. But it’s actually some very rare strains that come out, those are the only ones that cause the really lethal epidemics that we’ve seen in the past.

[Richard Sprague]: Could be. And in fact, and this is where it gets really complicated, it could be that the particular strain that you have will out-compete the bad guy. So having it will actually help prevent you from getting cholera.

That’s the sort of thing that happens. That’s why it’s really hard to look at the presence or absence of a particular microbe and say in isolation whether this is good or bad.

Usually it will turn out that something that’s pathogenic will have one other characteristic, which is that it is super hyper-competitive, and it will just eat up everything else and take over. And you’ll know within days, maybe hours, whether it’s bad or not.

[Damien Blenkinsopp]: Yeah.

[Richard Sprague]: So a lot of times if you just see a little bit of this or that in there, that’s just life.

[Damien Blenkinsopp]: Yeah. But I think this is really, really important because I think a lot of the people who are finding species and I think we’ve both been guilty of it too, Richard. We find a species in one of our microbiome tests, so we dig into it and we research it. Especially with the 16S lab, where it’s maybe at a higher level that it’s been identified, I think it can lead to a lot of work with no outcome there, because you’re not as sure what you’re actually dealing with.

And the best thing there is probably to escalate it, basically. If you found something in a 16S you could escalate it to a shotgun, or better PCR for the specific one that may be a concern.

[Richard Sprague]: Yeah, that’s right. And the other kind of thing to always keep in mind with all those sort of testing is that we do have a lot of data. And that’s dangerous because now suddenly you’re being flooded with a whole bunch of data, and it’s easy to overreact. Because you’ll find all kinds of things, and it takes a long time to be able to sit back and look at it a little bit more objectively and say you know what, this is just the nature of the technology. We’re at the cutting edge; we’re going to find some stuff, don’t get too excited.

(0:20:10) So, going back to the list of different ways you can measure the microbiome. One of the other areas that’s been very exciting, this is kind of where the real cutting edge is now. It’s called transcriptomics, and that’s based on the observation that just because a gene or a microbe is there, it doesn’t mean anything in and of itself.

What you really care about is whether that gene is producing the proteins that are the building blocks of life. And the way that you tell that is by the RNA that it’s producing while it’s doing all of it’s copying and transcribing these genes. So people call it transcriptomics because you’re transcribing this gene into RNA.

And there are some new tests that are coming on that let you be able to look at that. Now, that has been extremely expensive. Like I said, it’s the cutting edge and you’re talking about RNA, which is a very difficult to handle molecule; it takes special kinds of labs to be able to do that.

And what’s very exiting is that now that is becoming possible to do at consumer level pricing as well. But that’s definitly, I think most of us would agree that that’s where the future is going to be.

[Damien Blenkinsopp]: Yeah, and then after that you have proteinomics, actually looking at the proteins. Because basically what we’re talking about is the chain of events in order to create the different molecules in your body.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: And it goes all the way down the line from genetics, transcriptomics, proteinomics, to metabolomics.

[Richard Sprague]: Metabolomics, yeah.

[Damien Blenkinsopp]: And it’s all great stuff.

[Richard Sprague]: Yeah

[Damien Blenkinsopp]: The beauty of it is one day we’ll probably have all them and actually understand what’s going on in the body.

[Richard Sprague]: Yeah, that’s right, yeah. I should also mention there are lots and lots of different tricks along the way to try to mimic what you get out of metabolomics or transcriptomics without having to do a full blood panel and that sort of stuff. One of them is called functional genomics.

For example, uBiome you can get this thing called a KEGG analysis. And that’s fairly common. That’s kind of a way to guess what sort of metabolites might be produced by this particular gene.

I don’t think it’s of super huge value. A lot of people will point to that as being evidence that such-and-such type of metabolite is present in my body. And you’ll hear that every now and then, it’s called KEGG analysis, another way to talk about it. But what I’m excited about is that now I think we’re able to move beyond that to looking more directly at what the specific thing going on in your body is.

[Damien Blenkinsopp]:With the transcriptome?

[Richard Sprague]: That’s right, yeah.

[Damien Blenkinsopp]:Yeah, I mean you can see that on uBiome, right. If anyone has a uBiome test at home they have the functional part that is displayed. Do they still have those charts, I haven’t checked for a while.

[Richard Sprague]: That’s right, yeah.

[Damien Blenkinsopp]: So that would be your KEGG analysis you’re talking about, correct?

[Richard Sprague]: That’s right, yeah.

[Damien Blenkinsopp]: And it’s things like, they’ll say you have caffeine metabolism and other things going on.

[Richard Sprague]: Or yeah, Vitamin D or this or that, yeah.

[Damien Blenkinsopp]: Yeah, yeah. I thought it was interesting because you told the story of where that came from and why we should be maybe a little conservative in thinking that that’s accurate.

[Richard Sprague]: Well it’s based on some experimental studies that were done a long time ago in Kyoto actually that’s why it’s called KEGG. It’s Kyoto something or other, EGG.

They essentially took a lot of genetic samples and they looked to see what kind of metabolites were produced. Well based on those experiments and they were carefully done experiments people are estimating when you’ve got a particular set of genes in your sample what kind of metabolites they might produce as well.

And that’s arguably better than knowing nothing at all, but I wouldn’t rely on it to be able to tell exactly how much caffeine I’m metabolizing or Vitamin D, etc.

You find a lot of this kind of stuff with genomics where somebody’s got some kind of tool, and it’s experimental. They’re just trying it out, and we’ll see how it works. And this is one of those cases. So I wouldn’t put a whole lot of stock in it.

(0:17:40) [Damien Blenkinsopp]: Yeah. Right. Great. I think another important question is why use genomics lab to understand the microbiome versus the other ones? The cultures, for example. They’re all genomics, right? The PCR, the…

[Richard Sprague]: Yeah. The biggest advantages of the genomic approaches are that it works on all of the microbes that are in the sample.

Remember with culturing, unfortunately, unless you reproduce the exact environment of your gut, which means anaerobic, no oxygen there, it’s got all the different microbes in combination and some of them are producing things that the other ones eat and need. There’s this whole community, so unless you’ve got that whole thing you can’t necessarily culture what you’re looking for.

Whereas the genomics which just says, you know what, we’re just going to look at every single gene in the whole thing. As a result, people have found that it’s well over 90 percent of all the microbes in your body can’t be cultured. We find brand new ones all the time.

[Damien Blenkinsopp]: Right. So that’s what’s going on, and that’s only been enabled by the genomics approach.

Because as you’re explaining, it’s super complicated; all the interactions between the bacteria and they rely on each other to survive.

As soon as you remove them and you’re trying to culture them or something, you remove that whole environment that they’ve been able to survive and breed in. And they need the metabolites, the things coming from the other bacteria and they’re just not there, potentially, because you kill them off.

The way that culturing works is basically you’re trying to separate out the things you’re trying to grow so that they show up in color and stuff. But by separating out and killing off the other stuff and not letting it grow, you’re basically killing off the ones that you want to grow anyway, in some cases, because they need the other bacteria.

[Richard Sprague]: Yup, that’s right. And it turns out that in a lot of interesting cases like some of the pathogens, maybe that’s good enough. But if you’re really trying to understand the whole richness of the microbiome, you’ll have to go to the genomics approaches.

[Damien Blenkinsopp]: Excellent.

[Richard Sprague]: So, now I will say, and I think we should put a big caveat in here. The genomics approach is nice to be able to get a look at all the genes that are there.

When I first started studying this, I thought, wow this is awesome, I’ll finally know what’s going on in my body. But I discovered that it’s actually much, much more complicated than it looks. As you can imagine, if you’ve got millions of organisms in a sample and you want to turn that into some useful data summary, there are a lot of steps that the lab has to go through.

And the steps are everything from the way that you happen to insert the sample into the vial, and it goes through the mail, and then how the lab tech handles it. All the way up to the bioinformatics pipeline where they’re going to process all of these numbers that come out of the sequencer and turn that into whatever taxonomy.

There are dozens of steps involved, and in any of those steps if the lab does it slightly differently than the other lab, you’re going to get different results.

[Damien Blenkinsopp]: Correct me if I’m wrong, because Richard has been at uBiome for quite a while so he’s had a closer experience with all of this. It seems like the bioinformatics pipeline, which is basically a series of calculations you’re going to make based on a database you have of references.

[Richard Sprague]: Yeah

[Damien Blenkinsopp]: And that comes from research of things saying that this piece of code means that this species, genus, exists, and so on. So you’re using a database of references in order, and you’re pushing it through this pipeline of algorithms, basically, that looks at the database checks and categorizes things. So that’s what that bioinformatics pipeline is actually doing.

And it turns out that everyone’s creating their own bioinformatics pipeline, and they’re using different databases, different reference databases

[Richard Sprague]: That’s right.

(0:27:30) [Damien Blenkinsopp]: And then we get quite different results, which is the next question I wanted to bring up. Why are we getting different results from different labs?

[Richard Sprague]: Yeah. And this is a little scary for me when I started digging into this, because I had spent a lot of time getting to know the different papers and the different labs and the different conclusions that people had come up with.

And you can put it in the show notes, but there’s a chart that I like to see that was from a publication in Science a couple of years ago where somebody actually went through and compared all the different big microbiome categorization projects and looked at just some of the common genus level microbes that they found in there. (publication referenced by Richard)

And it’s a little scary, because you look at it and you see that oh, the Human Microbiome Project says that such-and-such genus is dominant, and this one big study of like 4,000 individuals in the Netherlands found that no, that’s not the one that’s dominant, it’s a different one. And we’re talking about hundreds of thousands of individuals, so you’d think that they would all kind of average out, but that’s not the case.

And even American Gut and uBiome, if you look at their overall pictures, when they look at firmicutes versus bacteroidetes, or some of the other common ones, the results are just different. And you could say that, well maybe that’s because the type of people who send samples to uBiome are different than the ones who don’t.

But you’re talking about enough people that that’s a little bit harder to swallow. So what’s really going on is that a lab makes just one little change in, for example, how many times they PCR something before they submitted the sequencer, just one little change like that will express different levels of DNA, and then poof, you’ve got a different result.

And each of the labs if they use different reference databases, like you were saying, those references could be slightly different. If they find that a particular gene, they look it up in one reference database and it says that, oh this is bifidobacterium such-and-such. Well another lab might have called it something else.

So you just have to be a little careful. The good news is, and this is the way I look at this, if you’re going through the same lab most labs, I give them the benefit of doubt that they’re usually pretty careful. And the scientists behind this are usually pretty cautious about how they do protocols.

So you could usually trust when you submit a sample to one lab that it’s comparable to the sample the next time you submit it to the same lab. It’s just you have to be a little bit careful if you see a paper that says that they found that such-and-such microbe is associated with such-and-such condition, don’t just automatically assume that, oh my uBiome results says I have that microbe then that must mean I have such-and-such association.

[Damien Blenkinsopp]: Yeah, you could look at which lab did they use. Basically. And it’s a shame that there isn’t a standardized reference database, but it’s also the nature of the technology and the way it’s developing really.

[Richard Sprague]: That’s right, yeah.

[Damien Blenkinsopp]: Because it’s been opened up, and we have this commercial model. Which is actually enabling really the explosion of data gathering.

I don’t know how many samples, but basically there weren’t enough samples out there being collected and so on to advance science, right? So you have these commercial companies, like uBiome and so on, and they’ve made it feasible to get a large number of samples. I don’t know if you know how many samples uBiome has now, or if that’s disclosable.

[Richard Sprague]: I think the last announcement they’ve made is it’s well over a quarter million. I don’t know the exact number what they’ve announced, but it’s a lot of samples.

[Damien Blenkinsopp]: Right. And then you learn a lot from that massive data, you start the see the correlations. All the labs have, I think, questionnaires filled in as well so that they can start to see if there are some things that are related to Paleo diets, Keto diets, to antibiotics abuse. Not that many people like to abuse antibiotics in particular, but it has been done.

So I think it’s really interesting that all this data is being collected. And the nice thing, also, is that they keep the sequences, correct? This is definitely an area you’ll know more about than me, but if we wanted to run this through a different bioinformatics pipeline later, could we do that?

[Richard Sprague]: It would be tricky. Are you saying like if I submitted the same sample to uBiome and later on to someone else?

[Damien Blenkinsopp]: No I’m saying uBiome has a million samples, for example. And they have a particular bioinformatics pipeline today which says that, for example, I have a species we’ll talk about the cholera species that came up in my PCR test recently. But maybe in the five years time they’ll improve their reference database.

[Richard Sprague]:Yeah, that’s right. So, in fact, they could just go back to the shelf and look up and see your old sample and then run it through something else, and they might find something new. That’s right, yeah.

[Damien Blenkinsopp]: Right, so if they ever do decide that it’s important to change their bioinformatics pipeline, they could…just run it again.

[Richard Sprague]: Yup, you could run it again. And in fact, if you have the fast Q file, the raw output from the sequencer, it’s possible to run it through a different pipeline there as well. And if in the future somebody comes up with a better reference database, for example, it’s possible to take that same exact fast Q file and come up with a different answer.

(0:32:28) [Damien Blenkinsopp]: Well exactly. So they have all these fast Q files on a server somewhere, I’m guessing. Right? So these are the things you could run through a bioinformatics pipeline and get different answers. So that data is going to be invaluable, incredibly valuable.

[Richard Sprague]: Yeah, you’ll be able to find new insights from the old data in the future.

[Damien Blenkinsopp]: Right. Richard and I were just talking before we started this episode, some of this stuff may be challenging to get without visuals.

Whenever we’re mentioning something and it sounds complicated, we’ll probably throw a chart in there because we’ll realize that, and we’ll be like yeah, that one deserves a visual chart. So we might go over the concept relatively quickly, because we realize we’re not going to get there on audio but try and provide some visual aides in the show notes.

(0:33:13) Let’s talk about the actual labs now. What are all these labs? We’ve just kind of bounced around a few of them already, but what’s the landscape look like? It looks like it’s kind of exploding in the last few years, right? So I think uBiome and American Gut were around in 2014, and since then there’s quite a few different labs that have come out.

[Richard Sprague]: Yeah, that’s right. I’m actually curious also about you, because you’ve done more of the culturing than I have. And what kind of labs you’ve had experience with on the culturing side.

[Damien Blenkinsopp]: Yeah, so there’s basically a lot of functional medicine practitioners and hospitals in general will use the culture approach.

So I’ve done many, many different cultures over time and eventually this led me to running two different cultures; this was quite a few years after having started the Doctors Data and the BioHealth lab side-by-side, because they have different strengths and weaknesses. They’re both culture based test, and pretty consistently some things would turn up, but not necessarily on both of them.

I was working with Chris Kresser’s California Center of Functional Medicine there. And I like those guys because they’re very conservative about tests; you may have come across them as well Richard, I know they were talking to uBiome.

And they’re very conservative about their tests. They look for the studies, they look and they have a very large population of clients as well. And they’ve been running for many years. So I like the fact that they’ve been doing that for a while, and they have changed their tests over time.

And they, I think they may have moved on a little bit from these tests, but a couple of years ago when I was doing a lot of this with them they were running both of those side-by-side. That’s a little bit expensive, but it did tend to give us pretty clear…

[Richard Sprague]: So, did you submit the same exact sample to two different labs?

[Damien Blenkinsopp]: Yeah. Each time. Yeah, that was their protocol. Basically they…

[Richard Sprague]: And can I ask you, those culturing labs were they, did you have to poop in a box or did you just send a swab?

[Damien Blenkinsopp]: We used these kind of tiny vials for the uBiome, right? Where you put this really little vial, I mean basically the size of the end of your thumb. The culture labs, they’re larger; kind of three times a test tube size. They’re like a big test tube.

[Richard Sprague]: So a couple of tablespoons?

[Damien Blenkinsopp]: Yeah. And normally, actually, you have four of those for each kit. So there’s a lot of spooning and scooping that goes on for a little while into these different containers because they’ve got different assays they’re running there and they’re trying to preserve and do different things in each of those vials so they can look for different things, parasites and so on.

So it was quite a time consuming process when you’re doing that.

[Richard Sprague]: Yeah. And did you have to go to the hospital or the doctors office to do it?

[Damien Blenkinsopp]: Yeah, you do these from home. They send you the kits, and you sit on the floor scooping. I would lock myself in there for half an hour and scoop away.

[Richard Sprague]: And did the tests agree with each other? You said you submitted from the same sample.

[Damien Blenkinsopp]: Sometimes, sometimes they didn’t.

The reason they were using those in particular was because they felt they had different strengths as well. The last I heard some people feel BioHealth was a little more useful and picked up more stuff.

And again it comes back to our discussion of sensitivity, whether it’s picking up stuff. And that is the concern with a lot of physicians that it’s not picking up stuff, and it doesn’t do it reliably.

So I actually experienced this because I did many of these, over time. We were doing them every couple of months or so to see if the treatments we were doing against parasites like blastocystis hominis I had that for a while, and it’s quite a common thing but it can be a bit of an annoyance in the gut.

And we would do a protocol to get rid of it; we would retest it, it’d be gone. And we’d wait. You have to wait after your treatment, obviously, in order to let things settle down and then see if they grow back. And it would be gone for maybe two tests, and then it would come back again; it would just pop up on one of the tests.

So there’s a bit of inconsistency, and it’s a little bit worrying. For that reason you end up doing a lot of these, and they can be expensive.

[Richard Sprague]: Yeah, interesting.

I don’t know too much about Doctors Data or Biohealth.

I talked to functional medicine practitioner who used GI Effects. And that seems to be, at least in the Seattle area where I am and a lot of naturopaths, that seems to be kind of the one that most people use. The functional medicine people that I talk to are pretty positive about it, and they say that it actually produces very actionable results for treatment.

[Damien Blenkinsopp]: Yeah.

[Richard Sprague]: It seems the one to beat.

[Damien Blenkinsopp]: That was actually the first one I ever did, I think back in 2011 or something. It was MetaMetics previously and Genoma acquired that company. And MetaMetrics was very well respected as a company, so it was a good acquisition.

It came up with some stuff. And that is a combination of the culturing approach and PCR which we were talking about later, which is a genome sequencing but quite accurate. If you see something with PCR, it’s there. That’s a high probability.

[Richard Sprague]: Yeah, and I would say I’m not a doctor and please don’t trust my advice but if I did have some kind of gut issue I would want the functional doctor to use what he or she is familiar with and comfortable with, and they seem to be comfortable with this. And I would trust those results because they’ve been used for years and years and doctors have learned what work or don’t work about them.

I look at the other genomic results like the 16S and metagenomic results as being kind of cool for someone like me, and definitely worth watching for future potential. But if I were really sick, I would want to stick with what the doctors trust.

[Damien Blenkinsopp]: Yeah, exactly. And so I know some functional medicine practices have evaluated 16S based testing, and have done trials with it. But so far they’re like, this isn’t going to be good enough in terms of diagnostics, and also just the cost. Maybe it would pull out some things sometimes and be a little bit indicative of something, or just help you to explore doing a PCR with something. But they felt like the cost benefit and just the kind of time involved in getting a patient to do it wasn’t worth it at this point.

(0:39:10) [Richard Sprague]: Yeah, maybe. Now, on the other hand, there are a lot of conditions where the traditional culturing, or even the PCR approaches, can’t find out what’s wrong, and they don’t know what’s going on.

And that, I think, that’s where the place is for a little bit more experimental and you want to look at a bigger picture. And that’s where you get the 16S and metagenomic approaches because you will see a lot more.

[Damien Blenkinsopp]: Absolutely.

[Richard Sprague]: And after you’ve looked at zillions of samples the way that I have, you do start to see patterns. And you start to see when something looks anomalous, and you say, hmm. And those are the kind of things that if you’re just relying on culturing approaches you probably wouldn’t be able to see

[Damien Blenkinsopp]: Absolutely.

I’ve been really interested in the shotgun approach in particular for this, to pick up things that, as we said before, with PCR basically you have to say I want to find a poodle. You know? Or I want to find a dog in the mass of everything in the world. So you have to really know what you’re looking for, otherwise you’ll just get a negative and it costs money.

Whereas the shotgun, if you don’t know what you’re looking for but you think there’s something there it’s a good idea to do a shotgun to give you an indication. So I did a recent one, Richard and I were talking about the shotgun approach which is looking for pathogens and things like this, which is the Aperiomics, the lab test.

And I did a shotgun sample of my poop and, you know, there were a few different pathogens and some others that came up which were unknowns. A lot of them were unknowns, actually, because it’s a relatively new service; and this is where you see the bioinformatics pipeline, their reference database and so on.

They told me the benchmarks they have so far. They don’t have enough data, so there’s some interesting stuff, but there’s a lot of unknowns; we don’t know if its pathogenic or not because a lot of people have this and they’re going fine.

But I think that for me was an interesting test because it was using shotgun just to potentially pick up something interesting, and then go after it with PCR.

[Richard Sprague]: Yeah, that’s interesting. And I would love to see results that people do side-by-side if you submit the same sample to two different labs. It would be really interesting to compare that.

(0:41:12) [Damien Blenkinsopp]: Yeah, so I did that with the GI Map from Diagnostic Laboratories. Also uBiome, but unfortunately somehow that was lost, either in the post or I don’t know what happened with it. And I did Free Labs.

GI Map, we haven’t discussed, is a PCR based test. And that’s from Diagnostic Laboratories. And there’s a lot of functional medicine practitioners who are now looking at that one. Because it is PCR based, so again if you pick something up and it’s looking for quite a number of problematic bacteria, parasites, and so on, then it can be pretty useful. It’s a little bit more expensive, but that’s a good one.

So I ran that next to the Aperiomics, and I had that back. And I was trying to cross them, but nothing crossed actually.

[Richard Sprague]: Oh you didn’t find any, there was no consistency between the two?

[Damien Blenkinsopp]: No, I didn’t find the same. So I found the cholera in the GI Map. So I trust that because it’s PCR based. It didn’t turn up in the shotgun, which could be the reference database that they haven’t put that species in, or that specific strain in even. Or it could be the bioinformatics pipeline that they haven’t built out yet.

There’s so many different reasons that that might not be. But it goes back to what Richard was saying earlier, is that if you’re using different labs it’s not necessarily going to pick up the same stuff at this stage.

[Richard Sprague]: That’s interesting if they couldn’t find cholera in two different samples.

Part of it also could be if we’re talking about minute amounts, even the metagenomic approaches you’re only looking at a certain number of, you’re not looking at every single gene in there. You’re still looking at a subset of all the different genes, because you can’t sequence all gazillion of them.

The PCR approach though, you’re looking for a particular one. So you stick in some primers that will cut every single copy of DNA that has that one in there. You’d have to ask somebody who’s more knowledgeable about lab science than I am to state this more unequivocally, but when you do that you will know that the following DNA snippets came from that microbe.

Whereas with the shotgun approach, you’re going to know at a broad level, because you’ve looked at as many as you could, but you haven’t looked at every single one of them

[Damien Blenkinsopp]: Yeah.

[Richard Sprague]: And when you’re talking about minute amounts, that might make the difference.

[Damien Blenkinsopp]: Yeah, I think the nice thing about, going back to genomics, is that it will get better over time, as these databases, these bioinformatics pipelines, as each company basically gathers data and experience. And eventually, hopefully, there will be some type of collaboration. I don’t know what would be up in the future, but it would be nice if there was a way to match these together and get…

[Richard Sprague]: That would be neat, yeah. That would be neat to have a bunch of people all comparing our results from the different labs.

[Damien Blenkinsopp]: Yeah, and trying to build conversion tables or something. Something like a pool where you can convert your uBiome into your American Gut, or whatever you wanted. And it would be more comparable.

(0:44:07) [Richard Sprague]: And see how you compare, yeah. In fact, actually it’s funny because American Gut is one of the few labs that you submit the sample dry. In other words, you just put it on a Q-tip and you send it in dry. You don’t put it in a special upright vial.

[Damien Blenkinsopp]: Nothing? Okay, interesting.

[Richard Sprague]: And I asked the lab about that, because that’s kind of odd. And they know that there are certain species that when they are dry they continue to multiply. Because it’s not dead when it comes out of your body. And some of them when they’re exposed to oxygen immediately die, but some of them don’t. In fact, some of the thrive, and you get a bloom actually in some species.

And what American Gut does and they’ve written a paper about this, they’re very upfront about it they run, in their bioinformatics pipeline, they’ve already tested which species are thriving in an oxygen environment, and they filter those out. And they say oh well you collected a sample on such-and-such date, that means that this much time has passed which means that likely this much of this species has bloomed. And we’re just going to go and adjust the final result that way.

[Damien Blenkinsopp]: Whereas basically uBiome’s test and others, they’re killing all the bacteria straight away to preserve them in the state they were in the stool.

[Richard Sprague]: Yeah. And again, that’s going to be a difference in the pipeline. You’re going to get different results.

[Damien Blenkinsopp]: I mean, I can imagine. I mean that introduces basically another variable. I wonder why they didn’t decide to eliminate that.

[Richard Sprague]: Well the reason they didn’t do that is because the people at American Gut are super careful scientists, and what they care mostly about is consistency across all their different samples. They want to make sure that every single sample is conducted under the same conditions.

And they also at least in the beginning were working a lot in environments like outside the United States where maybe the collection procedure was maybe a little bit more erratic. And they just wanted it so that they could take all the different samples and treat them exactly the same way.

They’ve got a paper on this where they show, you know, that it doesn’t matter as much as you might think, but still. Yeah, it’s another area where the pipeline is going to be different.

(0:45:55) For you guys at home, just a quick reference there. I spoke to Rob Knight from the American Gut a while back, so if you wanted to know more about what he was doing there. He talks about where they got the first data and so on for that project.

(0:46:10) Okay, great. How about the 16S labs? Because you know all the 16S labs really well.

[Richard Sprague]: Yeah, well let’s talk about the 16S.

Now, first of all, I want to repeat in full transparency, I am a friend of uBiome. I’m a former employee. I’ve been a happy user of them for a long time. But I have spent time with their scientists; I trust their scientists. I think they’re pretty careful about how they put stuff in the lab.

Now that said, there are lots of other labs that I’ve worked with as well, and I’ll just go through the differences.

We talked about American Gut. I think that American Gut is scientifically they’re the most sound lab. You’ve had Rob Knight on this show, you know he’s a very smart guy, well published, extremely careful scientist, and knows everybody.

They have published a lot of results based on their American Gut cohorts, and they’ll continue publishing. They take their science very seriously. The other thing about them is they’re ultra transparent.

Every single one of their software tools that they use are all Open Source. They anonymize, and then anybody who wants to can go look at their data and reproduce their results. In fact, they even have Python notebooks where if you don’t trust something that they publish in a paper you can go run it yourself down your own Python and see.

So it’s very transparent from that point of view.

The other company that I would call out is a newer company called Thryve in Santa Clara. They’re focusing on personalized probiotics, but the CEO Richard Lin is an example of the kind of person I like to see running one of these companies because he cares a lot.

He’s been trying to solve some of his own issues, and so he founded a company, essentially, to go and help resolve that. So he cares a lot and he’s especially focused on actionable results. So I like them.

There are lots of other labs; I won’t go into all the names, I haven’t tried a lot of them.

One that I will bring up though is a company called Gencove that focuses mostly on genomics. So they’ll take a mouth sample. But what’s cool about them is that they’ll run their mouth sample, the swab that you give from your mouth, you get the DNA results just like with 23andMe; it’s very comparable to 23andMe. But they also give you the microbiome breakdown.

So there’s that company. And there are lots of other companies that are doing 16S in one form or another.

(0:48:20) [Damien Blenkinsopp]: So that’s very similar to the Atlas Biomed guys, who actually came from Russia. So they were doing studies in Russia, and now they’re in the UK as well, so they got the two populations. So they’ve combined in their interface the DNA and the microbiome.

So it’s quite interesting. I would say they’ve got a lot of recommendations. We’ll get into this in a little bit but they got a lot of recommendations in there, and study references and stuff like that. It’s quite interesting; they’re quite strong on the recommendations from the data.

[Richard Sprague]: Interesting. Do they, what kind of sample do you give them? Is it a mouth swab, or both, or blood? What do you give them?

[Damien Blenkinsopp]: Sorry, this is for the gut, right?

[Richard Sprague]: So it’s just gut, okay.

[Damien Blenkinsopp]: Oh, for the DNA it’s saliva, you’re correct.

[Richard Sprague]: Yes.

[Damien Blenkinsopp]: And then for the gut it’s the usual poop thing.

[Richard Sprague]: Yes, okay.

[Damien Blenkinsopp]: So you do the test and the same time. Or you can send the DNA whenever you wanted.

[Richard Sprague]: So they’re two separate samples?

[Damien Blenkinsopp]: Yeah, that’s right.

They’re trying to combine to get more information, to see correlations, things like that.

[Richard Sprague]: That’s real interesting.

 

[Damien Blenkinsopp]: And their plan is, I think this will get more interesting. I went to see them last week and so I was talking to them a lot.

And basically their plan is now to get into blood tests as well. And to bring this kind of information to clinicians, where you combine DNA microbiome and blood tests results, metabolomics. And some of the standard stuff as well, like information whatever it is that doctors have been using for a long time. And you can give a bit more context.

So they haven’t figured how they’re going to do that, but the idea is to provide more context around these blood tests to try and make the links and stuff like that to provide a better tool, basically, for looking at patients.

And I think if it’s done that way, led by blood tests which have been used for a very long time in diagnostics anyway, and you add information and context with the DNA and the microbiome, then that actually sound quite useful.

(0:50:11) [Richard Sprague]:That’s right. There’s another company in the US called Arivale, based here in Seattle, and they are now available in the West Coast, California and here. They might be nationwide at this point. But it’s a very similar kind of thing.

I think it’s 1000 dollars, for a one year program. They do a 30x genomic sequence. They test your microbiome, they do your blood test, and there are a couple of other things. They give you a FitBit and measure activity.

And then they assign you a personal nutritionist and you have once a month meetings with them, and you can ask them email questions, and that sort of stuff. And they work with you on whatever issue you want.

And I think that is the direction that I think if you’re seriously trying to solve a problem, that’s what you should be doing. Because it’s this holistic look at the blood results, the microbiome, the genetics and all that stuff together.

[Damien Blenkinsopp]: And consultation. And experts who actually help you work through it.

Because right now, frankly, a lot of these services had to start a consumer facing in order to get the volume of data and build up their databases, right? Because that was the only way that you were going to get enough data to be able to start seeing patterns and start getting past this first hurdle.

And I think it was always sold like that anyway; this is informational, it’s not diagnostic, it’s not supposed to be used like that. That’s really the idea.

[Richard Sprague]: Yup.

(0:51:26) [Damien Blenkinsopp]: Okay. So that’s 16S, and like I said Atlas Biomed that was a 16S as well. And then we have the metagenomic shotgun ones, which I was quite excited about.

I spoke to Eran Segal and Lihi Segal in a previous episode about their work, and that resulted in Day Two. So I was kind of looking forward to that, because it was the first shotgun service to come out that was a reasonable cost. I think at that time it was like 200 or 300 dollars.

[Richard Sprague]: Yeah, that’s right.

[Damien Blenkinsopp]: Yeah. So there’s that one. And you’ve done that as well, and you published a review about it. So what did you think of Day Two?

[Richard Sprague]: I thought Day Two is very cool. You submit the sample, it took a while to get back, but they’re just getting started.

What’s neat about it is Eran Segal, as you mentioned, did a lot of really cool research where they were able to identify, I guess, glucose response levels and it’s dependence on what’s going on in the microbiome. And so by looking just at the microbiome they’re able to tell, oh your insulin levels are likely to respond to what’s in your diet.

And they ran this big machine learning algorithm against all the different kinds of food types. And they had, I think 1000 volunteers and they did a whole bunch of studies.

And now Day Two gives you an app that goes through the food groups and tells you how likely you are to respond, well or poorly, to a particular type of food. It’s very well done.

[Damien Blenkinsopp]: In terms of glucose response, right? It’s just glucose response. So we know that.

It’s been pretty cool. And they had large studies; they had a pretty large population, over 1000 people.

[Richard Sprague]: Yeah. It was, and they’re careful scientists and they published their results.

And kind of the interesting take-away from Eran Segal’s work was that there are some people who, your standard diet advice says you should always eat the whole grain version instead of the white bread version. But there are some people who it’s the exact opposite advice. And this algorithm seems to be pretty good at telling which one you are.

So in my case, for example, with Day Two it’s showing that I should be eating things with more fat in them.

So yeah, there you go Mr. Ketogenic guy. And it was pretty accurate for me. It showed, for example, I’m not lactose intolerant; I can handle dairy and it recommends that I have dairy. And I found most of the suggestions to be reasonable.

The other nice thing about them is they’re not based just on a particular food, but they recognize that food is in context. So having a slice of toast is not the same as having a slice of toast with some butter on it; the way that your body is going to respond is totally different. And they have a lot of recommendations for that.

[Damien Blenkinsopp]: Absolutely.

[Richard Sprague]: So I’m pretty impressed. I’m waiting to see how they do. A lot of the initial research was all done in Israel. So they’re running a study now I guess in the United States. And I think actually when you had them on your podcast I think one thing they mentioned, they’re doing something with Mayo Clinic, I think.

[Damien Blenkinsopp]: Yeah, exactly. Yeah.

[Richard Sprague]: So I’m looking forward to seeing how that turns out in the next couple of years.

[Damien Blenkinsopp]: Yeah, that would be pretty cool when they get more data. Because I think, personally, glucose response is one of the highest impact things you can do relatively simply by changing your diet. Sometimes sleep and other factors as well, but it’s really important.

So going back to this personalized…

[Richard Sprague]: Just one quick thing, did you see the new book that Eran Segal and his co-author put out?

[Damien Blenkinsopp]: No, I didn’t.

[Richard Sprague]: It’s called The Personalized Diet. That’s worth reading. Yeah, that’s worth reading. It’s called The Personalized Diet.

[Damien Blenkinsopp]: Okay, great.

[Richard Sprague]: Go check it. It just came out, and I just read it it’s a wonderful book.

[Damien Blenkinsopp]: Oh, awesome.

[Richard Sprague]: It goes into a lot of… And what’s cool is in the end, he gives suggestions for how you can test yourself using just a cheap glucose meter, and gives suggestions as part of it. It’s kind of cool.

[Damien Blenkinsopp]: Excellent. That sounds a little bit like the Rob Wolf test that was in Wired to Eat.

I put some charts up on that. It’s a standard actually glucose tolerance test to different foods. But you learn a hell of a lot. I don’t know if it’s the same, but it can be done; just a blood meter can tell you a lot of information.

[0:55:22] So I’ve been doing this a lot. One of my other pastimes, currently I’ve been developing a food which uses different fibers because I don’t want it to by glycemic, because I’m not a fan of high glycemic responses. So, similar to the Eran Segal guys.

So I’ve looked at a lot of different fibers and I can tell you that there is definitely a lot of variation between. Because when I go to a company and I ask them for a fiber, there’s many of these. There are a lot of different fibers that are created by companies now in different ways.

Basically fibers are carbohydrate which is resistant to getting broken down in the body. So that’s the way you’ve got to look at it. So there’s a potential high glycemic response from a fiber because your biome may be able to digest it and turn it into glucose, whereas someone else’s maybe not. And it’s going to pass through them and they get no glycemic response.

So I’ve had quite a fun time testing a lot of different fibers and collecting a lot of data on that and seeing the different responses. And I plan to now do that on a population, because I understand that just because I get these particular responses doesn’t mean that everyone’s going to get that response.

But it’s actually tricky with these fibers and everything. There’s a lot of products that state low-carb or whatever, but they often have different fibers in them. And it’s just not that simple, unfortunately.

[Richard Sprague]: That’s very interesting. It would be especially interesting if you could trace it to which microbe is involved.

[Damien Blenkinsopp]: Oh yeah. I know, right.

[Richard Sprague]: There might be a simple little change to the formula, where you add a particular microbe or you add something that that microbe likes to eat and suddenly now that fiber that caused the bad glucose response is suddenly just fine.

[Damien Blenkinsopp]: Yeah, exactly. It’s people like Day Two are going to have the best information because they’ve collected it. I always think about all this whole area and everything, I’ve been thinking about this for quite a whole in terms of us trying to get ahead.

It’s like, who has the data? If you want an answer to something, go find the people with the most quality data it has to be quality data and you’re going to be the closest to the answer at that point. You know, if you can get talking to those guys and what they’re doing with that.

(0:57:29) [Richard Sprague]: Yeah, that’s true. That’s right. So we should also talk about Viome, which is the other metagenomics company. They’re the transcriptomics one that we talked about.

They just came out, and I just got my results back a month or so ago. And again, they give you this big, it’s an app where they’ll give you a big breakdown of the different microbes that you have. Actually, it’s the different, they try to stress that it’s not the microbes themselves it’s the activity of the microbes.

And then they break it down and tell you what kind of foods that you should eat or not. And it’s a pretty impressive list of people backing the company; if you look at their board of advisers it includes people like Ray Kurzweil and Aubrey de Grey, the Life Extension guy, and the bulletproof empire, Dave Asprey is a big fan them. And you’ll see a lot of, Ben Greenfield Fitness, etc.

[Damien Blenkinsopp]: They’ve got their name out in the media more than most companies quicker.

[Richard Sprague]: Yeah, that’s right.

And they’re founder, Naveen Jain, one of the things I respect about him is he really genuinely believes in it himself. So he’s out there himself personally pitching the product, and he’ll talk about his own results. He’s got a private Facebook group where they talk about it, and he’s one of the active participants answering questions about it. So they’re very serious, and they’re hiring a lot of people.

They claim that they’re based on some lab science that was developed out of the Los Almos lab in New Mexico over many years. I’ve had a hard time figuring out from a scientific point of view exactly how they’re doing the work.

One of the things they, if you go to their website they say specifically that they’re not going to release the raw data. So it’s a little hard to tell exactly what’s going on, and how they’re coming up with the recommendations.

And it’s something that I hope that they’ll be a little bit more transparent about.

[Damien Blenkinsopp]: Yeah, and this is something, you know we wanted to talk about, is basically if you’re thinking about doing some labs what kind of things do you want to take into account.

(0:59:24) Let’s talk a little bit about what we’ve actually run. Like what labs have we both used? Because I don’t know you Richard like, what labs have you run over the last, is it four years?

[Richard Sprague]: Well, okay. So, I’m a little crazy. I’ve done well over 500 samples from uBiome, another several dozen from other different labs. Probably all told I’m up at close to say 600 samples.

[Damien Blenkinsopp]: And at uBiome you were doing daily ones, right?

[Richard Sprague]: That’s right. Yes. So I had daily samples for more than a year.

[Damien Blenkinsopp]: Which means you were pooping every day. At least once.

[Richard Sprague]: Yeah, that’s right.

Well actually I should say, I should be more precise. No, not every single day. That’s right. There are a couple of gaps in it, but generally speaking I had near daily samples for more than a year. And then I have other fairly regular samples going back through to 2014.

What’s also cool about it is I tracked all of the food that I ate the whole time, and my exercise and my sleep and that sort of stuff. So I’m able to run all these cool correlations to figure out what I learned. So that’s really cool.

I’ve done also Viome testing, Day Two, Thrive, I mentioned Gencove. Let’s see, who else. I’ve not done any of the culturing tests. But what’s also cool is I’ve done a lot of these side-by-side just to see, to cross-compare them among themselves, which has been interesting.

[Damien Blenkinsopp]: A lot of these labs have interfaces where you have to access the data. So I can’t do it for all of them, but I’ll put up samples of any that I’ve done that are basically PDFs or something that you can actually see.

[Richard Sprague]: Yeah, I’m happy to show mine as well.

[Damien Blenkinsopp]: Yeah, so we’ll combine our things to try and give you a picture of what most of these look like. Can’t be all of them just because some don’t actually deliver the information in that approach, but it should give you a good idea of what all these things look like, and the kind of microbes they’re looking at and stuff like that.

From my side, I started with uBiome when they launched and that’s when Richard also go into it, I believe. And they were one of these Kickstarter campaigns, or that was Indiegogo, because…

[Richard Sprague]: Indiegogo, yeah.

[Damien Blenkinsopp]: Kickstarter and all that kind of stuff…

[Richard Sprague]: Back in 2013.

[Damien Blenkinsopp]: Yeah. This is kind of amazing that it was already that long ago.

So I’ve just done seven uBiome tests. Quite a bunch of those were the five I don’t know if you’re doing the five…

[Richard Sprague]: That’s the five sites, yeah. I’ve done it, it’s gut, mouth, skin, nose, genitals. I’ve done them all.

[Damien Blenkinsopp]: Yeah, I’ve done semen as well, because I was curious. [Laughter] I was like playing around with different stuff. Which they don’t normally do, and they haven’t got a lot of benchmark data on that.

So the standard ones that you said are the mouth, the genitals, and the skin. And they did teeth as well, actually. They did the dental one.

[Richard Sprague]: That’s right, yup.

[Damien Blenkinsopp]: Yeah, so they have quite a bit of data on those.

[Richard Sprague]: Yeah, and we could talk forever about some of the things that I’ve learned from all of my studies. And I’ll give you a link to my, I’ve been writing some of my results up. But don’t forget, the microbiome is more than just the gut and you can learn a lot of things from skin and from mouth and nose as well.

[Damien Blenkinsopp]: Right, exactly. And there’s actually a little hack, we’ll talk about some hacks we’ve done on things that have actually potentially done something in a little bit.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: So the other ones I’ve done is the Viome one as well, Day Two, so both of us have done that. I’ve done the Atlas Biomed one, because I’m based in the UK. And I’ve done quite a few of those culture and PCR based tests, so it’s a little bit different there.

(1:02:44) Alright, let’s just dive in to see what kind of things we found from this. First of all, what can we say about comparison of data? We were talking about how they’re not necessarily comparable.

[Richard Sprague]:Yeah. That’s an interesting thing. So I have done comparing my 16S results with both Viome and Day Two, and I find that at the high level, they’re actually fairly different.

I shouldn’t say, you know it’s sort of like you can see the chart here. For example, in Day Two it says that my furmicidies level is about 50 percent. When I tested it on uBiome, one of my uBiome tests shows it’s like 59 percent. My bactorides in Day Two is like 45 percent, uBiome tested it out as more like 30 percent.

There are, that sounds like a fairly significant difference, but if you’ve seen a lot of samples you realize that it’s probably not as significant as it might sound, because there’s a lot of variability in day-to-day anyway.

The one thing that I did notice was that, however, the ordering, in other words which was the most dominant, the second dominant, etc, was pretty consistent. Which is nice to know. That means at least at the biome level you can kind of trust that if it says that you’ve got higher furmicidues than bactroidides then maybe you really do.

The other part is that if it says that you’ve got verrucomicrobia, which is the phylum that includes akkermansia, which is an important one for eating the musilin level and is considered important for health. If Day Two shows that you have it, it’s likely that uBiome will show that you have it as well. Which it’s nice to see a little bit of consistency there.

[Damien Blenkinsopp]: Alright we were talking about this a little bit earlier, because I was comparing all the species that I’ve picked up in different ones. And, you know, obviously they don’t correlate all the time.

So Richard was saying that probably the way to look at it is that if it turns up in two tests, and it’s not in one test, then it could be just that it’s likely it’s there. And it might be worth doing a PCR or whatever, but it’s likely it’s there. And it’s the bioinformatics library of the other one maybe doesn’t include that species, right? They haven’t got the references in their database or something.

But that’s kind of like a starting assumption you can start with in your exploration to try and nail it down, whether it’s there or not.

[Richard Sprague]: Yeah, that’s right. It could be and the other thing, again I would emphasize look at presence versus absence, and be a little bit less concerned about the abundance, and that’s going to vary a lot.

[Damien Blenkinsopp]: Well that’s, on your Viome you’ve got this spirochaete of…

[Richard Sprague]: Yeah, the Viome one is interesting. And I don’t know how to interpret that, because it shows that I have 79 percent spirochaete…

Damien Blenkinsopp]: It’s off the charts compared to the others, yeah.

[Richard Sprague]: It’s off the charts, yeah. And now what they’ll say is that that’s the one that we’re after, those are the microbes that are active.

[Damien Blenkinsopp]: What level is that? Is that the family or the genus?

[Richard Sprague]: It says, my test result says 80 percent spirochaetes at the phylum level, and then it shows at the genus level, the genus spirochaete is 46 percent.

[Damien Blenkinsopp]: So it’s missing one.

[Richard Sprague]: Yeah, there’s just something that doesn’t add up about it, and I don’t really understand how to interpret the results. And I’ve asked them and

[Damien Blenkinsopp]: Right. It sounds like their library isn’t quite there yet, and maybe there is…

For people who don’t know at home, spirochaetes get a bad rep because Lyme Borrelia, which is of course quite a bit of a problem for some people, is a spirochaete. That’s the family it’s in.

So when people see spirochaetes, typically, and when they’re talking about them they’re talking about pathogens. So when you see it in your samples and I’ve seen it in my Ubiome as well. It’s something, I actually did a little project on it, which I’ll, in the show notes we’ll put up anything we talk about, all that usual stuff.

But yeah, I bet you were interested when such a high amount of spirochaetes turned up, and you were like woah okay, but what kind of species is there.

[Richard Sprague]: Yeah, and the results show it broken down by phylum, genus and species. And what was odd is that at the phyulum level it said 80 percent spirochaetes, at the genus level it said only 46 percent, and there were no spirochaetes at the species level.

And the genus level, all of the different genera added up to, I think it was something like 90 percent. In other words, so they think they identified all the genera that were in there, but it didn’t add up. So I’m not sure exactly how that works.

[Damien Blenkinsopp]: Yeah. So I had a little problem as well. When I got my results, I had 30 bacteria in the total, which was showing up, which I felt was relatively low. And so I talked to them a bit about that, and at the time they felt that was correct.

That was when Viome first came out sometime last year. I got my results relatively early. So things may have moved on since then. I would expect as they’re working on the databases and all that kind of stuff that I’ll have more. And I think I haven’t counted them recently, but I need to count them up again but I think I now have more that have turned up.

[Richard Sprague]: Yeah, and they’re pretty clear about, they’re selling a subscription. So right now it’s like 400 dollars a year, or something like that, and so they claim it’s a subscription because they keep updating your results as they learn more information.

So, anyway, so I don’t know how to interpret that.

The other part about it, Viome, like Day Two, has a list of foods that you should eat or not eat. And what I found was there was some consistency between the Day Two algorithm and the Viome algorithm.

For example, both agreed that I can handle dairy products, lactose. Both agreed that I should stay away from grains, although Viome thought that whole grains were okay in a lot of cases. And then there were just some odd ones, like for example Viome says that I shouldn’t eat pork.

[Damien Blenkinsopp]: I think I may have had that too. I had some quite odd things in there.

The issue I had with it was that there’s no reasoning. For the Viome we don’t really know what they’re looking at and why they’re making these decisions. We discussed Day Two, basically we know what it’s based on. It’s based on the glycemic response.

[Richard Sprague]: And there’s an academic paper where they showed the reasoning behind it, and you can, all the caveats that you would see, normally, in any kind of academic study, but at least you kind of know what direction they’re coming from

[Damien Blenkinsopp]: And they’re very focused just on the glycemic response. So you know where that recommendations coming from and they give the A, B, C, D grades.

I would have loved if they showed the average glucose response for someone with mine. That’s what, I actually sent in a support email or something like that in to them for that, because I would be like wow that would be much cooler, rather than these A, B, C, D categories.

[Richard Sprague]: You know they changed it recently, right? They’ve changed it; now it’s not A, B, C, D it’s, they give you a number from 1-10 I think now.

[Damien Blenkinsopp]: Okay. So that’s a bit better, that sounds better. Yeah, that’s good.

Alright, cool. But the problem with Viome is you have no rationale, no methodoloy, and it says you shouldn’t eat something that you love. I think it told me I shouldn’t eat chocolate. So, it’s like, you know I kind of like chocolate and I don’t have any reason.

[Richard Sprague]: Give me a reason, yeah. Give me some kind of…

[Damien Blenkinsopp]: Give me a reason, give me a study. I need something to give up chocolate, you’ve got to give me… Because I don’t even know, maybe you think I’m allergic to it. I don’t know, I don’t know what you’re trying to get at.

So Atlas Biomed has a lot of recommendations as well in their interface, but what I did like is wherever there’s a recommendation there’s always papers, study papers, left there. And there’s always the reasoning.

And you can argue that with 16S and some of the other limitations they have, maybe they’re pushing the edge in terms of their recommendations, but at least they’re trying to give, you know, a reasoning and structure. And there’s a transparency.

So, with Viome, the thing for me is it’s not transparent, so you can’t, you don’t know what you’re getting, what the output is. So it’s like, how can you do anything with it really. At the moment.

[Richard Sprague]: Yeah, you kind of have to trust their scientists, or whatever the results is of this thing. Yeah.

And the other part of it is, remember also it might say, eat apples. Well, there’s lots of different ways you can eat apples. There’s a Fuji apple that’s different than a this kind of apple, there’s an apple that was just picked versus one that has been sitting in a truck for a while.

There’s lots of different kinds of things. And to just say a blanket statement, eat more apples, is, you know, I don’t find that as scientifically satisfying as it could be.

That’s why I like the Day Two approach more to talk about, well we’re not going to say apple versus not apple; we’re going to say apple with cheese versus a meal made out of apple pie, or something like that.

[Damien Blenkinsopp]: Yeah. I was talking with a guy who runs another bioinformatings company just the other day about this, and basically a lot of people have a religion about food. It’s not like everyone’s really objective about this.

Vegans are vegans, and ketogenic people are ketos I’m guilty of that one. And it tends to be an emotional thing. I try to be more objective and numbers driven, but, you know…

The problem is also, when we’re doing these tests, if you tell me not to eat my favorite vegan food and I’m a vegan, you’ve really got to and the argument is, say, glycemic response, and a lot of vegans don’t care about glycemic response, right? I think.

So if you actually gave us the reasoning, then different types of people with different approaches and thinking towards their eating style will be able to choose. They can be like, but I don’t care about that. I don’t care about glycemic response, or I don’t care about the other factor, or I don’t care about allergies. Or whatever the reasoning is. And at least that would give you a better framework in order to make a decision.

[Richard Sprague]: That’s a good idea, yeah. Have you used Inside Tracker? The blood testing company, Inside Tracker?

[Damien Blenkinsopp]: I haven’t. I know they were on a show a while back.

[Richard Sprague]: That’s another company I have a lot of respect for. It’s not the microbiome, but they have, it’s all about blood testing. And they’ll do exactly that. You can type in, you could say, I’m a vegan. Now give me your suggestions. Or, I’m a carnivore, now give me your suggestions.

And it’ll be tailor-made for you, because they recognize, like you say, that you may have another framework that you’re thinking about. And if your diet suggestions can’t fit in my framework, I may have to either give up my framework, or maybe I’ll give up you.

[Damien Blenkinsopp]: And this is something I’m seeing more in my results. When their recommendations come up and when I’m looking at them, I’m like oh, you know, that doesn’t fit with the ketogenic diet. That’s where I am currently.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: So you want me to eat more of that, but I’m just not interested.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: So there you go, even if I’m being objective. But if I had more information I might reconsider it a bit more.

[Richard Sprague]: Yeah, exactly.

(1:12:55) [Damien Blenkinsopp]: Okay, so what other kind of interesting stuff have we discovered here?

The other contrast, like I was referring to, I was trying to do earlier, was the Aperiomics, which is a shotgun sequence as well. And I was trying to compare it with the PCR to identify similar things. But that didn’t quite go as well, either.

So I think the shotgun technology, although it’s more detailed than the 16S, it’s going to take time for those databases and bioinformatics pipelines to evolve so that it’s picking up everything.

[Richard Sprague]: Yeah, I think you’re right. And like I said, I think you probably can trust a single lab over time. So if you’re doing A/B testing on a particular kind of intervention, and you follow the same lab both times, you may be able to trust that. But looking at the results from different labs, I just don’t know how useful that is a lot of times.

Especially when you get down to the species level, or down to something very, very particular. There’s just too many ways that they can be different.

(1:13:51) [Damien Blenkinsopp]: So because I’ve mentioned the ketogenic diet, one interesting thing is that if you look at some of the studies they suggest that if you’re on a ketogenic diet so I’ve been on a ketogenic diet for something like, since 2011, and then really seriously since January 2016. I was actually blood testing and stuff to make sure.

What they say is you should see increased microbes of the genus bacteroides and decreased firmicutes. And if you look at all my early uBiome tests, 2014, 2015, 2016, a lot of the time it’s the opposite.

[Richard Sprague]: Hmm.

[Damien Blenkinsopp]: Yeah, and I’m firmicutes dominant. I remember looking at this when I was first, I was like that doesn’t really sound like me.

And I think this goes back to the papers sometimes, as well. The studies when they’re looking at these things. I’ve got a team working looking at them, ketogenic studies and stuff like that.

When you look at a lot of the ketogenic studies, they have very different diets in them, unfortunately. You know, 40 grams carbs, 5 grams carbs, 50 grams carbs and doing different things. So a lot of things, when you look at these studies, even, you have to kind of look at the details of the studies. What they were actually doing, and then the diet.

So, you know I complained, I think. And I would bet that the reason I’m getting a different result there is because I have a, what I would call, a well-formulated ketogenic diet. Which means that I eat a lot of vegetables and, you know, fibers and things like that.

Because I think the main hypothesis there is that someone on a ketogenic diet is eating less fiber, basically, to feed his gut biome, and therefore you’re seeing that inversion.

[Richard Sprague]: Oh, I see.

[Damien Blenkinsopp]: But I’m not seeing it, so I think its because the type of ketogenic diet I’m running is different to that. So even when you’re looking at some of these studies, you have to be careful to look at the details of them as well, and does it exactly resemble you.

[Richard Sprague]: That’s true, yeah that’s true because not all ketogenic diets are going to affect the microbiome the same way. Yeah, that’s right. And then you get into the whole definition issues, of some people say that this or that is ketogenic and other people would dispute it. Yeah, that’s all tricky.

(1:15:54) Let’s talk about some of the things that we’ve done. In your show notes, I hope we can put some of these images that I’ve put up here, but there’s one in particular I guess if you’re asking me my take-aways. I think people need to recongize that a broad measure, something like diversity, which is something a lot of people care about, it’s real hard to tell what that means. And it’s very hard to just put a single number on the concept of musilin.

We all sort of intuitively understand that having a diverse microbiome is a good thing because you’ll be able to respond better to different challenges that might come up in your environment. But if you have a diversity of pathogens that’s not necessarily a good thing. It sort of depends on what’s in there.

And the other part is, and this is true of generally I find through daily microbiome testing is that there’s a lot of variabilty day-to-day.

So one of the charts that you can look at in here is just showing the diversity that if you tested me on a Monday you would say I have low diversity. In this case I have like 1.8. But if you tested me on Tuesday I was all the way up 2.3. And then if you wanted until the weekend, by Saturday I was at, maybe, it was still hovering around 2.1, but then suddenly on Sunday I plunged to under 1.8 again.

[Damien Blenkinsopp]: So we understand, with these diversity algorithms, right, that they’re running, is that looking at species diversity?

[Richard Sprague]: No it’s looking at the family level, which makes sense because the family level is kind of a good level to look at because you still have a lot of coverage. You’ll get close to 100 percent of all the different things that are there, unlike say genus or species where there are lot of ones that just won’t show up in the 16S.

[Damien Blenkinsopp]: In the 16S, yeah they won’t show up so you wouldn’t be — yeah that’s what I was getting at.

[Richard Sprague]: So they test it at the family level. And there are a couple of different ways to measure, but one way to measure it is, you can think of it as the probability that if I grabbed two things at random, two microbes at random from my gut, the probability they would be the same,

And in the case of if you, for example, if you’re firmicutes dominant and a lot of people would have 70 percent firmicutes, it’s pretty likely that if you grabbed two random microbes that both of them will end up being firmicutes. But it’s very unlikely that two of them would be something else, and that’s the way you measure diversity.

There are a couple other different measurements for diversity, but they all rely on the this idea that in aggregate we’re looking at, like how much information is in this signal. And that’s a little difficult to be able to really pin down.

Now that said, the other thing that I pointed out is that although it’s variable day-to-day, if you look at my picture and we can put this in the show notes too if you look at my diversity across the year, yeah there’s a lot of day-to-day variabilty but there’s a trend. There’s kind of an average there.

And I’ve looked at this with other people as well, and it’s unique to me. So there’s something different, something special about my gut that is different than your gut. And even though there’s a lot of day-to-day variability in how that works, I think there really is something there. There’s some kind of signal, we just have to understand better what that signal is.

[Damien Blenkinsopp]: Right. So you’re saying diversity is interesting but we don’t understand why it oscillates.

[Richard Sprague]: Yeah, and it’s partly because we don’t understand diversity, or know what that really means.

[Damien Blenkinsopp]: Well I think it would be really interesting. You’re saying it works at the family level, and that’s because…

[Richard Sprague]: That’s how we measure it, at the family level usually.

[Damien Blenkinsopp]: Right. So that’s what we’re measuring currently. And it’s not the ideal, right. I mean, ideally, maybe with the shotgun. And I don’t know if there’s studies actually on this. Because I’m assuming that the studies were all done on a 16S for diversity.

[Richard Sprague]: Oh no, people do diversity metrics for any sort of sequencing.

[Damien Blenkinsopp]: Okay. So they’ve done it on shotgun as well, but they still do it at the family level?

[Richard Sprague]: No, just generally speaking, if you want to be able to compare two different samples that were done on 16S, you’ll probably want to compare at the family level.

[Damien Blenkinsopp]: Yeah.

[Richard Sprague]: But there are other ways to measure diversity too that might be useful. Like just counting up the total different number of species that were found in your sample versus my sample. And you might find that you had 150, I had 130. And that’s kind of interesting to know that you have some microbes that I don’t have, and maybe vice versa.

[Damien Blenkinsopp]: Yeah.

[Richard Sprague]: But that’s hard to capture in a single number, and a lot of people, like the Viome test wants to be able to say in one chart, what is your diversity. People sort of care about that.

I’m just, in my experience that’s hard to pin down.

[Damien Blenkinsopp]: Right, and it’s hard to say it’s actionable or you can even say, okay I’m diverse, I’m well. It seems too abstract in terms of a biomarker.

[Richard Sprague]: People who complain about having low diversity, I’d say why don’t you test yourself tomorrow and see. You might like the test results you get better tomorrow, I don’t know.

(1:20:15)The other, just to quickly show you one more of my charts that I think is fun.

So I tested myself doing a probiotic, taking a pill, to see what would happen. And in this chart you’ll see there’s a little red splotch on there that shows there’s about a nine or ten day period that I was taking this pill daily to try to improve my levels of bifidobacterium.

And on this chart you’ll see that it’s hard to see there’s much difference in the level of bifidobacterium, but there’s another huge spike in my bifidobacterium that happened several months before I took that.

[Damien Blenkinsopp]: And we are talking huge, guys. You’ve got to look at the chart.

[Richard Sprague]: It’s totally, totally different. And the fact is that that month of September I happened to be traveling in New Orleans and eating a lot of red beans and rice, which apparently affects my bifidobacterium levels. And that’s kind of the take-away lesson for me is that often the best interventions you’re going to have are going to be some kind of food that you eat.

[Damien Blenkinsopp]: Probiotic.

[Richard Sprague]: Like a prebiotic, yeah. Because I think what’s going on is these microbes all interact with one another. And so just increasing one is sort of like poking on one little thing hoping that that’s going to improve it, but really that’s going to create a cascade effect of a whole bunch of other things.

[Damien Blenkinsopp]: Absolutely.

[Richard Sprague]: And the only way to really improve things is probably holistically.

[Damien Blenkinsopp]: Yeah, yeah, absolutely. It comes back to the whole foods approach and everything, right? That we can’t approximate, we can’t invent a food with our food science because we don’t fully understand what’s in a whole food. Right?

That was one of the concepts out there. And so we should just eat whole foods and then we’re going to get everything that we need. And one day when science has really understood all of the tiny details we can maybe mimic it. But for now it’s probably just not a good bet to be able to do that. So, really interesting.

[Richard Sprague]:Yeah, that’s right.

(1:22:01) [Damien Blenkinsopp]: One of the things I came across in terms of a test was putting kimchi up your nose.

[Richard Sprague]: Yes, I’ve heard about that, yes.

[Damien Blenkinsopp]: Right. Because I think we discussed it before on a past call. So this was something recommended to me by a physician, because I had experienced some sinus headaches.

And people have been experimenting on this we’ll put up the links on the internet and blogs about this approach to reducing the incident, or eliminating, sinus headaches. And basically there’s certain types of kimchi that contain cayenne, which is in all of them today because there’s a lot of different kimchis on the market.

And they have to be unpasteurized. And basically you take, you don’t put kimchi up your nose literally. Thankfully, you take some of the liquid in that, so you put a teaspoon in, pull it out, then you dip your finger in it and you put your fingers up your nose, both nostrils, to get some of that in there.

So you’re snorting the juice, basically. And the idea is you get lactobacillus sakei up there, and that helps to populate the nose if you’re doing that every day. And that helps to counter some of the microbes that are potentially causing the sinus headaches by their overgrowth. So it’s countering their growth, basically.

It did seem to have a positive effect for me, but unfortunately I wasn’t doing any biome test or anything like that at the time, so there’s no data on that. It’s just an idea that someone might want to test. And I’d love to see some biome or something else results on it if you do do it.

[Richard Sprague]: It would be interesting, yeah. So my daughter suffers from sinus headaches now and then, and I told her about what you had suggested. We have this big jar of kimchi still in the refrigerator, but she just wasn’t interested.

[Damien Blenkinsopp]: It’s kind of a weird sensation at first, I have to say.

[Richard Sprague]: It’s like the other advice that I got on the internet was you should simulate, what is it called, the brain burn that you get if you have some very cold ice cream or something. And she doesn’t mind doing that, eating a lot of ice cream when you have a headache. But kimchi up the nose thing was a little bit hard for her to try.

(1:24:06) [Damien Blenkinsopp]: So obviously there’s a lot of probiotics on the market right now. A lot of them, and I think going back to what you were talking about, when you introduced one of those into this environment and we have been talking about that there’s a homeostasis of that environment.

They work together, they feed each other, and you just throw one in there, he’s basically getting thrown into an alien population. Because if you’re adding them, it’s probably because you don’t have them, so it doesn’t really fit in with that environment right now. And that’s my assumption why they’re not growing, not sticking in a lot of results like yours that you’ve seen.

Because it’s probably, he depends on some other guys, some other bacteria. That would be interesting studies. Like, bifidobacterium, everyone knows that these are beneficial, what other species do we need in there to support them, and then concoct basically a probiotic which maybe allows that. And maybe adds prebiotics as well. I mean, that sounds good to me.

[Richard Sprague]: Yeah, and people tried doing that. And I’ve looked at a lot of people who’ve done A/B testing, where they test their microbiome before and after, and I have yet to see convincing evidence that any of them makes any difference. Yeah.

[Damien Blenkinsopp]: Right. And they’re quite expensive, some of them, right now.

[Richard Sprague]:Yeah, that’s right.

Now, that doesn’t mean that it doesn’t work. And there have been studies like BSL-4, I think, is the one that people talk about. They’ve done randomized controlled trials and they show that such-and-such marker is actually improved, or such-and-such disease state is improved after taking the probiotic. I just haven’t seen that demonstrated…

[Damien Blenkinsopp]: In the data. But that’s also like, okay, so maybe it’s something that’s not being picked up in that particular sequence, the bioinformatics pipeline, or whatever. And it will turn up in two years when we’re finally tracking it. That’s the problem with where we are right now; something could be happening and could be beneficial, and we’re just not finding it in the data is all.

[Richard Sprague]: Yeah, who knows. Or it could be that they way they do the testing, these randomized trials, maybe they all drink a glass of orange juice after they take… Who knows.

Yeah but I do think in general, a lot of people ask me after all my testing, What do you think about taking probiotics pills?

And my general, I just have not seen any good evidence that any kind of pill really helps. If you want to make a difference to your microbiome, do something involving food.

[Damien Blenkinsopp]: And a variety. I think a wide variety makes sense. If you’re trying to get diversity, a variety of vegetables which is supposedly a good rule of thumb for micronutrients and other reasons as well it can’t be a bad thing to do.

[Richard Sprague]: Yeah. You can have, you can put up a link to the, I’ve got a medium place where, medium.com, where I posted a bunch of my microbiome experiments. But a few of the things I’ve tried are like, kombucha, soy lint, makes a difference in the microbiome.

[Damien Blenkinsopp]: Oh right, that’s an interesting one. Yeah, so the whole, whole…what do they call it. Nutritionally complete food.

[Richard Sprague]: Yes, right.

[Damien Blenkinsopp]: Yeah. There’s like 60 companies that have started those now. I didn’t realize until I looked into it the other day. Didn’t you do a colonic at one point? Was that you?

[Richard Sprague]: I did, I did that as well. Again, my take-away was that I was hoping that there would be some ability to make a major change afterwards, by feeding myself the right kind of things. But it just bounced right back to the way it was. Two weeks later I was right exactly where I was before.

[Damien Blenkinsopp]: But that’s actually, that was good feedback for me because I spoke to one physician who’s been working in environmental medicine for a very long time about something that I had.

And he suggested six colonics within two weeks. And he didn’t know why, but he’d been doing it for 30 years. And he said, I don’t understand completely the mechanism, but it really helps with this specific thing.

So, I did it. But I was concerned about my biome, obviously, doing that and colonics and stuff. So when I heard your story I was like, okay.

[Richard Sprague]: Yeah, and who knows. I’m just one guy, so.

[Damien Blenkinsopp]: Right. N=1.

[Richard Sprague]: The other thing that people should realize based on my experiments that I don’t have an appendix. It was removed when I was five years old. And the appendix is known to include, that’s where the bacteria gets stored when you…

[Damien Blenkinsopp]: It gets stored. Yeah.

[Richard Sprague]: Yeah. So who knows what’s going on in my gut.

[Damien Blenkinsopp]: But that’s a good test though, because then you don’t have that storage device, basically.

[Richard Sprague]: You’d think, yeah, but who knows.

[Damien Blenkinsopp]: Yeah but that is a pretty important N=1 difference there.

[Richard Sprague]: But nevertheless, for me at least, everything just seemed to bounce back. And I’ve found that my microbiome is pretty resilient to just about any kind of change.

[Damien Blenkinsopp]: Yeah, hard to change.

[Richard Sprague]: Yeah, that’s kind of the bottom line.

(1:28:22) [Damien Blenkinsopp]: Alright, so we’ve dived through some of our own personal experiences there, trying to change it. And as you’ve kind of heard it’s not easy to change your microbiome, it seems. But it doesn’t mean it’s not worth experimenting with.

(1:28:34) So the thing I’d thought we’d do now is kind of take a step back and look at the big picture of all of these labs and everything. To see where they are and what kind of, you know, thoughts we have about using them, I guess, right now. What’s valuable to you, you the guys at home, to be doing with these right now and potentially in the future.

Richard, what are your overall thoughts?

[Richard Sprague]: Well, so, it’s hard to beat the price of 16S. And it is something that’s also pretty easy to do; you don’t have to poop in a box, you don’t have to put tablespoons, laying on the floor kind of thing like this. It’s relatively easy to do. And for that reason alone, I think it’s worth doing a 16S test. Do a couple over time, or if you’re trying to check out the effect that it has on one particular thing, it’s cheap and easy.

[Damien Blenkinsopp]: If I can just jump in there, I think that’s interesting also because of what we’ve said about the bioinformatics pipelines and the databases will be evolving and getting better over time. And that sample is part of your history, which could be useful if and this is actually Jessica, she came on the show way, way, way back and she suggested it was good.

Say you get sick in the future, it could be gut related, and you have that sample. As the bioinformatics and the database evolves, you could then look back at that and be able to see what the difference is. And you would be able to formulate some kind of plan to try and get back there, at least.

So just for that reason, for this historic storing your sample if you ever need it in the future, it’s a reasonable idea.

[Richard Sprague]: Yup. I think that’s something everybody should do. And we talked about the other tests.

I told you about Day Two, I like the science behind them. It’s like 300 something dollars, I guess. Little bit expensive, I think, but a lot of people would find it would probably be useful for you if you were looking at a particular condition, particularly any of the metabolic diseases like diabetes, I would think that you would want to do this.

Because it’s going to tell you based on these peer-reviewed studies, it’s going to tell you something about your glucose response to different kinds of foods.

[Damien Blenkinsopp]: Yeah. If you’re overweight, if you’re really overweight, it’s probably interesting.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: Because it might just pick out one of those foods that is your main go-to every day.

What I like to think about these kinds of tests, because we’re saying it’s not 100 percent, but it’s a good broad picture. And if some of these foods that you’re eating every day come up as red in their algorithm, you can then go and test them properly. And you’ve saved a lot of time and effort because it gave you that broad look at all of the foods.

And it gave you some way of basically strategically focusing on like five different foods that you’re eating a lot and turned up red there. And then you could do a proper glucose test with a meter on each of those. Whereas obviously you couldn’t do that on the thousands of different foods you’re eating, or hundreds, that you’re eating each week.

[Richard Sprague]: Yeah, that’s right. And like the example I give is I have always eaten a lot of bananas. Now, I’m aware of the carbs, and the sweetness, and everything else. Bananas I always thought were nutritious; it’s a fruit, it’s healthy and it’s easy to eat.

But both my tests Day Two and Viome results came back saying that I should avoid bananas. Which I thought that’s kind of interesting evidence. And so that’s the kind of thing I probably wouldn’t have thought about.

[Damien Blenkinsopp]: Have you, my first question, have you tested your glucose response to that? I’d really like to see.

[Richard Sprague]: I mean I test my glucose response, but I haven’t noticed any major differences. I have not tested my glucose response after eating a banana, I should do that. It would be interesting.

[Damien Blenkinsopp]: Right, that’s what I would love to see, to marry that up. Yeah.

[Richard Sprague]: Yeah that’s a good idea, I’ll try that.

[Damien Blenkinsopp]: Please do, and we’ll chat about it later.

 

[Richard Sprague]: Yeah. And I guess those are the big commercially available ones in the US. You mentioned Atlas Biomed and Aperiomics is that what you said?

(1:32:11) [Damien Blenkinsopp]: So Aperiomics is designed, their whole thing is focusing on pathogens. They mostly work with physicians , and they mostly get people who have strange illnesses and haven’t been able to figure anything out. I mean, she’s got some interesting stories.

I’ll tell you, because I’ve been talking to the girl that runs the lab. And I figure I’m going to use it a little bit more, because it appears like a lot of us and I’ve been talking with other scientists about this a lot of us carry a bunch of pathogens around with us all the time.

Depending on where your immune system is and everything else, you could be fine. But that doesn’t actually mean you want to harbor these things for the rest of your life. Because they do see some correlation later in life to certain neurological diseases and stuff to some of these pathogens.

And so I think it’s a preemptive. Because I’m a bit anal, I’m quite interested in that to screen for certain things that I might decide to try and remove for the long-term benefits of removing those things.

So I’m actually going to run a blood sample through her as well. But she’s got some interesting stories. Like she had some patient come in with some sample and they couldn’t figure out what the problem was. And it was a species of leprosy.

[Richard Sprague]: Ooo, okay.

[Damien Blenkinsopp]: Yeah. And apparently this specific one isn’t supposed to be around anymore. So they’re picking up stuff that is kind of presumed dead or gone in the past.

So I think her lab will be interesting. I’m not sure how fast she’s accumulating data. But if anyone’s got something, some really strange medical condition out there it might be an option to just try and get some ideas on the table.

[Richard Sprague]: Yeah, I think that’s a good point that especially for people who have some kind of misdiagnosed chronic condition, where your doctor and maybe doctors, and you’ve consulted lots of people and they don’t know what’s going on. And they’re just, can’t figure it out.

I do think that any of these tests is going to be valuable as an additional data point. Now whether it’s going to produce something actionable for you or not, I don’t know. But I’m really glad that we have the technology available for us to better ourselves.

[Damien Blenkinsopp]: Yeah, it’s exciting. It’s starting to give us ways to try and decipher these mysteries. Or at least get us closer to the results more quickly. And often it’s kind of leads.

Obviously it’s not, that’s why they’re not being used by physicians that much is because they can’t give you a diagnosis. But they can give you leads and patterns, and eventually someone can figure something out from that.

[Richard Sprague]: Yeah, yeah. And like my example of bananas, I think that a lot of times just doing a different test like this will maybe point out something that you had not been focusing on; you had sort of taken it for granted that this was just the way things are.

This is the way that I live. And sometimes they’ll kind of shake you up a little bit and say, well wait a minute. Have you tried rethinking this previous assumption? And I think that’s valuable too.

(1:34:52) [Damien Blenkinsopp]: So what did you think on the 16S versus shotgun? I mean, they’re not that far apart now in terms of price.

[Richard Sprague]: Yeah, I mean again. Well, I mean.

[Damien Blenkinsopp]: It depends on your budget, right?

[Richard Sprague]: Depends on your budget, yeah. And I know a lot of people who would say 400 dollars, or 300 dollars, is a lot of money to spend on something that’s not quite that well understood. And I understand that argument. I think that if you can, I think it’s definitely worth it. I think you’re getting some new insights that you wouldn’t have had otherwise.

We talked about the question that we have about the transparency of the results of Viome and where they got their…

[Damien Blenkinsopp]: I think transparency is key because, it’s also, I think it’s a little bit about the ethos of the company. Like the ones that are already transparent, you can see, as we were saying, these samples they have them, they’re going to evolve over time. So it’s going to become more valuable provided that it’s transparent.

[Richard Sprague]: That’s right, yeah. Yeah. I do want to know why it is that you gave that recommendation, and then I want to know and trust that if someday you discover new science that makes you retract your recommendation then I’m going to hear about it. And you’re going to be honest and up-front about it.

[Damien Blenkinsopp]: Right.

[Richard Sprague]: Because here’s the thing about science. Real scientists, they want to be proven wrong. They’re constantly working, it’s why their…

[Damien Blenkinsopp]: Exactly. The search for truth. Yeah, exactly.

[Richard Sprague]: Exactly. And I always get a little suspicious when I’m talking to one of these companies where they act like, What do you mean, are you questioning my science? Are you questioning my results?

You know what, yeah. They should be glad for that.

[Damien Blenkinsopp]: Well they don’t give you full access to the data. If you don’t give me my raw data, I get nervous.

[Richard Sprague]: That’s a red flag right there, yeah.

[Damien Blenkinsopp]: Yeah. So, Richard just brought that up. We’ve got a little table here we’re going to throw up. He was like, oh yeah raw data, and I was like damn I forgot that one.

(1:36:30) When you can, raw data is going to be really helpful. And it just proves that they’re transparent as well. I think that’s a really important thing when you’re going for one of these services, to ask about.

[Richard Sprague]: Yeah.

[Damien Blenkinsopp]: And I think most of them are going to provide that. We spoke a bit about, some of them haven’t done it quite yet but they say they’re going to do it soon.

[Richard Sprague]: Yeah. I look at it as a reputable lab will be happy to give you the data because their real value that they had is in the interpretation side. And they have access to additional, maybe proprietary data or insights that you don’t have.

Which is fine, that’s where they’re going to be differentiating themselves. But the raw data itself, it’s just data. It just comes right out of, it’s your data; it’s about your health. You should be able to look at it. That’s my attitude.

Plus, in the case of something like uBiome, one of the reasons I’m very, very excited about uBiome’s raw data is that we’re able to go and take that data and do things with it that uBiome just doesn’t have the time or the, maybe just the bandwidth to go and pursue. And so a lot of these charts that uBiome sent me, I did that because I had access to the raw data. I wouldn’t have been able to do that otherwise.

[Damien Blenkinsopp]: Yeah. I actually had, anyway. That’s a long story. I had a little project to identify a species which I thought would be useful to the 16S. Basically like a strategic screen for pathogens using some tools. So I actually got that sent to uBiome, and they were like, ìThis is really interesting, but we have a lot of other projects that are taking up all our time right now.î

So there’s a lot of stuff these technologies could be used for in the future. And I think that’s one of them. A very cheap method for some doctor to get a strategic screen, and then for pathogens, for a list of pathogens. And if something comes up, you then do the PCR, which is more expensive. But you’ve done it really cheaply. So I think that’s going to be, hopefully, a really interesting application in the future.

[Richard Sprague]: Yeah, that’s right.

(1:38:23) [Damien Blenkinsopp]: What other things do you think might be cool in the future? Or what applications do you think these are going to turn out to be pretty useful for? Or, what do you think you would use it for today, if you’re going to use it for something?

[Richard Sprague]: Like I said, I think that most people talk about gut microbiome, but there’s a lot of interesting things you can learn in the other microbiomes as well. And I think we’re going to see a lot, in the future I think we’re going to see more emphasis on, say the mouth and the skin. And there’s just these very intriguing associations.

For example, one of the things about Alzheimer’s disease, one of the early symptoms of Alzheimer’s disease is a lack of smell. And there is some evidence that the nasal microbiomes of people with Alzheimer’s are different than those who are not. And could it be that there’s a microbe that just sits in the nose for years and years, decades and decades, and finally migrates into the brain and that’s what triggers the disease?

And we’re going to find all kinds of associations like that.

[Damien Blenkinsopp]: Yeah. And I think it’s often going to be multi-factorial as well. And that’s why data from all of these places is going to be so invaluable, because we’re going to be like, oh look, when you get these 20 factors together.

I mean this is why we haven’t been able to figure this stuff out yet because we focus on one factor, and we just can’t see the big picture. Which is way more complicated.

(1:39:39) [Richard Sprague]: And talking about AI is becoming kind of a buzzword, but I do think that the ability to be able to go and look at all these different tests all holistically and be able to look at all this different data and then see patterns, that is one thing that AI is good for.

[Damien Blenkinsopp]: Yeah.

[Richard Sprague]: And we may be surprising ourselves in the kinds of insights that are possible.

Damien Blenkinsopp]: I know, right. It’s going to be really interesting what comes out. And some people are going to get really annoyed by some of the stuff AI brings out. It’s going to trash some stuff we’ve been doing for a long time.

[Richard Sprague]: It probably will.

(1:40:05) [Damien Blenkinsopp]: One cool thing that’s actually going on is, and Richard eluded to this with another company before, but Day Two, what’s interesting about these companies is they’re evolving pretty quickly as well.

So Day Two when I did it, was just a test. But now when you buy it, you actually get a nutritionist consultation. So they’re embedding that with it.

[Richard Sprague]: Yeah, that’s right.

[Damien Blenkinsopp]: Did you get that when you signed up for it?

[Richard Sprague]: I just, I never talked to the person. I probably should at some point.

[Damien Blenkinsopp]: You, follow up. I’d love to know what they talk about.

[Richard Sprague]: Yeah, well the frustration I was having is because I want to know a lot more technical details about stuff, and they usually don’t know the answer.

[Damien Blenkinsopp]: Well, you find out. You never know, you might hit the jackpot.

[Richard Sprague]: Yeah. In the case of both Day Two and Viome I was very impressed that they reached out to me. I got a call out of the blue from someone from Day Two, and they just said, We wanted to talk to you about your test and what you thought about it.

[Damien Blenkinsopp]: Wow.

[Richard Sprague]: It was like, how did you get my phone number? And they said, ìWell you put it down when you registered for the product, and that’s what we’re calling it for, because we wanted to know what you really think.î And I chatted at length with somebody and told her exactly what I thought about the product.

So I’m encouraged that they are going out of their way to do this. Similar with Viome, I know; they are calling people up and saying…

[Damien Blenkinsopp]: Are you saying uBiome, or is there another company?

[Richard Sprague]: No, Viome.

[Damien Blenkinsopp]: Oh, Viome. Okay, got ya.

[Richard Sprague]: They’ve been very proactive about making sure that people send their samples in, and find out why it is that you’re not sending the samples. So I’m encouraged that the whole industry is undergoing this kind of push to be more customer centric. And maybe really trying to solve people’s problems as opposed to just a fast way to make money.

[Damien Blenkinsopp]: Yeah, exactly. Solving results, giving people results is where it’s at.

[Richard Sprague]: Yeah.

(1:41:44) [Damien Blenkinsopp]: Okay, so what do we think are the things that have to be improved? I mean, we kind of touched on this already, but to get to something that’s going to be far more valuable, like all of these services, so that we’d be saying everyone should be getting these done and really using them.

What has to happen with the technology? What has to happen, and do we have any kind of reasonable timelines?

[Richard Sprague]: So there’s kind of a movement. A lot of these companies are trying to add better access to the literature.

So for example Thrive now, they’re proud of the fact that they did some kind of machine learning thing, where they went through all the literature and looked at all the references to different microbes, and they’re going to tell you this and that about it. So there’s some activity around that. I think that’s helpful.

I think it’s nice to be able to have some way other than just googling the name of a microbe to find out what it is. If we can get more into, more vetting of the literature that would be good. Even if you spend any time with this area you’ll notice that there are thousands of new articles coming out, new journal articles, new peer-reviewed journal articles coming out every day.

You can’t keep up with them all. And a lot of them are self-contradictory. It’s just very hard to tell.

So if maybe there was a little bit more emphasis on curating the results a little bit better, that might be useful.

[Damien Blenkinsopp]: Standardization. Somehow.

[Richard Sprague]: Right. The way the labs really report the results, the way that they publish the results. That kind of standardization I think would be great.

[Damien Blenkinsopp]: So I was talking with a bioinformatist who’s working in the nutrition area. He’s got one of these apps similar to, that tracks food. Food intake and all of that. And he was telling me that the databases that all of the companies with these apps, all of them, are using are really low quality.

So then it’s a very similar instance, and I’m sure it’s similar in most of these areas where the quality of data is actually very poor. And we’re just talking very basics here, like the macro content of a food, which is being put in their database. Then you take the photo, or you enter, you pick it from their library, and you think you’re getting that macro content but you’re not because the data is quite bad.

So they’ve personally just been building a very low volume database. So it has less in it, but it’s high quality. And they’re thinking about just throwing it out there as Open Source to try and bring the industry up a bit. To try and get people using that and building on it. And improving on it.

But I think what’s happened is a lot of people have been conscious that their databases aren’t broad enough, or don’t have enough volume in it. So it can be very frustrating for customers and all of this stuff. So they’ve chosen other approaches like just get customers to add the information in, or whatever. And these are low-quality approaches, and then you end up with a lot of garbage, unfortunately.

So, this is a very important topic for quantification in general, and getting actionable information out of it at the end of the day.

[Richard Sprague]: Yeah, and everybody kind of wishes there was Wikipedia of knowledge about the microbes and about the food benefits and all that kind of stuff where anybody can go and add their results. I guess that’s Wikipedia.

[Damien Blenkinsopp]: There is value in crowd sourcing, but it’s those processes and things that you have to put in so that you get a volume, but then it’s filtered, and filtered, and filtered. So that you maximize the benefits of building volume through crowd, but at the same time there’s that mechanism to ensure that quality eventually ends up there.

[Richard Sprague]: Yeah, and it works for things like, MyFitnessPal has any kind of food you can possibly imagine in any culture, any language, anything and they’ve got it in there. Because they’ve got this crowd sourced thing figured out to a science.

And in fact they were telling me that when Nabisco put out some new packaged good, they had the calorie information in their database before Nabisco.

[Damien Blenkinsopp]: That’s ridiculous.

[Richard Sprague]: It’s like somebody just immediately.

Yeah, but you know it’s of unclear quality. And in a lot of cases, particularly with foods, and with the microbiome, like we were talking about apples; there’s a lot of difference between what was tested in a lab somewhere and what you’re actually putting on your plate.

[Damien Blenkinsopp]: Yeah, and I can tell you, because I’ve been digging into food science and stuff for one of my companies, and when you see an ingredient on a label, there are 20, 30, 40, 50, 60 different versions of that that would fit into that name. And they have quite different properties in some instances.

We’re picking three different ones, and we’d go through ten of them until we get to one that does what we want to. So there can be a lot of variation on this. So when you’ve got these ingredients and they’re using these ingredients as well to pull the macros and everything. It’s just not the same.

[Richard Sprague]: Yeah, and I think with labelling, in some ways it may be a dis-service that governments around the world force companies to put the labels on because it gives this false sense of security on your part. That you think, of it’s got sugar in it. Well, what kind of sugar.

[Damien Blenkinsopp]: Exactly.

[Richard Sprague]: And the reality is just way more complicated than they can summarize in a label. And I almost wish that there was instead like a competition among lots of private companies that will compete on the best label that they supply for a particular food.

[Damien Blenkinsopp]: Yeah, because right now everyone hides behind it, basically.

[Richard Sprague]: Exactly, yeah. And in the US it’s particularly bad because we don’t give, it’s not per 100 grams, it’s per serving, whatever that means.

[Damien Blenkinsopp]: I was actually looking at that the other day, and I was like this makes it really hard to do the calculations in my head. Because you always have to have it working on the 100 otherwise you can’t compare.

[Richard Sprague]: And, you know, smarter companies know how to manipulate that. For example, what is it, the little sugar packets that you get for coffee? I guess they’ve arranged it so that they make the size exactly at the cut-off, where now they can say it’s zero calories because it’s like 4.9 calories, but it’s under 5 so they can report it as zero calories.

[Damien Blenkinsopp]: Yeah. There are so many tricks in the food industry. They have mastered the game; they’ve had a while to do it. And I think regulators are never going to be able to solve that, it really has to be transparency coming through because companies want to do it to please their customers. Because regulators, it’s just not their job. You can’t fit a structure that forces people to do it.

[Richard Sprague]: Yeah, and that’s where for the microbiome stuff, as we get more and more companies involved in it and more and more labs that are doing this sort of thing, I do hope that there emerges some sort of independent verification lab, or something.

And I think, was it LabDoor I think that you had on your podcast a while ago is an example of that company that, I love that. They go out and they specifically go and evaluate these things. And it’s independent, and they’re just looking to see kind of, on behalf of consumers, whether you can trust what you’ve got or not.

It’d be neat if there was a similar kind of thing with the microbiome world, wouldn’t it?

[Damien Blenkinsopp]: This is happening, you know the software world has made itself, has been very good at this.

When I think of telecoms, and software, and these IT industries compared to the health industry where it is, there’s a lot of silos in health. And everyone’s got their own lab, and you don’t know if they interrelate, and they don’t, I mean even in the big labs that hospitals have been using for a long time and so long.

And what we really need is a similar structure to what they’ve done in telecoms and software, where you have these big open standards of organization, and everyone gets together and says, we know it’s going to be more valuable for the industry; we know we’re going to make faster progress, and the economics are going to be better, so we’re going to make this.

And maybe it just needs a few people to stand up. So if you’re listening out there, and you’ve got a role in this, go for it please. Because you could add so much value to this industry. People need to start putting things together.

And then I think the other analogy is a lot of integrator kind of companies in software area and the internet now, where things like Zapier and IFFT and all these other apps are relying on all of the rest of them in the ecosystem. And maybe like a conversion app or other ones would add so much value to all of the other things out there.

So I think there’s ways to better integrate these things over time, and it’s going to happen. And there’s plenty of business ideas out there, potentially as well.

[Richard Sprague]: That’s right, yeah. You know, it’d be interesting to look maybe at the history of how, even say like blood testing for standardized.

Because I’m sure they had the same kind of problems in the beginning. Like, how do you decide how to measure Vitamin D, or how do you decide to measure all of this stuff? And it looks like they’ve kind of figured that out. I wonder if some of those same lessons could be applied…

[Damien Blenkinsopp]: Largely, however, I’ve had problems with blood tests in terms of variants. In particular between different countries.

So I was in Spain at one time trying to get labs, and I actually left the country because I gave up completely. Because the data wasn’t correlating with stuff I’d seen in the US and the UK and stuff. So I think there’s still, there is interlab…

[Richard Sprague]: Maybe it’s more complicated than I think.

[Damien Blenkinsopp]: I think there’s still…

[Richard Sprague]: Yeah, a lot of these things, the more you dig into the details the more you realize how messy it all is.

[Damien Blenkinsopp]: Yeah. It’s a crazy world we live in. And this is something you’re constantly working on. You still work on this stuff, do you? Or have you kind of moved on a bit?

[Richard Sprague]: I do. I mean, [most of my situation] right now is I’ve got so much data that I’m spending a little bit more time trying to do the analysis of the data. It is kind of cool though, because every time, lots of people send me their samples and ask me what I think, and every time that somebody sends me a new sample, I get more information.

[Damien Blenkinsopp]: Yeah. Are you offering…

[Richard Sprague]: Yeah. I mean, anybody who wants to, you can send me your uBiome data. I’m happy to look at it and tell you what I think.

I’ll find out little things like, the other day there was a New York Times article about heart disease or something I read this every single day and they’ll mention the particular microbe that was involved. And so I’ll just go look it up and I’ll see, oh, huh. And I log into my computer and I see, okay how does that microbe look in me and what was I doing at the time.

And I’ll find all kinds of interesting correlations. I’ve found things like during travel there are particular microbes that bloom in me. And just we need to understand why, and what is that thing doing, and is it a good thing, a bad thing? I don’t know.

[Damien Blenkinsopp]: I was just also thinking that you’ve travelled a lot, right? You lived in China.

[Richard Sprague]: Yeah, I spent two years in Asia.

[Damien Blenkinsopp]: Right, so we both did that. We both traveled a lot. And I think that influenced our biome a little bit. You found some stuff in there.

[Richard Sprague]: Yeah. One of the things, I mean one of the things I think is really cool is there’s a particular microbe that was identified a few years ago as letting Japanese people, so their digestive systems can handle seaweed, and metabolize seaweed better.

[Damien Blenkinsopp]: And you have it.

[Richard Sprague]: And the study that did this was comparing a lab in Japan versus a lab, I think it was in Saint Louis. And they concluded that North Americans don’t have this, and Japanese people do. And I thought that was pretty cool, but when I looked at my own results I found out I have it too. And that was kind of cool.

In fact, that’s the reason that got me excited about the microbiome, is that it does appear that there are ways that you can change your microbiome.

[Damien Blenkinsopp]: Like living in another country for a while.

[Richard Sprague]: That’s a big one, yeah.

In fact, actually speaking of probiotics. So a lot of people have sent me A/B testing of their probiotics, and one guy sent me, he had three samples. One when he’d been living in the UK, another when he had moved to California and started taking probiotic, and then a month or so later he did another sample. And guess what, you can’t really tell the difference between the two samples taken on the probiotic, but you can tell the difference the sample when he was living in the UK.

(1:52:18) [Damien Blenkinsopp]: Yeah, so if you really want to change your biome, move. So I wonder, I have lived in countless countries. I think my microbiome might be confused, potentially

[Richard Sprague]: Yeah, maybe. But you know what, the microbiome is pretty resilient too. I like looking at, so I compare my father who lives in the Midwest in the United States. And he has kind of stayed in the same place, and that’s where I grew up.

But it’s interesting to look at our microbiomes. I’m essentially a superset of his. So, whatever microbiome I inherited as a result of living in his household for the first however many years of my life, and eating kind of, we have similar tastes in food, and similar diets to this day. But yet I have a superset of his microbiome, because I’ve lived all over the place and he hasn’t.

[Damien Blenkinsopp]: Yeah, exactly.

[Richard Sprague]: And again, that’s kind of a neat thing to know that we do have some influence over how this whole thing turns out.

I run into a lot of people who ask me questions about, like what can I do to change something. And that’s a big one, geography. But there are a lot of things that people don’t necessarily think about, either.

And a big one that I always tell people is about fasting. That’s a fast and easy way to change your microbiome that a lot of people just don’t do. It’s surprising how often you’ll run into somebody who, if you ask them when’s the last time you went a full 24 hours without eating food?

[Damien Blenkinsopp]: Have you seen samples before and after from fasting? I mean, I’m into a lot of fasting so I’d be interested to [know].

[Richard Sprague]: No, I haven’t. And I would like to be able to see that. I would like to see somebody doing a serious job at fasting.

[Damien Blenkinsopp]: I can tell you you need to nurture it back to life after a 10 day fast with fibers. Actually with fibers and stuff, I tried to eat other things, but I was like, it just doesn’t work. So you have to kind of feed it, like I juiced fibers, basically, like vegetables, and actually added some fibers in order to kind of get myself back to normal.

[Richard Sprague]: Yeah. The reason why it’s been hard for me to test this, I mean I do fast occasionally, but it’s hard to test it because when you don’t eat anything, usually you don’t produce anything either. And so.

[Damien Blenkinsopp]: Well, I can tell you a way after a fast to generate poop, just liquid poop, very fast. If you just take fats, that’s not a good idea after fast of five days or so. So that would generate a result quite quickly, but I don’t know what you’d get. It might be completed biased. Yeah, it would be completely biased.

[Richard Sprague]: It would be biased. Yeah.

[Damien Blenkinsopp]: But the other things is, so the solution I found is actually juicing. So if you juice fibers in plants and stuff, and have that as your first couple of drinks, you should after the fast be able to poop quite quickly.

[Richard Sprague]: Yeah, it’s just, you’ll poop something differently than, we don’t know what’s going on in your microbiome before that happens.

I mean, I have tested my skin microbiome extensively like before and after going camping, let’s say. Where I’ll go for several days without a shower to see what happens. And there’s a difference; it’s noticeable. I assume the same thing is happening in the gut microbiome.

[Damien Blenkinsopp]: Yeah. Okay.

[Richard Sprague]: But when I run into people who have some kind of gut issue, that’s one of the first things I suggest is just give it a shot. Because I have talked to people who will say that, you yourself can comment on how fasting does make a difference.

[Damien Blenkinsopp]: Yeah, and that goes back, I always like to quote Valter Longo’s work, where he’s actually got a book out now. But I had my episode on the fast-mimicking diet. Anyone who’s got some weird, chronic issue and that no one knows how to solve it, the cycling of fasting just could be an interesting tool.

[Richard Sprague]: That’s right, and it’s worth tying.

(1:55:42) [Damien Blenkinsopp]: Yeah. Okay, so let’s learn a bit more. Where could someone learn more if they wanted to go an investigate this stuff? Where would you tell people to go and learn more about the microbiome? If they found this whole discussion really fascinating and they want to learn more about the labs and everything.

[Richard Sprague]: Yeah. Where I would start with is, and you can put up a link to it, is I’ve written a post on Medium where I’ve listed my favorite ten books about the microbiome. And that’s what I would look at.

But the number one book I think is Rob Knight’s book about, it’s written a couple of years ago but it’s a great summary; it’s relatively easy and quick to read. It will tell you a lot of the different things that you need to look at. But I do try to read just about every mainstream book that comes out about the microbiome.

And I’ve selected the 10 that I think

[Damien Blenkinsopp]: There’s quite a few coming out now.

[Richard Sprague]: There are a lot of them, yeah. And a lot of them are really excellent. So take a look at my top 10 list. And I’ve tried to keep that up-to-date of the ones that I think are particularly good.

(1:56:32) [Damien Blenkinsopp]: Excellent, excellent. What are the best ways for people to connect with you and learn more about what you’re up to and your work?

[Richard Sprague]: Well the best way is to look at my Twitter handle, just @Sprague. I try to post something pretty regularly. And people are welcome to contact me there. You can also look at my website, richardsprague.com, just my personal website where I kind of post things as they come along.

[Damien Blenkinsopp]: Right. You’ve got your blog over there, right.

[Richard Sprague]: Yeah.

(1:56:57) [Damien Blenkinsopp]: Right, now who besides yourself would you recommend to learn more about the microbiome? Who would be your go to, like your favorite people…

[Richard Sprague]: The favorite person I have is Elizabeth Bik, who on Twitter is @microbiomedigest. And she’s one of the smartest microbiome scientists I know, and she’s very prolific on twitter. She reads all these publications, and she will let you know the ones that matter. So that’s the one I would recommend for that.

[Damien Blenkinsopp]: Wow. Excellent. Is there anyone else?

[Richard Sprague]: A lot of them are the ones that you’ve already featured on your program. Obviously Rob Knight, Eran Segal from Day Two. Those are all good people, that I trust their science and always eager to hear what next thing they’re going to come out with.

(1:57:37) [Damien Blenkinsopp]: Excellent, awesome. Thank you for that. Okay, let’s talk a bit about you. What is your personal approach to improving your body and user tracking? And this is not just microbiome but really anything? Including microbiome.

[Richard Sprague]: Yeah, I’ve been a quantified self-tracker for a long time.

I track my daily amounts of sleep. I track a lot of the main foods that I eat. I don’t do it as rigorously as I’ve done in the past; so like a lot of us there have been times in the past where I rigorously checked. I used to have a Zeo device that I slept with, and I could tell you for years exactly how much REM sleep I had.

And I tracked my activity. Not so much now, I don’t carry a Fitbit or anything, but from time to time I’ll look at just… Because I’ve got such food baselines in the past. If I’m going to make a major change I’ll track myself again.

But the number one thing, I mean I hate to keep on harping on this, but I track my microbiome. I think that’s really fascinating. And it’s something I recommend people, even if you’re not going to track it every day track it once. Get a baseline, and see how it is, and I think you’ll learn a lot.

[Damien Blenkinsopp]: And so what are the things you’ve stuck with now? What are you going to do the next month, or the next three months?

[Richard Sprague]: Well I am interested now in, I’ve been interested in fermented food. One of the things that I discovered from tracking my amount [unclear], power of kefir, because it’s one of the few things that I’ve noticed makes a real, noticeable difference in the microbiome.

And I’m doing a couple of experiments on myself just to see… I’ve noticed a couple of microbes that I did not have when I was before I started drinking kefir and that I have now. One of which is associated with recovery from Crohn’s Disease. So it seems like it’s probably an important microbe.

And I’d like to find out more ones like that. So I’m constantly on the lookout for new kinds of…

[Damien Blenkinsopp]: That’s interesting, and I may be able to help you with that one because I went for a kefir about a year of kefir daily, and I was doing the uBiome test during that period. So there might be in there.

[Richard Sprague]: Oh, interesting. So the data that’s, your uBiome data would include the kefir drink?

[Damien Blenkinsopp]: It would be around it. I think it would be either side of it.

[Richard Sprague]: No, I’ll take a look, because it would be interesting to look to see if you’ve got the microbes that I found in mine.

[Damien Blenkinsopp]: Yeah, that’s what would be interesting, because the first test probably wouldn’t have anything, and then maybe the last test would.

[Richard Sprague]: Yeah. I’m especially interested in traditional, both traditional foods and traditional medicines, because I think that’s an under explored area for finding new interesting microbial solutions to things.

Chinese medicine and Indian Ayurvedic medicine, they have a lot of things that to Western eyes look kind of weird. But if you look at it from the point of the microbiome, suddenly you have a vocabulary now to talk about something in more scientific terms. And I’m really interested in that.

Somebody told me about this, there’s some droplets that apparently Indian mothers give their babies when the babies have colic. And I bet that’s a microbial thing; it probably affects the microbiome.

You know, there’s just little things like that that happen all the time.

[Damien Blenkinsopp]: Right. And before we used to say, there’s no way they can do anything. But as we add these new layers of science on, we start saying actually there’s a potential mechanism there.

[Richard Sprague]: Yeah. And when people have tested some of this stuff, ìscientificallyî, when you look at the details of how they test it, a lot of the times it’ll be something where they, there was some kind of Chinese medicine and somebody will say well let’s bring some people into the lab here in California and let’s give some of them this and some of them that.

Well it’s different conditions than it is when it was administered by a barefoot doctor in rural China, where there are microbes all over the place that are affecting the results. You’re not necessarily comparing apples to apples.

So I think there’s probably a lot of things like that in traditional medicine or food that have a bigger, positive effect than we know. And it’s the kind of thing I wish I knew more about.

[Damien Blenkinsopp]: Cool, very interesting. What I realized now actually is, what kind of insights have you got about your biology from your quantification? And have they led to any changes in behaviors or any actions that you’ve taken? So actually, you know, changes in your life you’ve made.

[Richard Sprague]: Yeah. I would say that I’m pretty healthy. So I’ve not had any real issues that I’ve been concerned about. And so that makes me a little bit, I’m kind of odd. A lot of people who are involved in the microbiome, they have some kind of story about their journey trying to recover from something.

So I don’t really have that. But that also makes me, I think, an interesting case because I’m able to look and see over time how my health as shifted as I get older, and how different things. One of the things that I’m intrigued right now about in particular is sleep.

I’ve always been a reasonably good sleeper, but I get less sleep than a lot of people; I average at around 6.5 hours, and I have for decades. I’m interested in getting better and deeper sleep.

I have found a relationship with potato starch, is one thing that we’ve talked about before, that some people use that as a way to increase the amount of bifidobacterium in their body. It’s something that I would try, if you know somebody who’s having trouble sleeping, that’s one thing to look at.

[Damien Blenkinsopp]: Yeah. Okay, so this is a bit random, but I’ve been working on my sleep for quite a while. I’ve really got to do a full episode on this kind of stuff. And I’ve, like you, had actually worse. At times I get 4 hours sleep, 4.5 hours sleep, and it was very difficult to stay asleep; I can get to sleep, but I can’t basically stay asleep.

So there’s two things that I’ve done that, among all the others, which I think… actually three things. The first is get one of these. So I’m showing Richard a SAD light, 10,000 LUX. SAD Light.

And you put it on and I got this from a Parkinson’s study, because they have problems with sleep as well. And when they showed this, they basically put this on for two hours in the morning.

So it’s basically simulating strong sunlight, right? And you put it next to your desk or something, and you get that. And I’ve found that helps. I think, potentially what’s going on in the mechanism is it’s resetting your sleep cycle. Because we’re not getting enough light; we’re indoors all day, we’re not getting enough light and stuff.

So that seemed to make quite a bit of difference. And the other thing is, which

[Richard Sprague]: So you just turn this light on in the morning?

[Damien Blenkinsopp]: As soon as I get up, I walk into the… I find it’s actually to wake me up as well, better than coffee. Sometimes I’ve forgotten to have my coffee because it’s already done the job, basically.

[Richard Sprague]: Yeah, interesting.

[Damien Blenkinsopp]: So I really

[Richard Sprague]: You just turn it on in the morning, and the rest of the day you turn it off and just live your day?

[Damien Blenkinsopp]:Yeah. And I love this thing.

And I’ve tracked the data and stuff, but I still, I’m still tracking. I got the Oura, which isn’t the best. But I think duration’s not so bad. So I’ve been tracking that over [a longtime]. I’m still kind of waiting to see the results on it.

The other thing is, and this is most people aren’t going to like this, is going to bed really early. And so I started to go to bed, I now, like first of all I said I’m going to get to bed by 11pm. Right?

Because I noticed it seemed that in my Oura data and everything I was like sleeping a longer duration if I got to bed earlier. So that worked a bit. I pulled it back to 10. Worked a bit better. Pulled it back to 9, I’m having 7 hours, 7.5 hours consistently every night, which I’ve never done in my whole life.

And I don’t know why it is. But I can give you like reference of celebrities and people who do this. There’s a lot of people out there that go to bed at 9 and get up at 4. I get a lot more work done as well, now. And I feel much better, but it is a bit of a lifestyle. Most people don’t want to fit in with it.

[Richard Sprague]: Yeah. And that’s interesting that you say that. So are you taking supplements or doing anything special to improve sleep, or just

[Damien Blenkinsopp]: I’ve taken lots of supplements. The only one I still take is glycerin. There’s some studies showing that that helps to reduce night wakings, which is…. So that I do stick with.

In another one of my companies we actually recommend it to anyone, and have them doing it when they have sleep issues and sleep interruptions and that. And it seems to be working consistently across those people.

[Richard Sprague]: Interesting. Yeah, interesting. Yeah, I really miss my Zeo, because before they went out of business that was far and beyond the best way to track your sleep.

[Damien Blenkinsopp]:Everyone misses them.

Well I’m hoping the Next Door is going to be more accurate as well. So that’s coming out, due for delivery in April I think.

[Richard Sprague]: Yeah, it’s hard to see how anything’s going to beat looking at the brain waves, which is what Zeo did.

(2:05:41) [Damien Blenkinsopp]: Okay, right. This is quite an important thing. If you were to recommend one experiment someone should try to improve their body, health, performance, longevity, anything like that, with the biggest payoff, what would that be and how should they track it so they can understand that payoff, and that it’s actually happening for them?

[Richard Sprague]: Yeah. Again, I would look at the microbiome. And probably the number one thing that I see that people could improve with their microbiome is their bifidobacterium levels.

And that’s the thing that, I know you know, it’s associated with sleep, and with serotonin levels. And so just an overall mental stability, all those sorts of things. And what I found in my, looking at lots and lots of samples is that people who don’t have any bifidobacterium, they almost always have some kind of problem.

So the number one thing that I would say for people who are interested in this is to test yourself, see what your bifidobacterium levels are, and then look at different ways to be able to increase it and improve it.

[Damien Blenkinsopp]: Have you got any ideas on what might work?

[Richard Sprague]: Unfortunately, I don’t have really good ideas that work for everyone, but I would start with things like, you can try potato starch which is, if you eat it raw it is known that it’s a particular type of resistant starch that feeds bifidobacterium and it’ll make it through your digestive system. You can try that.

For some people beans work, as I’ve said with my example of going to New Orleans. And then I would test myself in a couple weeks and see if I got any bifidobacterium in me. And I think that’s like the number one thing that I would recommend for people to look at is the bifidobacterium levels, and see what works for changing that in you.

[Damien Blenkinsopp]: Yeah, so that’s a good one. I had non-existent bifidobacterium when I started doing uBiome, but now it pops up in all my tests. So, unfortunately, I can’t say what I did, because I did many different things over that period. But it’s definitely possible.

[Richard Sprague]: Yeah, that’s good news.

[Damien Blenkinsopp]: So that’s good news.

Well, Richard this has been a great discussion. We’ve gone all over the topic, and it’s really great to catch up with you and talk about all this stuff. So thank you for your time.

[Richard Sprague]: No, thank you. It’s always a pleasure talking to you. Damien, you have so many things that you know about, and we’re kind of kindred spirits on this whole quantified journey. So, thanks a lot, it was great talking to you.

Study References

Leave a Reply

Is your glucose metabolism driven by your personal microbiome? Recent research reveals how the microbiome influences blood glucose, weight gain and weight loss. And how the new company, “Day Two”, is using microbiome sequencing data to provide personalized nutrition recommendations.

In this episode we discuss how personal your blood glucose response and regulation is. We look at how glucose metabolism can differ from one person to another, and how it differs based on typical measures, such as the hypoglycemic index. Most research studies try to understand what a diet or food does to an average person. But the question is whether you or any of us is an average person? Will your body respond to inputs in the same way as it will for an average person?

I found out that collecting personal data for myself is more useful than following the recommendations that come out of the studies that are looking at a statistical human person, rather than a real individual person. Data which is unique and personalized is usually most helpful to act on, especially when the derived conclusions differ from the mainstream nutrition studies proposals.

In the past, we have covered several aspects related to this episode. You may find it helpful to do some background listening on previous episodes before digging into this one. These include the blood glucose metabolism episodes, Episode 43 on Continuous Glucose Measurement and Episode 26 on Biomarkers of Aging – in which we discussed blood glucose as a biomarker of aging.

On microbiome testing and its use, we have had episodes that are relevant to this one. There is Episode 9 on Quantifying the Microbiome with uBiome and Episode 37 on Health Impacts of the Microbiome with Robert Knight, a well-known researcher.

“We study many different aspects of the microbiome as it relates to our health. This is another study where we studied another very basic phenomena, the yo-yo diet. What we showed there is actually that even after you complete a diet and lose weight, your microbiome doesn’t go back to what it was.
– Eran Segal

This is a two part episode with two guests. We have Eran Segal who heads up the Segal lab, which undertakes research in computational and systems biology focusing on nutrition, genetics, microbiome and gene regulation, and their effects on health and disease. This lab has released a series of studies over the last years on microbiomes and how they may be impacting blood-glucose regulation.

These studies have been heavily featured in the mainstream press because they put into question lots of our assumptions of how diets and food work, and how they impact blood glucose. Eran Segal earned his Ph.D. from Stanford in 2004, and in 2011 he was made a professor at the Weizmann Institute of Science, which is very well-known in Israel.

“What we do is give you a mobile application. So you get a personalized mobile app that you download, and it’s tailored just for you. It gives you a microbiome report, because we did it and we have it… We’re giving you your top food and meal recommendations. You have your top breakfast, your top lunch, your top dinner, your top fast food, because even when you eat fast food once in a while, you can still choose healthier fast food than others.”
– Lihi Segal

Our second guest is Lihi Segal – same last name but, no relation. She is the CEO and Co-Founder of DayTwo, which is the new microbiome lab-testing and personalized diet and recommendation service that has licensed, and is applying the research from the Segal lab, on the microbiome. Lihi has held a series of CFO and COO positions in start-ups over the years. Previously, she was COO and CFO of Sisense Limited, a provider of business intelligence and analytic software. She holds an MBA from Northwestern University.

itunes quantified body

What You’ll Learn

  • Studying the glucose response as a quantifiable effect food has on our bodies (05:43).
  • Post-meal glucose levels represent direct tracking of response to different foods (13:00).
  • Tracking glucose spikes and quantifying the body’s post-meal blood glucose regulation (14:17).
  • The accuracy and usefulness of continuous glucose monitoring – new devices and helping research (14:55).
  • Constructing multifactorial algorithms for personalized prediction of blood glucose response (18:53).
  • Using high-resolution microbiome sequencing to detect specific strains of microbiome bacteria (20:31).
  • Compared to BMI or blood tests, the microbiome is a more significant factor in predicting glucose metabolism in a personalized way (22:55).
  • Different microbiome features contribute to the overall prediction of response (22:56).
  • The propensity to gain weight and the effects of artificial sweeteners (26:11).
  • The microbiome’s acquired ‘memory’ regulates weight gain mechanisms (26:53).
  • Relapsing weight-gain is regulated by the microbiome, including by regulating genes involved in energy expenditure (26:53).
  • The microbiome remains stable over time, such that consistent long-term diet changes are required for profound health effects (30:20).
  • Unlike micronutrients, small fibers are digested solely by gut bacteria – but consumption of either has sustained effects on glucose metabolism (33:38).
  • Artificial sweeteners currently being examined by Segal Lab (34:52).
  • What DayTwo does as a company and personalized services to expect in near future (35:20).
  • Providing actionable information for glucose management (42:00).
  • The basic data inputs for using the DayTwo service and integrating lifestyle into personalized diet feedback (43:26).
  • Instead of being a diagnostic company, DayTwo offers recommendations under a predictive model (45:52).
  • Where DayTwo microbiome testing and output to users stands out – comparison with competition companies (46:38).
  • DayTwo collaborates with the Mayo Clinic to replicate the Israeli microbiome study on US population – calibrating the algorithm for American foods (50:59).
  • DayTwo’s success story in Israel, public recognition, service available for pre-order in the US (53:15).
  • Plans for bringing DayTwo to the UK and European markets after first tackling the US market (55:24).
  • DayTwo US release is not dependent on the Mayo Clinic trial, but more data means continuous predictive algorithm improvement (57:34).
  • Reasons why numerous lab testing companies operate in Arizona (58:53).
  • Pricing of DayTwo services and a lower US pre-order price (59:42).
  • DayTwo takes a direct to consumer approach – offering customizable nutrition advice delivery for different individuals (1:01:51).

Thank Eran Segal and Lihi Segal on Twitter for this interview.
Click Here to let them know you enjoyed the show!

Prof. Eran Segal, Segal Lab

Lihi Segal, DayTwo

  • DayTwo: A microbiome lab-testing company and personalized diet recommendation service. Lehi co-founded DayTwo where she currently serves a CEO function.
  • MyNetDiary: LabTwo’s database for the American market is on this network’s nutrition database featuring 400,000 different US-based foods.

Tools & Tactics

Diet & Nutrition

We discussed the studies that reveal several tactics with respect to weight loss and weight gain, as well as optimizing blood glucose metabolism towards health impacts. Important aspects from Prof. Eran’s team’s research include:

  • Predicting Diet Response: We discussed the health effects and potential benefits of various diet types. A key takeaway is that nutrition can be personalized based on predicting post-meal blood glucose responses.
  • The Microbiome & Artificial Sweeteners: Segal Lab has tested for the effects of non-caloric artificial sweeteners (NAS) – namely saccharin, sucralose and aspartame compounds. They determined that artificial sweeteners induce glucose intolerance by altering the gut microbiome. Xylitol and stevia are chemical formulations currently being examined by Segal Lab.
  • Post-Diet Weight Regain: Eran’s team have shown that persistent microbiome alterations modulate the rate of post-dieting weight re-gain. As a general rule, a low carbohydrate diet is most beneficial for weight loss because this diet prevents post-meal blood glucose spikes. Compared to a meal which spikes blood glucose levels, low response meals are associated with more fat burning and with losing weight over time.

Tracking

Lab Tests

  • DayTwo: This test offers analysis of your blood glucose metabolism as a response to particular food types or complex meals.
    • The most novel feature is microbiome sequencing with the greatest resolution offered on the market – known as ‘shotgun sequencing’. This method covers the entire genetic content found in a stool sample.
    • Current price in the US is $299 pre-order, but will later cost $399 as a standard price for the US market. This is cheaper compared to Israel, where the price is $500. In Israel, DayTwo incorporates continuous glucose monitoring for all users, thus requiring more for the glucose monitor everyone receives.
  • uBiome: A company which offers microbiome testing services, using 16S sequencing technology for microbiome analysis. We covered the applicability of uBiome’s service in Episode 9.
    • While it is cheaper than DayTwo sequencing, 16S sequencing does not allow looking below the genus level of bacteria. 16s sequencing looks only at one small region of RNA rather than the whole sample and for this reason does not provide the same resolution or ability to differentiate between different species for lack of information. 16S sequencing is the most popular today for cost reasons.
    • Differentiating between specific species of pathogenic vs. benign E. Coli is not possible with 16S sequencing, but is a standard with shotgun sequencing (DayTwo testing).

Devices & Apps

  • DayTwo Food & Activity Logger: A mobile application providing personalized day-to-day nutrition and diet recommendations.
    • The app offers analysis of your microbiome in report format, based on the required LabTwo testing.
    • Additionally, it features your top breakfast or lunch food components, allows searching through a food database, and makes recommendations on alterations – e.g. substituting rice for pasta whenever fit for your body’s blood glucose response.
    • Over time, the impact of using this app should be improved health by consuming food with the aim to optimize your blood glucose metabolism.
  • Freestyle LibreThis device is used for continuous glucose monitoring and the obtained data is used to determine trends in glucose metabolism. The FDA approved this product for the US market in 2016.
    • Contains a glucose sensor and a reader displaying the glucose data collected by the sensor.
    • Segal Lab is switching to this device partly because it offers greater user convenience by avoiding the finger pricking technique for obtaining analysis-blood.
    • Eran claims the device is at least as accurate as the company states, possibly even more accurate.
  • Fit Bit Charge: A device from the FitBit company was used in Segal Lab research to track and integrate lifestyle (sleep, meditation, exercise) into predictive algorithms for personalized nutrition recommendations.

Biomarkers

  • Post-Meal Glucose Response: Measuring blood glucose levels for the two hours following a meal.
    • The most important measured phenomena by Segal Lab and subsequently used by LabTwo for making nutrition predictions – are glucose spikes following a meal.
    • Glucose spikes are sudden rapid increases in blood glucose concentrations as a result from particular meal types, or more broadly a result of your diet.
    • Glucose spikes are associated with disease (e.g. diabetes and types of cancer). Thus, avoiding such responses is important for optimizing blood glucose metabolism.
    • Other times we have discussed post-meal glucose response is Episode 7 on optimizing ketogenic dieting and Episode 43 on continuous glucose monitoring.
  • Hemoglobin A1C: This is the most used marker for diagnosing diabetes. Its interpretative power is derived from the connection between glucose and hemoglobin – the protein in red blood cells (RBCs) which carries oxygen. Because RBCs live approximately 3 months, Hemoglobin A1C reflects the average blood glucose levels over this period.
    • The results are reported in percent (%). Higher levels of hemoglobin A1C indicate poorer control of blood glucose levels.
    • Prediabetic states range between 5.7 – 6.4% and diabetes is diagnosed above 6.5%. Optimum HbA1c levels are likely below 5%.
    • A caveat: Depending on your diet, your RBCs can have a shorter or longer lifetime. Since HbA1C measures glucose accumulation having RBCs with a longer lifetime than average leads to higher HbA1C readings despite average blood glucose being low. For example, Damien’s blood glucose is typically under 100mg/dL at any time point even after many meals due to his ketogenic diet. His HbA1C has ranged between 5.1% and 5.3% during this time however low carb diets are assumed to lead to longer RBC lifetimes. Higher carb diets are typically assumed to have average RBC lifetime.
    • Both guests share the opinion that collecting HbA1C and other blood marker data is not useful for making nutrition predictions once you have microbiome sequencing data. This is because sequencing provides sufficient data when combined with an algorithm to predict an individual’s glucose metabolism and provide personalized nutrition recommendations.

Other People, Books & Resources

Organizations

  • DNA Genotek: A Canadian company supplying microbiome collection kits for DayTwo analysis. After extensive testing, DayTwo concluded that DNA Genotek offers the best state of the art technology requiring no freezing or timing. The end result is the ability to preserve stool sample in the Day0 condition for greatest result objectivity.
  • Mayo Clinic: LabTwo cooperates with the Mayo Clinic aimed at repeating the trial in Israel at the Weizmann Institute on an American population. The aim is to obtain more data and to optimize the predictive algorithm for blood sugar response to the US population. While the trial will last for a while, LabTwo is currently able to make precise predictions for US users and the data from the trial will be used to work on similar targeted future goals.
  • FDA: The US Food and Drug Administration has placed a diabetic label on CGM technology. Thus experimenting using CGM devices with individuals is not allowed, unless diabetes diagnosis has been previously established in the test participants. LabTwo partnered with the Mayo Clinic and have successfully designed a trial including CGM devices which was approved by the Mayo Clinic institutional review board (IRB) – essentially an internal ethics committee.

People

  • Dr. Saleyha Ahsan: She traveled to Israel to take part in the study on personalized nutrition at the Weizmann Institute. Afterward, this was covered in an episode of the BBC Two Trust me I’m a Doctor show.

Other

Full Interview Transcript

Click Here to Read Transcript

(00:05:43) [Damien Blenkinsopp]: Welcome to both Eran and Lihi Segal onto the call. Thank you both very much for joining us.

So I just wanted to jump straight into your research on the glucose response, and all of the other stuff you’ve been doing in the last couple of years really because it’s all kind of related. Why did you focus on the blood glucose topic in particular?

[Eran Segal]: That’s a really good question. When we started a few years ago, we wanted to take a science-based approach to nutrition.

We thought very hard about that problem, and what we should examine. And if you think of the most common approaches in most studies in nutrition they usually consist of some dietary intervention, and then they look at weight loss, or they look at a change in some marker of a disease. And that’s great because ultimately these are the parameters that we’d like to have an effect on.

But, the challenge we found with this approach is that it then takes weeks or months for these parameters to change. You know, a parameter that measures your diabetes level, or weight. And at the end of this, you get a single measure. It takes weeks or months to change, and that measure is affected by multiple things that happen to you during those weeks or months. Both the diet intervention that you give, but also many other factors unrelated, which can be then confounding to what you’re measuring.

So, we thought that maybe one of the reasons that it’s very hard to do nutritional research, and why many researchers are failing, is because they’re looking at this single measure effected by many things. So we didn’t want to go that way. Even if we see an effect, you’re not sure you can attribute it to the diet, and if you don’t see an effect it’s very hard to troubleshoot what went wrong.

So we thought very hard about this, and that led us to look at glucose levels. More specifically, the glucose levels after a meal, what’s called the postprandial glucose response, or post-meal glucose response.

So by that, what I mean is what your blood glucose levels look like in the two hours after you eat a meal, which we can also quantify using the area under the glucose curve into a single measure representing the response that you had to that meal.

[Damien Blenkinsopp]: Right, so that’s like the total area under the curve is the total amount of glucose that was in your bloodstream during that area of time.

[Eran Segal]: Yeah, you can think of that as an approximation. I’ll tell you in a moment what we really are hoping that this is actually measuring, but that’s quantifiable into a single measure. But now we have to think about three aspects, or three features of this that really led us to conclude that this is what we want to follow.

So in a nutshell, what they are is that we were convinced by all the existing literature that this post-meal glucose response is really key to weight management. It’s really key to disease – diabetes, but not only diabetes, I’ll talk about those.

Finally, and not least importantly, that it’s very easy to measure and it’s something that, not within weeks or months but within a week, we can obtain not one, but even 50 quantitative measures of healthy nutrition in a single individual.

So first, why is it important for weight loss and weight management? This is very basic, and there’s been a lot of literature on this.

When we eat – and I’m talking about healthy people, even people who are glucose intolerant, but let’s say not insulin dependent Type I diabetics. When we eat, our body digests carbohydrates in the meal and releases them into the bloodstream.

After that, there is a response of the body by secretion of insulin, whose job is to lower the glucose levels. But in addition, what insulin signals, also, is it signals the cells to uptake the sugar that’s floating around in our blood.

And then excess sugar is converted into fat for storage because it initially is converted into storage of glycogen, but our stores of glycogen are highly limited. So very fast the remainder will be stored as fat. And this is actually known as one of the primary mechanisms by which we gain weight. In other words, this action of insulin.

So, in a sense, we would have liked to even measure directly at a continuous rate insulin, but that’s technically not possible. But in healthy people – and there’s been lots of research – by measuring glucose levels you’re actually looking at a proxy for a measurement of insulin.

And there’s been work showing, for example, that if you eat a meal that spikes your glucose levels compared to a meal that does not, then after a meal that does not you have more oxidation of fat, more burning of fat.

So the connection to weight loss is very well established. There’s also a lot of literature looking at very low-carb diets, which I think as a dietary regiment it’s incompatible with life for most people. But if you look at some of the studies when you eat a low-carb diet your glucose levels are low, and in general, those have the most beneficial effect on weight loss.

So that’s item number one why we focused on blood glucose levels because it’s very important for weight loss and management. The second is disease, and the most obvious is, of course, diabetes.

In fact, diabetes is diagnosed and defined by glucose levels. It’s defined in two or three different measures; either by the hemoglobin A1C, which measures your average glucose over a period of three months or by the glucose levels that you have two hours after you eat a meal. So something very similar to what we’re measuring.

And so, of course, you directly are playing with and improving the measures by which you diagnose diabetes. By that we can manage better the disease; manage it better in pre-diabetics, even possibly reverse it in this population. And, of course, for all the people with normal glycemic levels, we can prevent or delay the onset of diabetes.

So that’s one area where it’s important, but then separate from diabetes there’s been a lot of links to cardiovascular disease, to cancer. So in cancer, this is known as the Warburg effect. We know this for 90 years that cancer cells have a very different metabolism that much more heavily relies on glucose.

And so the thought is that by limiting the amount of glucose that you provide, you deferentially affect the growth of cancer cells compared to normal cells. And there’s been associations in the literature between blood glucose levels and cancer.

There are also been associations to overall mortality. There’s one paper that tracked over 2000 people for 30 years showing that if you responded more highly to a glucose challenge 30 years ago, you’ll live longer, basically. So there’s been links to many diseases, and so we’re very confident that it also has a strong association to disease.

And the final point is what I made before that because of the technologies with continuous glucose monitors we can now really in a single week measure 50 quantitative measures of healthy nutrition. And they’re quantitative of health nutrition because of the two points I made before.

[Damien Blenkinsopp]: So you felt that it was basically the continuous glucose monitor was a game changer because you’d be able to gather a lot more data quickly, and eliminate somebody’s potential variables coming in from the longer term studies which you can avoid.

[Eran Segal]: Absolutely. So if you think about it, we actually focused on examining the direct effect, one of the ways by which food directly affects you, and this is your glucose levels.

And from everything I mentioned before, we also believed that this is really a very critical clinical marker for weight loss and disease.

(00:13:30) [Damien Blenkinsopp]: Right. Okay, great. So you focused on the post glucose response to meals specifically, but you did mention Hemoglobin A1C. Is that something else you tracked and you found useful in these studies?

[Eran Segal]: So that’s something that we measured. We found it useful for predicting how different people respond to different foods, but it’s nothing something that you measure as a direct effect of a meal.

It’s one of those single parameters that takes many weeks to change that, again, would be very hard to develop a dietary regiment that would affect that directly because of all the confounders that I mentioned before.

So in fact, glucose levels is, as far as we know, the only reliable quantitative measure that is really super relevant that we could track, and that’s why we focused on it.

(00:14:17) [Damien Blenkinsopp]: Right. And you mentioned the area under the curve is the part that you’re interested in. So I’m guessing that you’re looking at a benchmark to what’s okay, and what goes too high in terms of that area.

You said to me when I tried to give an analogy to explain that to the audience that it wasn’t quite right. How would you explain the utility of that?

[Eran Segal]: We can just say that it’s basically looking at your glucose response and it’s quantifying how much you had spikes for glucose levels after the meal. And these spikes, as I mentioned before, is what is strongly linked to everything else.

(00:14:53) [Damien Blenkinsopp]: Right. Thank you very much. How did you find the continuous monitoring technology? Did you use a specific device, and how sensitive or accurate did you find it? There’s various monitors out.

We’ve spoken about these before, and I know people that have been using them for diabetes management and so on. So I’m just interested in your opinion on where that technology is right now, if research can be improved maybe later as it advances, or is it already as good as it’s going to get.

[Eran Segal]: So I think it was very good for our purposes. Not without problems, but I think even finger pricking is problematic, and can be variable. But, there’s also progress.

There’s a recent device by Abbot that we are now shifting to using because it’s more convenient, mainly. It’s probably as accurate, possibly even with higher accuracy – that’s what the company claims. But it’s just much more convenient, and it doesn’t require the finger pricking anymore.

But overall, they definitely capture the trends. I will say that when we measure responses to 50,000 meals you really have a very large data set, and you can afford to have some inaccuracies here and there, which all the technologies have. And still you correct for that in the algorithms.

(00:16:10) [Damien Blenkinsopp]: Great, thank you for that. Moving on a bit to what you discovered is actually driving these blood sugar regulation changes. What are the examples of the most unexpected things that you saw in the data?

[Eran Segal]: Are you talking about the factors that affect it, or even just before the surprising responses that people had?

[Damien Blenkinsopp]: I’m interested in both. If we start with what you saw that maybe you weren’t expecting, and then what you think drove that, or what you discovered drove that.

[Eran Segal]: So the first key result of the study was – and this was initially very surprising – we saw that when you give different people the exact same meal, they have very, very different responses. And this is in contrast if you eat the same meal on two different days, which is what we’ve tested on an unprecedented scale of 1000 people. This is 7000 different meals standardized that we provided.

When you eat the same meal on two different days your response is going to be very similar, but when you and I will eat the same food, our responses will be dramatically different. You can eat bread and have zero response, and I can eat bread and have a higher response than what I would have if I even ate pure sugar. So it was really all over the place.

And this was even before talking about our solution, this was very surprising. And we realized also that it has a lot of implications.

Because if we realize, again, the importance of blood glucose levels to our health and weight, then what it directly means is that general dietary recommendations are always, no matter what they are, going to have limited utility. Because for any single food that we tested, we had people who had a high response and others that had a low response.

So you can’t really make a general recommendation about food. Now there are trends. There are foods that lower glucose levels on average, for some people. And that is known; it’s what’s called the glycemic index.

I think you even touched upon that in your questions. And we also saw that in the data. So whatever foods have been reported with lower glycemic index on average they have lower responses also in our data. But if you look at all those numbers that go into making that average, they’re all over the place.

[Damien Blenkinsopp]: So there isn’t a cluster around the mean, it’s widespread.

[Eran Segal]: Exactly. It’s very spread across it. And when you measure enough people the means will be significantly different, but there is a wide spread across the means.

Meaning that we can take ice cream, for example, which on average induced relatively low glucose levels, and we can take rice, which on average, induced high glucose levels, but you will still find people that respond more highly to ice cream than to rice.

(00:18:49) [Damien Blenkinsopp]: So it’s quite surprising in those terms. So, in terms of what you’ve found or discovered that drove that. I know you tested for a lot of different things. What sort of things did you also test for in order to try and find the pattern of what was driving this?

[Eran Segal]: So we looked at many different things. We looked at body measures, anthropometries, height, weight, waist for instance and so on. We looked at several metabolic parameters in blood. We looked at questionnaires.

So we had a medical background in food frequency and lifestyle questionnaires. And the most novel component that we integrated into the study is the microbiome. So we measured all of those. In fact I will say that we found an association, a strong correlation, between variability and the response to food in all of these different groups of parameters that we measure.

And then the next step was to take all of these parameters and integrate them into rules, or an algorithm, that basically given your inputs to all of these factors, which vary from person to person, we would be able to predict how you would respond to each and every single food or food combination or complex meals.

And we showed that that actually works very well, and predicts personalized responses with very high accuracy. In fact, the accuracy that we think is even feasible because, even when you eat the same meal on different days, I mentioned your response is going to be very similar, but it’s not going to be identical.

So there is some inherent biological variability, and our predictive power is approaching that variability.

(00:20:30) [Damien Blenkinsopp]: Okay, great. The microbiome was the novel part of this. What exactly did you look at? Because there’s a few different approaches to looking at the microbiome right now.

What were you looking at and trying to map with it?

[Eran Segal]: So we looked at the most comprehensive in terms of resolution, which is just doing shotgun sequencing. So that’s basically sequencing the entire content of what we find in a stool sample. That mostly consists of bacteria, but this type of sequencing is really the highest resolution.

It allows us to identify individual genes in the bacterial composition, of which there are several millions in each and every one of us. It allows us to identify not just species, but also specific strains of bacteria.

And so there are many of these different factors that we integrated together, and used them in the algorithm.

[Damien Blenkinsopp]: Great. Is that cost prohibitive verses some of the other technologies that are used out there?

So you have the 16S, which is just looking at one part which some of the projects like uBiome are using right now to enable them to serve many consumers and make it a lower cost so people can afford it right now. Are the costs much higher for what you were doing?

[Eran Segal]: So first of all, for 16S, I will say that we didn’t want to go in that direction because science-wise I don’t think we would have gotten as predictive power.

And in fact we even showed that to ourselves in the study because it doesn’t have the resolution, and in many cases it doesn’t allow you to go below even the genus level of bacteria. So you can have the pathogenic E. coli or non-pathogenic E. coli will have identical 16S; you won’t know what’s in there. Just to give an example.

So we went for the shotgun sequencing. It is indeed much more expensive. If you talk to researchers they’ll tell you that it’s way more expensive.

I will say that what we have been working on in our labs for many years prior to this study, and then as part of the study, is to optimize this process very extensively using automation and using robotics.

We’ve substantially reduced the cost; it is still significantly more expensive than 16S. But I think our margins of error are much smaller than other researchers, and this is probably also why we were able to profile at that level.

(00:22:53) [Damien Blenkinsopp]: Okay, great. So, in terms of the microbiome – because we’re talking a lot about the microbiome and the other factors – is there a stronger weighting of the variability? Are there variants associated more with the microbiome, or are there some other factors that are really important?

The other thing that is interesting is the microbiome actually does change, and we’re trying to change it and improve it and so on in many clinical situations now. Whereas your height, age aren’t changeable.

So if you could give me a bit of background on what you found is the biggest weighting there, and maybe which is most actionable?

[Eran Segal]: Those are two very good questions.

Related to what is most important, every component that I mentioned before we can show has significant predictive power. Now of course, in terms of predictive power, some of these components are somewhat redundant with each other.

So for example we found that when you add the microbiome and some other components, then we can do without all of the blood tests, and in fact we don’t need them at all for the predictive power. They add really something negligible.

Of course we think that blood parameters are predictive; it’s just that in the context of many other parameters, they’re somewhat redundant because they can be explained and correlated with several other parameters. And so likewise with the microbiome we found that actually unlike blood, in every context that we apply the algorithm, the microbiome always had a significant contribution to the prediction.

I will say though, that of course the microbiome has the most significant contribution when you add it by itself. As soon as you add more and more parameters, this is expected. It’s marginal contribution. And also, I believe this is an area where with additional research we can dramatically improve in the future.

We already have started this process because we have a lot more information and a lot of smarter ways by which we can handle this data, which is not true for BMI, weight, blood parameters, which are very limited in the amount of information they have.

[Damien Blenkinsopp]: Right, because there is basically truckloads of data we’re going to be taking out of our microbiomes, because there’s so much in there.

[Eran Segal]: And when we and others continue to research and identify key genes in the microbiomes that are helping in the breakdown of certain products, production of different metabolites that affect us, and we know better how to zoom in on different features, we’ll be able to improve the predictive power from it.

(00:25:25) [Damien Blenkinsopp]: Great. So in terms of the level, you mentioned that the technology that you’re using goes right down to the strain level, and the species, and genus, and so on. But where do you see the patterns?

Is it on the genus level, the species level? Is it just one species that can completely change how we respond? Or is it at a very high level like bacteroides, or something like that?

[Eran Segal]: So there are significant associations on all levels.

And I can say that it’s not a single species that is really dominating. We actually have this in our paper; we have many different features from the microbiome each make a contribution to the overall prediction, but together there’s dozens of these features. Together they make a significant contribution.

[Damien Blenkinsopp]: Right. It’s really a multifactorial analysis.

[Eran Segal]: Yeah.

(00:26:10) [Damien Blenkinsopp]: Okay. You did a paper before 2014 on the artificial sweeteners, which also got a lot of coverage. That was interesting also.

And in that one I believe it was the high bacteroides and the lower clostridiales which showed that you had a higher propensity to gain weight, wasn’t it? Rather than just blood glucose regulation.

[Eran Segal]: Yeah. So yes, we did see an overall effect there. But also there we developed an algorithm that could predict susceptibility, in that case, to consumption of artificial sweeteners. And that was also multifactorial basically using dimensionality reduction of essentially all the species that we had in the sample.

(00:26:53) [Damien Blenkinsopp]: So the most recent paper you are looking at is also looking at regaining weight after dieting.

For example, if you go on a diet and there’s this typical yo-yo effect where someone goes on a diet and they just regain it all back. I’m wondering is that related to the microbiome or what’s going on? So if you could relate what you’ve been looking at there and what you found?

[Eran Segal]: Yeah.

So we study many different aspects of the microbiome as it relates to our health. And this is another study where we studied another very basic phenomena, the yo-yo diet that you mentioned. And what we showed there is actually that even after you complete a diet and you lose weight, your microbiome doesn’t go back to what it was.

So it’s very well known that as you gain weight your microbiome changes, and what we showed is after you lose weight your microbiome doesn’t revert back to the original state. And that memory, if you will, of the microbiome is in fact sufficient to induce and enhance weight gain once you stop the diet.

So I would say it’s another work further establishing the causal link, and providing more insights into mechanisms by which the microbiome plays a key role in our health, and specifically with respect to metabolic states and diseases; in this case relapsing obesity.

[Damien Blenkinsopp]: In that study did you find any mechanisms? Is it specific species? I think you were talking about metabolites in there as well.

[Eran Segal]: Yes. So this work was in fact work in animal models; this was work in mice. And the advantage of is that we can really go deeper into mechanisms, unlike in humans where it’s much harder.

And so there, we also did a metabolomic profiling, and we identified metabolites that were missing after you lose the weight. And when we administered these molecules back, we in fact were able to cure the mice of the phenomena of relapsing obesity.

[Damien Blenkinsopp]: Wow.

[Eran Segal]: And more important we actually showed that these metabolites in fact regulate genes in the host, in the mouse, and they regulate genes that affect energy expenditure. So these mice, when they have less of these metabolites which are broken down by bacteria, when the bacteria break them down, these mice are going to have less energy expenditure and therefore more weight gain.

[Damien Blenkinsopp]: Wow. So I guess you don’t understand why that energy expenditure is going on. There’s probably quite a complex downstream process that follows.

[Eran Segal]: Right. That’s quite complex, but we also had some insights in the paper as to that as well, and we found some genes that regulate that process in brown fat tissue that are directly affected by these molecules. And these molecules are made less available because the bacteria in mice that had a previous history of obesity, in fact, were breaking down and taking away these molecules more.

[Damien Blenkinsopp]: Wow, so it’s actually the introduction of new bacteria for the weight gainers, which is taking away these substrates.

[Eran Segal]: So in this case, it was metabolites. So there are specific metabolites that are broken down by bacteria, which we showed here, we call that post-biotics as opposed to pre-biotics.

[Damien Blenkinsopp]: Right, by adding the bacteria that’s missing or making taking away the ones that are causing the problem.

(00:30:17) [Eran Segal]: Yeah. Those can be technically more challenging in some cases, but in general yes.

I also want to relate to, you asked me before about the stability, or how much the microbiome changes. And we have several studies on that; in fact, some are not even published. What we find is in fact the microbiome is actually much more stable, perhaps, than most people think.

So in fact your microbiome, unless there is very dramatic change in health or weight, is probably going to be very stable even across many years. We have data on that. And what I mean by stable, it means you will still look more similar to yourself even after following some dietary interventions, at least in the short term, than you will to other people.

Now, having said that, we also found that short term dietary interventions in fact do change the microbiome, also in consistent ways, across different people. So while you’ll still remain in the neighborhood of what your microbiome is, still some functions will go up, some will go down. Those can be consistent across multiple people who consume the same type of dietary intervention.

[Damien Blenkinsopp]: Right.

Just as a takeaway from that, do you think the microbiome is going to be an important area of work? Basically learning how to modify it, push it in another direction in order to solve things like weight gain, blood glucose regulation. Is that your hope?

[Eran Segal]: Absolutely.

So the more we find causal effects for the microbiome on our health and weight the more this should be a target for intervention. But of course that will require further studies to understand what is casual and also how to change it.

And I do believe that with – and this has also been shown – that with long-term changes in diet, you will in fact achieve changes in the microbiome. But with short term dietary intervention the changes will be consistent, but they will be more subtle and you’ll still remain in your own neighborhood.

And what that means in terms of the research that we did, it means the algorithm is going to give you essentially the same predictions, even in a very stable fashion, across even some small, short term dietary interventions because your microbiome is essentially going to be very much the same.

[Damien Blenkinsopp]: Right. So if I test one month, and then I test six months later after doing a series of interventions – maybe not too intense, something like courses of antibiotics, things like that might be more intense.

[Eran Segal]: Antibiotics is probably a different story. That can have a dramatic effect.

I’m talking about even if you change your diet for a few months, your microbiome is not going to change a lot. If you maintain a very different diet after a prolonged period of time – I can’t give you exact numbers, but a long time – then you will see change.

And at some point, those changes may be large enough you may want to test yourself to make some modifications to the diet. But, for a very long period of time, without dramatic interventions it should stay pretty much the same.

[Damien Blenkinsopp]: It might be interesting if you do a course of antibiotics, because people have to from time to time, to redo the test and see what it predicts afterwords. Maybe some of the food responses are going to be different.

[Eran Segal]: Absolutely. And I think after antibiotics you will have very significant changes, and those could affect the prediction.

(00:33:37) [Damien Blenkinsopp]: Yeah. So the last thing, just going back to the artificial sweeteners we spoke about. Because they did see that those had an impact on the microbiome over time.

Do you think smaller things like that, basically micronutrients or small fibers, not necessarily macronutrient profiles, but those kind of things could have longer term impacts on the diet?

[Eran Segal]: Absolutely. I would say some of them could even have bigger effects than macronutrients. So fiber, for example, is something that is digested solely by our gut bacteria, so definitely could, and this is known, have alternations and will overtime have sustained effects. So yeah, absolutely.

I think the way we think about it now, and even drugs. We and others have shown that the drugs that you take actually also affect your microbiome. Any substance that you intake, although depending on the substance, might just go through your gastrointestinal track, meet the trillions of bacteria that are there.

They have 100 times more genes than we do. They could definitely break down these products, they could convert it into other products. I would think of it right now, anything that you intake could definitely affect your microbiome.

(00:34:50) [Damien Blenkinsopp]: Yeah. Alright. Thank you very much for that. Just a last few things.

A lot of people take xylitol and stevia. It wasn’t in your original study, and I was just wondering if you knew anything about that. Because the other ones, aspartame, saccharine, and there was another.

[Eran Segal]: Sucralose.

[Damien Blenkinsopp]: Sucralose. Yeah. It was a bit of a negative view on them in terms of what they were doing to the microbiome. Have you got any information or did you see anything on the other two?

[Eran Segal]: We are studying those now.

[Damien Blenkinsopp]: Great.

Eran thank you so much for your time. It was really useful.

[Eran Segal]: Okay, great.

(00:35:19) [Damien Blenkinsopp]: Excellent. Okay, Lihi, let’s talk about DayTwo and what you’re doing there.

So basically you’re taking the work done by Eran and his co-researchers and you’ve been turning that into this algorithm service to help optimize people’s diets. Could you give me a bit of an overview, how you look at it? What the company’s doing and how you see it going forward over the next year or so?

[Lihi Segal]: Yeah, so we licensed the technology in an exclusive way about a year ago, in the summer of 2015.

And then what we’ve been doing since then with the help of both scientists, because our founders are scientists and they’re on the management team and very deeply involved in the company. And so there’s a lot of hand-holding in that sense on the scientific level as well.

But what we’ve been doing, we built a team up of machine learning experts in DayTwo and also developers, and we really dove into the algorithm.

As you heard, on the research level the first thing they took 30 metrics in the blood, they did the microbiome, both 16S and the full shotgun. What we really tried to do is once we have all the results is really look into the algorithm and see what is that minimum set of features that we need, and write it to consumer. We don’t want to send them to get anything that is redundant.

So looking into that features into the algorithm, and looking to see what we really need, how to commercialize this. So we went through a kind of learning period when we’re looking to see how we define the product, what do we need. Do we need to freeze your stool? Do we need to send you to a doctor to get blood tests, yes or no?

And where we ended up is by looking at a really minimum set; because as you heard Professor Segal say, the microbiome was very significant in any constellation that they took, and made other things redundant. So really where we ended up with on the product side is that it’s all online, almost.

So you come online and you fill in a lot of questions – not a lot, I think a 10 minute questionnaire. But, of course it has to do with your anthropometrics and your food preferences and your medical history. Any information you just fill in your questionnaire. And then we mail home a kit; just a box. In that box there is a small tube and you take a stool sample at home.

So we use DNA Genotek as our supplier of the kit. If you know them, they’re out of Canada. This is really kind of state of the art microbiome collection kit. You don’t have to freeze it, you literally just take it when you can, when it fits you. You don’t have to time it. It’s there, you take it, and then you just mail it back to us by regular mail.

[Damien Blenkinsopp]: Is it a quick swab, or are you actually taking a sample?

[Lihi Segal]: We tested a bunch of other alternatives as well, but this company really gave us the most stabilized microbiome in extreme temperatures.

It’s really important for us to stabilize it and then send it through the mail. And you don’t have to freeze it and all that. So it made it much easier on the consumer side, and it’s also very important scientifically to get the microbiome at the state it was as it was collected in Day Zero.

So we did a lot of trial specifically on that to see that what the company claims is actually right. And so we send you this kit, you mail it back to us, and then we sequence it.

We chose to sequence, as Eran said, on a full shotgun basis because we found that that resolution rate gets us the prediction into a higher level and a very good level. So we decided to do that despite the higher costs that it has.

But again, we try to put a product on the market that is very good; it’s good scientifically, we don’t really cut the corners there. So although the cost is still higher, we do expect it to go down a scale, both on the full shotgun basis and the kits.

And then what we do is give you a mobile application. So you get a personalized mobile app that you download, and it’s tailored just for you. And it gives you three things initially.

It gives you a microbiome report, because we did it and we have it. Not all our users are going to love it, but a lot of them may be curious to open it up and see. And so there’s a lot of information there.

We’re giving you your top food and meal recommendations. So what that means is that we really look into different categories. You have your top breakfast, your top lunch, your top dinner, your top fast food, because even when you eat fast food once in a while you can still choose healthier fast food than others.

We’re really trying to bring this into your day-to-day and make little changes and not turn your world upside down. And then there’s whatever alternatives with pasta, alternatives with rice. That’s really general.

And we’re really giving you your top A+ meals and scores all the way to your worst list, which has up to C-. So we’re trying to educate you through that stage. You could always go to see what your top breakfast is, what your top lunch, and all that, but then you also have the ability to search.

If we didn’t say something that you eat and you want to know what your score is, you just search for it in our database. In the US we are based on a database of MyNetDiary. So we have 400,000 different foods that are US based foods.

In Israel we are have a different database that has Israeli foods in it. So people can really find what they eat in there.

[Damien Blenkinsopp]: Right, so these are actually branded products you can buy. Is that what you’re saying?

[Lihi Segal]: Yeah, there are a lot of branded there as well, but there’s also, for example, an apple without skin.

[Damien Blenkinsopp]: Okay.

[Lihi Segal]: You also get your just general food as well, but you would find your specific brand of whatever, yogurt, that you’re eating in the specific territory. And then, so that’s the second thing. The third thing is the search and also a build your own meal kind of possibility.

So the whole point here is that we’re not scoring nutrients. We’re not saying carbs or proteins, and we’re not even going into a family of pasta versus rice. It’s very different if you eat a pasta with cream sauce or a pasta with meatballs, or you eat a pasta with macaroni and cheese.

You have to be able to score complex meals, and that is where our kind of secret sauce is, we’re really looking at your personalized response to these complex meals. And so you can just search for those meals if you want. If you’re cooking or if you’re sitting in a restaurant and you’re able to get your scores on the foods that you’re eating.

(00:42:00)[Damien Blenkinsopp]: Yeah. So just to clarify, this is just focusing on glucose management? So lowering…

[Lihi Segal]: Right. So what we aim to do is balance your blood sugar levels. So when you go on and you eat your A+ or A- foods and you eat that on a consistent basis, and you keep portion control.

So it’s not a kind of blank check to eat as much ice cream or drink as much beer as you want, unfortunately. But it does allow you some flexibility with foods that are surprising. Things you thought were unhealthy, all the sudden you understand you can eat them. And vice versa, so it’s surprising in both ways.

And then if you eat that consistently then yes, you’re going to see that we’re helping you balance your blood sugar levels.

And as Eran mentioned, balancing your blood sugar levels has an importance both in minimizing the risk for diseases of all kinds. Even as a healthy person, you don’t have diabetes but it is really important to keep your stable blood sugar levels. And also the whole thing about weight loss.

It helps you, it encourages weight loss in that sense. So you need to have a restrictive diet; you can’t eat whatever you want and think that you’re going to lose weight with this. But it does help you lose weight, it helps control your hunger, it helps control your cravings. And so it really helps you to plan and choose your foods right. That’s what we’re aiming to do.

(00:43:25) [Damien Blenkinsopp]: Okay, great. So, just to be clear. In terms of the inputs, it’s mostly filling in a questionnaire. Is there any other test apart from the microbiome sample? Or is that just the only one that they need to do?

[Lihi Segal]: No, the basic thing is that we need the microbiome and we need your questionnaire.

Now if you do have addition information, if you have your HBA1C levels then we’ll be happy to take them in. If you have more blood tests it’s always good to take in. But it’s not as significant enough so we’ll say you have to do it.

[Damien Blenkinsopp]: Yeah.

[Lihi Segal]: But on a general level, as much information as you’re willing to give us, it will always help, yes.

[Damien Blenkinsopp]: So in your algorithm, it will just take that into account as well?

[Lihi Segal]: Yes.

[Damien Blenkinsopp]: It’s just that in terms of the cost, you don’t want to add to the cost or be inconvenient.

[Lihi Segal]: Again, as Eran mentioned, it becomes redundant at some point.

And so if you have it, great, but we don’t want to get people – the cost is not that much for an HBA1C, it costs like 20 dollars in the US today. So that’s not really the issue.

It’s more just this is the basic package; you send it home, you send it back. But as we’re looking at our future products and as we interact with you throughout your day, the app is going to allow you in future versions to report to us what you ate.

And we have a lot of insight on your sleep and on your exercise. That was not published, but we have it in the data, and they haven’t published that data. He didn’t mention it, but in the research they actually had people logging in their foods, but also their sleep and also their meditations and their exercise. They had a Fitbit on everyone.

So there’s a lot of insight that we’re going to be able to give you. And when to eat your biggest meal, because people have a certain rhythm and that’s personalized as well. So when would be preferred to have a large meal of the day. In the US usually it’s dinner. In Israel sometimes it’s lunch, sometimes it’s dinner.

Certain foods that you should eat at certain times of day. So we can really interact with you over time if we have more information on how you slept last night and how much fiber you had in the past 24 hours. There’s a lot of things that go into the algorithm that, if we don’t have them, fine, but if we do it can even help us give you better results.

[Damien Blenkinsopp]: So you’re integrating these lifestyle factors as well into the computations to tell people when to eat. That’s great.

[Lihi Segal]: Your stress levels, all that.

(00:45:52) [Damien Blenkinsopp]: So I was wondering, are you able to tell the status of someone?

Say I’m glucose intolerant to an extent already, when you get the data from people without getting the HBA1C, for example, are you going to be able to know this person’s going to have to be more careful? Is any of that kind of information coming out?

[Lihi Segal]: We’re not at any point a diagnostic company, so whatever we see we will not tell you.

[Damien Blenkinsopp]: Oh, okay.

[Lihi Segal]: We don’t do health assessments on you. We’re giving you your recommendations under a predictive model.

And for example if we find things that we think you should know, then we would probably say maybe you should see your doctor, or take these results to your doctor or something like that. We would never go into actually giving you any medical advice.

(00:46:35) [Damien Blenkinsopp]: Right. The same usual thing. There’s a lot of blood glucose dis-regulation that goes on way before you get to diabetes, as Eran was saying.

So I’m just sort of interested from an algorithm perspective. I know you’re not going to publish it because there’s a medical borderline there that you don’t want to go near, but I was just interested from an algorithm perspective – can it tell how far you are along that line? Because everyone’s got a little intolerance. I’m just curious, does it offer any information?

[Lihi Segal]: I can’t.

[Damien Blenkinsopp]: Okay, fine.

[Lihi Segal]: I can’t answer that question.

But as Eran mentioned, we’re looking into on the road map for DayTwo that’s not just for the people who want to buy it right now but we are looking into various things we can do with the data that we have, the data we collect, and the things that we learn. And of course diagnostics and therapeutics are a part of that whole agenda.

And so there’s insight that we’re looking into and collecting, and can very well come out with additional products that are related.

[Damien Blenkinsopp]: So as a first stage it’s basically a food recommendation engine as the output, and of course your microbiome data.

Do you have an idea of what type of microbiome data is going to be given? I know we talked about uBiome, for instance, in the past. We had Rob Knight from some of the other tests.

We’ve looked at a few different ones in the past. Have you got an idea yet, or are there pictures or anything of what it’s going to look like in terms of the data you provide for the microbiome?

[Lihi Segal]: I can definitely go back and send you some information about how it’s going to look, more or less.

[Damien Blenkinsopp]: Alright, cool.

[Lihi Segal]: But we’re trying to go into a lot of detail. Again, we’re doing full shotgun so we have additional insight. We’re not at just a very high level; we are looking into specific types of bacteria and trying to link them. We’re looking at studies and just general information about them.

Again, we have to be a little bit careful and not tell you anything that you may be alarmed with, or if you think that you have this and you’re going to be Type II or anything like that. So of course we’re being careful in the way that we present it. But there’s a lot of interesting information.

We’re also looking to do this in a very cool way that’s going to be, at least on the web – on the mobile it’s going to be a little flatter – when you sign into your web, there’s a report that’s going to be very interactive. You can dive in and go all the way down to the strain level, and then come up. So it’s going to be really cool in that sense.

[Damien Blenkinsopp]: So is there going to be, basically are you going to give all of that data?

My audience tends to be on the high quantitative side, so some of them tend to be people who download the data and start playing around with it in Excel. So will you have that kind of data?

With uBiome, for example, they have two aspects of that. They have the raw data they provide for you to download, and then you can put it into software to actually interpret yourself, like biometrician software.

And then they give you graphs which are basically summarized. So there’s not all of that information there, it’s a bit different, and it’s according to their perspective. So in comparison, what will you provide?

[Lihi Segal]: No, I don’t know to tell you that we’re going to give you all of the raw data. We probably could, but we haven’t finalized that down to the core of it. But again, we have it.

We’re going to have, as I said, the report and the very interactive tool so you can explore it. And the infographics is really cool. People are just playing here with it when they’re too tired to code. So they go and start planning that. But we could also provide the raw data, for sure.

Again, I think our users as opposed to uBiome users, uBiome users are mainly people who purchased it because they were curious about the microbiome. Our users, most of them, if I need to kind of guess or what I see, the microbiome is what gets them to say, oh this is really interesting.

This is personalized for me, I have my personalized microbiome; these people are scientific based, it’s not just that somebody came up with a diet based on my blood type, there’s science here. I don’t think that a lot of them are going to be very interested in downloading the file of the microbiome and things with it.

But we could definitely allow that, or be able to do that, if we see that there’s a need for that from our users.

(00:50:58) [Damien Blenkinsopp]: Yeah, cool. Alright. I saw there was a mention of a Mayo study on your site?

[Lihi Segal]: Where did you see that mentioned, by the way? I’m trying to figure out how did that get to you. We didn’t publish…

[Damien Blenkinsopp]: Well I don’t know, I think it was just mentioned. Oh, I know where I found it.

I was looking through your FAQ and there were some directions for Mayo study people on how to find the information.

There’s a leak there.

[Lihi Segal]:L: No, it’s not a secret by far.

We are recruiting people in the Mayo clinic now, and DayTwo is all over it. We just didn’t issue the press release saying that yet. But that’s been approved and it’s on it’s way as well.

So, what we’re doing, I’m happy to share, it’s no secret. But what we’re doing with the Mayo clinic is a clinical trial that is very similar to the clinical trial that The Weizmann Institute has done in Israel.

And so we’re recruiting 500 people and going through the same process of putting exactly the same device that was used in the trial in Israel and giving them test foods that are American foods, like a bagel and cereal, and really having them log their foods and providing all that information, and a lot of blood tests. So we’re really replicating the trial.

We’re just going to do that because we wanted to make sure we’re providing relevant recommendations after we have a basic cohort of US people. It doesn’t have to be the entire 500 completed, but we just, as the Israeli one was all Israeli, with Israeli microbiome and Israeli food, we just wanted to make sure that we’re able to calibrate the algorithm and it also works on a US based population with US foods and all that.

So we’ve already kicked that off. It’s a great collaboration for us to do this with the Mayo clinic, obviously. So we’ve already connected people. If any of your users are Rochester or Minnesota based people they can go and be part of that clinical trial.

[Damien Blenkinsopp]: Right. And it will be literally a copy of the other study so they could look at the other study to see what it would entail as well.

[Lihi Segal]: Right. There’s a bit of new information there as well. So that’s the reason we’re doing that. And also to start a collaboration with the Mayo clinic for other things as well.

(00:53:14) [Damien Blenkinsopp]: Great. Do you have a timeline for that? In terms of when you might get results eventually?

[Lihi Segal]: The timeline for US, it’s opened for pre-order. I know you probably entered through the UK, so you didn’t see that, because it’s IP based.

But if you were in the US you would see a pre-order. If you were in Israel, you could also buy and start getting it. So we started selling in Israel already.

The US is open on a pre-order basis, and we’re going to start shipping kits out to people in the beginning of 2017.

[Damien Blenkinsopp]: Okay.

[Lihi Segal]: It’s just around the corner.

[Damien Blenkinsopp]: Okay. So there are people already using this service in Israel, and it’s functioning.

[Lihi Segal]: In Israel we started the whole process of getting the evaluation, the kits, out to people and getting them back and sequencing them. We’re just starting to get, we’re in the final stage of getting the application finalized, and then getting the recommendations for people.

But there are a lot of people already who are using it because they got recommendations, whether from the Weizmann Institute Study or through us.

They’re not using the fancy application with the ‘Build Your Own Meal’, but the results and all of that have been around and have been used. Actually the BBC had a great show – I don’t know if you’ve seen it.

[Damien Blenkinsopp]: No.

[Lihi Segal]: The BBC has a show called ‘Trust Me, I’m A Doctor’.

[Damien Blenkinsopp]: I don’t watch TV here, unfortunately.

[Lihi Segal]: Oh, okay. So anyway, ‘Trust Me, I’m a Doctor’, it’s a doctor that has a show and she features clinical trials. And so she actually participates in the clinical trials that she features on her show.

So after the publication itself, she approached the scientists. She came to Israel with her colleague and was profiled and went though it, got food recommendations. Then she went back home and only ate what she was supposed to eat, lost weight and felt great, her energy levels [were up].

She was all psyched about it, and featured it on the BBC in a great show. I’ll send you the links so if you want you can see them.

[Damien Blenkinsopp]: Yes, please.

[Lihi Segal]: So there’s a lot of people who are using it, but outside of the clinical trial setting as well.

[Damien Blenkinsopp]: Okay, great. So it’s already getting around.

[Lihi Segal]: It’s getting contracts. Yes, we see the results are there.

(00:55:23) [Damien Blenkinsopp]: Yeah. Okay, so in terms of just how it’s going to be available, you’re only shipping to the US. So is no one in Europe is going to be able to do this?

[Lihi Segal]: Well, soon. We get a lot of approach on our support.

After the show was aired there was like 10,000 people hitting the website. So we know that there’s a lot of people interested. And we really want to go into selling in the UK as well. We’re just trying to be [safe], being a start up and not to jump too far ahead.

[Damien Blenkinsopp]: One thing at a time.

[Lihi Segal]: Right. So we did Israel because otherwise people will kill us here if we don’t bring it home. But we didn’t even translate it into Hebrew, it sold in English.

And we’re opening in the US because it’s an important market to start in. But we have concrete plans to get into Europe in 2017. So, soon. At least in the English speaking countries.

Really, logistically it just means that we need to get this box to people, but it’s not that simple. We will need a local database of food. So there’s some work on the server side to give you your foods and the database that fits you. We don’t think we’re probably going to need a trial to do that.

So in terms of the microbiome what we see is that the changes are not that [significant]. So there’s changes in the territories in the microbiome, but they’re probably not that apart compared to where the recommendations are. So you and I are very different in the way the algorithm predicts for us.

The microbiome is different, but it’s not that different. Anyway, it works on people. It could work on the US even without the Mayo trial.

[Damien Blenkinsopp]: So it sounds like that’s a validation effort.

[Lihi Segal]: Right, exactly.

[Damien Blenkinsopp]: I haven’t looked at studies of comparison of different countries and their microbiomes. There are some?

[Lihi Segal]: There are, if you look at the [57:12 check, unclear] that they have their graph there. So these show the US and there’s overlaps between the US, Europe, and Israel.

There are differences as well, but the differences, the way it reflects it in the algorithm is not that significant. So it works.

(00:57:33) [Damien Blenkinsopp]: Do you know when the Mayo trial, how long that’s going on for?

[Lihi Segal]: Oh, the Mayo trial will take a while. But we don’t need to complete the trial before we’re able to give recommendations. So we just need to validate it in a smaller group. But we’re there collecting data.

It’s more, you know in the US you can’t put a continuous glucose monitor on people at all if you’re not diabetic. Except under IRB kind of trial setting. So on a consumer level we couldn’t find any provider that would allow us to put continuous glucose monitors on healthy human beings without prescriptions. It’s a diabetic label from the FDA.

So we don’t have the device, and in order to really collect that data in the US we need to have a clinical trial set up and get the appropriate IRB and all that. So part of the whole doing of the Mayo clinic is because we just want more data, relevant data with glucose monitors and logging of food.

So we don’t need that to continue to start operating. I don’t even want to stop it after 500, so we’re talking about opening Arizona as a site, and Florida as a site. It’s really good just for our internal research purposes to continue to get more data.

(00:58:53) [Damien Blenkinsopp]: One quick question. I’ve noticed that Arizona comes up a lot in lab testing. I’m just wondering, as you brought it up just then, is there any reason?

[Lihi Segal]: Because Mayo has a site there. So when I’m collaborating with Mayo clinic, they have additional sites other than Rochester, Minnesota. So they’re thinking of expanding this to there and I’m more than happy to get more data.

[Damien Blenkinsopp]: I was just on holiday in Arizona and I just noticed that there are a lot of lab testing companies there.

[Lihi Segal]: It’s probably due to relevant man power and cheap, and something like that.

[Damien Blenkinsopp]: I think there’s maybe some state regulations or something that make it a little bit easier. Something like that also.

[Lihi Segal]: But again, when you sell outside of Arizona then you’re going to have to comply with the state laws anyway. So I’m not sure if that’s going to help you. But I don’t really know.

(00:59:41) [Damien Blenkinsopp]: So right now for the US is it $299 for the pre-order?

[Lihi Segal]: The price is going to be $399 but we’re opening up at $299, that’s a pre-order discount. But once we stop reordering, we’re probably going to go up to $399.

In Israel it’s 500 dollars, but we’re also doing a premium product in Israel; we’re giving continuous glucose monitors to people in Israel. So we’re giving them a fancy report on their blood sugar levels and all kinds of other stuff. We can because the device that I talked about in Israel you can put it on humans that are not sick.

[Damien Blenkinsopp]: Right, wow. That sounds like quite a service. If someone would pay 1000 dollars or more…

[Lihi Segal]: No, no, 500.

[Damien Blenkinsopp]: Oh, and they’re getting that premium service with the glucose monitor?

[Lihi Segal]: Yeah. It’s a lot, 500 dollars. It’s just more expensive than the US because of the continuous glucose monitor that we’re putting on.

[Damien Blenkinsopp]: They’re quite expensive, those things.

[Lihi Segal]: Well, they cost a few hundred. I guess in the UK it’s about 80 Euros. And then the reader and then the patch cost a little bit more.

[Damien Blenkinsopp]: I looked into getting one for myself; not for medical reasons, just to play around with.

[Lihi Segal]: Abbott Freestyle. Just take the Abbott Freestyle Libre. Just look for it. Freestyle Libre and then just order it online. And I think it costs 100 Euros or something.

[Damien Blenkinsopp]: Okay. And it’s got consumables on it too.

[Lihi Segal]: And then you have a patch. You get a round patch that you put on for two weeks. It’s good for two weeks. And then you have a reader.

[Damien Blenkinsopp]: And this is the one that Eran was talking about earlier that they’ve started using.

[Lihi Segal]: Right. So you can get that online.

We bought a bunch of them online ourselves in the UK before we found it in Israel. And once we found it here in Israel we decided to go with this product that we can also collect from people their blood sugar managements and give them all the fancy reports on all that. So it’s cool.

[Damien Blenkinsopp]: Yeah, it sounds quite exciting what you’re doing in Israel, because you’ve got more flexibility there. Are you publishing anything, maybe a bit later, about that on your customer base?

[Lihi Segal]: Not yet.

[Damien Blenkinsopp]: Okay.

(1:01:51) Is there anything we haven’t covered about the service, that we’ve missed?

[Lihi Segal]: Yeah. I think that this is kind of our direct to consumer approach. So we’re selling to you directly, but what we’re really working on is partnerships. Because what we really believe is that the way you’re going to use this is also very personalized.

Some people, the fact that we give them a fancy application that’s really cool and has a report on it and teaches them what to eat and what not to eat. There’s going to be a diet planner at some point on this. So you can really be independent in the way you manage your food.

For some people that’s going to be great, but some people really need more support. So maybe they go to Weight Watchers or they use other weight management services. And once you know as a user that there’s specific recommendations for you that are personalized for you, you really can’t tolerate generalized information anymore.

I’m saying this for myself. I go to this Weight Watchers group – it’s not Weight Watchers, it’s a local Israeli group. But I can’t hear her say to me, you should eat pretzels as a snack. 100 calories of pretzels are your snack. I’ve been doing that for 15 years, and then I found that it was my number 1 spiking snack.

And I moved to a different, totally different corn-based snack that was much better for me if I’m eating that 100 calorie snack already. So I’m snacking on that.

And what we’re thinking of doing is really opening an API with a lot of services. And so you as a user can share your information with your doctor, or with your nutritionist, or with your weight management group. Or when you take out food you want to be able to get a score. You want to log in, connect to…

[Damien Blenkinsopp]: So you could plug into a meal delivery site.

[Lihi Segal]: Think of this. Let’s say you’re ordering take-out of your food. We do this every day at lunch, just because in Israel is how it works.

And so I want to log in and connect with my DayTwo account, into that service, then get a menu and my score, A, or B. I’m already in a great restaurant, I’m eating food or I’m taking it out, I want to be able to get a score and choose right.

In the US specifically there’s a lot of employer wellness programs. All of those wellness programs provide nutritional advice, but it’s generalized. I, as a user, want my personalized advice to go with me.

So, that’s kind of the partnerships that we’re doing. Some will bring us customers, some we will bring our customers to them. And we’re building a marketplace around this.

So literally, think of that that we’re not competing with anyone. That’s the strategy that we built. We want to enable anyone who wants to use this personalized service to use it in their application and services.

[Damien Blenkinsopp]: Great, to make the information more widely available.

Lihi, it sounds great. I’m sure there are insurance companies and so on who would be interested in that as well. I know they’re getting more interested in these wellness programs.

[Lihi Segal]: Of course.

[Damien Blenkinsopp]: Okay well thank you very much for your time today. I really appreciated it.

[Lihi Segal]: Sure. Thank you so much.

Leave a Reply

What defines human microbiome health? The co-founder of American Gut Project discusses the differences we’ve found in the gut microbiome and how it influences our health. We look at tools and lifestyle choices that have been shown to change the microbiome (for good, and for bad).

Our microbiome plays an important role in our ability to overcome health issues. A healthy biome can make you resilient to these challenges, while a poorly-balanced one can create or worsen health problems. We first talked about the microbiome in Episode 9 with Jessica Richman, and today we are going to dig deeper into what affects it.

In this episode, we look at how the microbiome and our life choices impact each other. This can relate to how we live, our health, and even how many mosquito bites we get. Research shows that many chronic and gut diseases are related to our microbiome. We also talk about how medical interventions like antibiotics, Cesarean sections, and fecal transplants change our biome.

Anything that’s in the literature has got to be based on population averages. And one thing we know about people is that there are tremendous amounts of variability. So what works on average in the clinical trial is not necessarily going to be what works for you individually.
– Rob Knight

Advances in DNA sequencing have made it possible to look at the microbiomes of huge groups of people. Several large-scale projects, which we’ll discuss today, aim to look at microbiomes of groups or whole countries. It is also easier for individuals to learn about their own microbiome. This lets you see how your lifestyle, diet, or medical treatments alter your biome.

Today’s guest is Dr. Rob Knight, professor of Pediatrics and Computer Science & Engineering at the University of California San Diego. Dr. Knight was chosen as one of 50 HHMI Early Career Scientists in 2009. He is also a member of the Steering Committee of the Earth Microbiome Project, and a co-founder of the American Gut Project.

Dr. Knight and the Knight Lab at UC San Diego use state of the art computation and bioinformatics to understand the microbiome and what affects it. Dr. Knight is on the forefront of this exciting research and will walk us through the topic.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

What You’ll Learn

  • What DNA and RNA are (6:52).
  • Initially researchers thought that the human microbiome would be uninteresting (8:20).
  • Advances in DNA sequencing made projects like Human Microbiome Project and American Gut possible (9:53).
  • Novel information on how lifestyle affects the microbiome (13:50).
  • The different biomes of your body, what is known about them, and how the affect the body (16:50).
  • Long-term diet has the largest impact on your gut microbiome (19:40).
  • Individuals show variation in their microbiome from day to day, and this variation could make single samples less useful (20:05).
  • Research shows that only a few activities and dietary changes significantly affect the microbiome (22:50).
  • There are still questions about how variation within an individual’s microbiome relates to health (26:08).
  • Resources like American Gut can be used to assess your own response to medical interventions like antibiotics (27:20).
  • Fecal transplants to replenish your microbiome after medical intervention is an area of promise for those battling C. difficile (28:15).
  • The effect of antibiotics on the microbiome vary among treatments and individuals (31:06).
  • The microbiome is incredibly complex, but research into a few microbes could yield tremendous health benefits (33:16).
  • Although there is anecdotal evidence that probiotics are effective at positively impacting your microbiome post-antibiotics, there are currently no clinical trials on their effectiveness (37:44).
  • The Ancestral Microbiome Project is comparing the microbiomes of people with traditional lifestyles to see if the Western lifestyle or diet has led to a loss of certain microbes (41:05).
  • Living with a group of people or a new partner can change your microbiome (42:54).
  • IBS has been linked to the microbiome, and probiotics have shown promise for treating the condition (44:20).
  • Damien and Dr. Knight discuss places to find additional information on the microbiome (45:22).
  • Dr. Knight suggests tracking travel, medications, and diet if you are interested in how your lifestyle affects your microbiome (47:11).
  • Those interested in learning more could also track their fitness, do an EEG of brain activity, or an MRI of areas of interest (49:44).

Thank Dr. Rob Knight on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Dr. Rob Knight

Tools & Tactics

Interventions

  • Fecal transplant: The purpose of this treatment is to re-balance the microbiome of the transplant recipient by placing fecal matter from the donor is placed in the colon of the recipient. The most common reason for this treatment is a serious illness caused by Clostridium difficile after the healthy gut microbiome is destroyed by antibiotics.

Supplementation

  • Probiotics: Probiotics are live bacteria and yeasts that assist in gut health; this includes antibiotic-related diarrhea, IBS, and IBD. They can be found in a variety of food products (like yogurt with “live cultures”) and in capsule form. Strains of Lactobacillus and Bifidobacterium are the most commonly available.

Diet & Nutrition

  • Plant-based diet: Dietary changes can quickly alter the gut microbiome, and Dr. Knight specifically discussed the choice of animal vs plant-based diets on the rates of Prevotella and Bacteroides. Here is the paper by Gary Wu and others discussed Rob Knight. For more information, here is a paper discussing how people on animal-based diets had higher levels of microorganisms related to inflammatory bowel disease in their microbiome.

Tracking

Biomarkers

  • Microbiome community composition: To determine what is in your microbiome, labs report the percent of each type of bacteria present in your sample. We are still learning about how microbiomes affect health, so there is currently no information on what an “ideal” microbiome looks like.
  • Gut microbiome: This is the microbiome in your colon and is the most commonly assessed of the biomes. Some “good” bacteria like Akkermansia, Lactobacillus, and Faecalibacterium are associated with reduced obesity rates and gut health.
  • Fine grade fitness information: This biomarker includes daily information on caloric intake, steps taken, calories burned, sleep quantity, and sleep quality.
  • Blood and Urine Metabolites: These small molecules include amino acids, sugars, and fats. They provide insights into health, disease risks, and optimal diet. No specific biomarkers were discussed – the biomarker would be a specific metabolite. A common test is the blood metabolite panel (BMP), which looks at calcium, glucose, electrolyte, blood urea nitrogen, and creatinine levels. For urine, proteins, leukocyte esterase, and hemoglobin are all commonly assessed biomarkers.

Lab Tests, Devices and Apps

  • American Gut Project: A not for profit, research-based initiative to understand the American microbiome. Participants are asked to provide details about their diet and lifestyle.
  • Michael_Pollan_Bug_Data

  • uBiome: This test can be ordered and used by anyone in their home. The test allows collection of microbes from your gut, mouth, ears, nose, or genitals.
  • Electroencephalogram (EEG): EEGs record electrical activity in the brain. The frequency of waves can indicate whether brain function is normal or disturbed. Alpha (8-13 waves per second) and beta (more than 13 waves per second) waves are the most common in healthy, awake adults.
  • Magnetic Resonance Imaging (MRI): MRI scans are use pulses of magnetic energy to visualize internal organs and structures. It can be used on almost any area of the body and provides information on tumors, bleeding, injuries, blood vessels, or infection.

Dr. Knight’s Recommended Resources to Learn More About Microbiome

  • Follow Your Gut: The Enormous Impact of Tiny Microbes: Our guest’s book on how the microbiome affects our health. The Appendix includes information on how to interpret the results from American Gut.
  • Missing Microbes: Our guest recommended Martin Blaser’s book as a resource for those interested in learning more about microbiomes and antibiotics.
  • Not Exactly Rocket Science: A science blog written by Ed Yong, our guest suggested the posts on microbiomes as fun reading for those interested in the topic.
  • Some of My Best Friends are Germs: Written by Michael Pollen for NY Times in 2012, the article is a quick read on the relationship between microbiomes and health.
  • Jonathan Eisen’s TED talk: Dr. Eisen’s talk “Meet Your Microbes” focuses on microbes and their co-evolution with their hosts.
  • Jessica Green’s TED talks: Dr. Green is the founder of Biology and the Built Environment (BioBE) Center, and has given two TED talks on microbes.
  • NY Times Matter Column: A weekly science column written by Carl Zimmer.

Other People, Books & Resources

People

  • Jeff Leach: Co-founder of the American Gut Project, and microbiome researcher.
  • Dr Catherine Lozupone: Professor of Biomedical Informatics andPersonalized Medicine at the University of Colorado, Denver. Dr. Lozupone researchers the impact of the gut microbiome on human health.
  • Dr. Jeffery I. Gordon: A research scientist studying the link between gut microbiota and obesity. Our guest collaborated with Dr. Gordon on this topic.
  • Dr. Pieter Dorrestein: A professor working at UC San Diego, Dr. Dorrenstein and our guest have collaborated on research. A recent paper of Dr. Dorrestein’s in PNAS looks at the chemical makeup of skin surface and relates it to the microbes that live in the skin.
  • Dr. Dan Littman: Professor of Molecular Immunology at NYU School of Medicine, Dr. Littman studies the human immune system.
  • Hans Herfarth, MD, PhD: Dr. Herfarth is a member of the UNC Multidisciplinary Center for IBD Research and Treatment and the author for the UNC Patient Guide to Inflammatory Bowel Disease (IBD).
  • Balfour Sartor, MD: Dr. Sartor is the co-chair of the UNC Multidisciplinary Center for IBD Research and Treatment.
  • Dr. Peter Turnbaugh: A professor in the UCSF department of Microbiology and Immunology.
  • Dr. Dave Relman: Dr. Relman’s research focuses on the human microbiome.
  • Dr. Cecil Lewis: Dr. Lewis studies anthropological genetics, including the evolution and ecology of the human microbiome.

Organizations

Other

Full Interview Transcript

Click Here to Read Transcript

[05:22][Damien Blenkinsopp]: Hi Rob, thank you so much for joining us on the show.

[Rob Knight]: Sure, thanks Damien, and thanks to your interest on this topic.

[Damien Blenkinsopp]: It’s great. So we’ve already looked at the microbiome, but I wanted to know, why is it that you got interested in this specific area? What is it that first caught your interest, or you first got involved in this area?

[Rob Knight]: Yeah, well it was a very indirect pathway from my graduate work at Predison’s Lab in studying the evolution of the genetic codes and a large part of that was looking at RNA molecules down to particular molecules that are useful in metabolism. So from there I went to the University of Colorado working on RNA sequence states and trying to figure out how many random RNA sequences you need to look at before you find one that does something interesting.

So there were a lot of one particular kind of sequence, the ribosomal RNA molecules in the database. I really wondered why were there so many of that particular sequence that had been studied. And so I started talking to Norm Pace, who was one of the other faculty members at Boulder. And I realized they were using the ribosome’s RNA not as an object of study in and of itself, but as a tool to understand the relationships between different organisms, and to read the mass in the communities that they were looking at. Everything from rocks to shower curtains to caves.

And so it really is just going from basic studies of RNA to understanding that you could use a particular kind of RNA as a tool to find out something about microbes, and then from there realizing that the microbial communities themselves could be used as a tool to find out about different environmental conditions, including the conditions within our own bodies.

[Damien Blenkinsopp]: Great, great, thank you.

[06:52] For some of the people at home, they might not understand what RNA is in reference to DNA, and how that works. Could you give a quick overview of what the mechanism for RNA is, and what role it plays in our bodies and the other things that you’ve been talking about.

[Rob Knight]: Sure, absolutely. So I think everyone’s familiar with the idea that DNA is the genetic material we use that passes down from one generation to the next. So, the proteins are most of the catalysts that do reactions in our bodies, most of the structural elements. So what happens is the DNA gets transcribed into RNA, ribonucleic acid, which is chemically relatively similar to DNA. And then the RNA gets translated into proteins.

But there are some kinds of RNA that don’t get translated, and have a function that is of themselves. One really important kind of RNA is ribosomal RNA that actually makes up the factory in the cell, the ribosome, that makes the proteins. And so because it plays such an important role in life, you can detect similarities in those even between very distantly related organisms.

So similarities even between us and bacteria. And so you can use that molecule to reconstruct the evolutionary tree that relates all of those organisms together, based on the similarities and differences in the sequence.

[08:04][Damien Blenkinsopp]: Great. So then you, from those studies, you started working to look at the bacteria, because you saw that they had a pretty important role, and that there was a lot of similarities between the things you were studying. On a human level and in the animal level, could you tell us a little bit about what it was that kind of pushed you to look more at the microbiome?

[Rob Knight]: Yeah, sure.

Originally the tools that I was developing together with Cathy Lozupone, then a very talented graduate student from my lab but now a faculty member of the University of Colorado Health Science in Denver. Initially we were just looking at tools to compare microbial communities out there in the environment.

So looking at the effects of things like salinity and pH as the chemical factors, of drivers, for how microbes are different in different places, like different samples of soil, sea water, or other communities like that. And so at the time we thought that maybe the microbes associated with the body wouldn’t be that interesting, because at the time there was fairly heavy bias towards the idea that most people probably have the same microbes, because if you grow them on a Petri dish, you get more or less the same thing from everybody.

But it turns out there’s a huge number of microbes in there, even in our own bodies, that we don’t yet know how to culture. And as a result, when you look at them with these culture independent, they are directly sequencing the DNA that codes these ribosomal RNA genes. And figuring out what’s in the communities directly you see all this diversity in the human microbiome that no one ever suspected was there.

So, we started doing this in mice, actually, in collaboration with Dr. Jeffery I. Gordon, he’s a physician at Washington University, a gastroenterologist. He was really interested in looking at links between microbes in obesity. So we started with mice, then moved up to humans. And then increasingly we’ve been interested in looking at the microbiome not as a static system, but as a dynamic system. So looking at how it changes over time, both in health and in disease.

[09:53][Damien Blenkinsopp]: Great, great. Thank you very much. And of course you are a co-founder of a project, which is being designed to explore the microbiome in America, of the population in America. What kind of latest update of American Gut, and what you’ve been doing there?

[Rob Knight]: Let me give you just a little back-story to that project. So, before American Gut, we were involved in the Human Microbiome Project, which was a very large scale NIH funded initiative, 173 million dollars to characterize what the microbes look like in healthy people. And with their whole microbiome, is there a lot of variation person to person, and how does it vary in different parts of the body.

So during that process, and in part because of technology that was developed, during the Human Microbiome Project DNA sequencing and tools to analyze the DNA sequences made the whole process dramatically cheaper. So essentially we wondered can we bring this technology to members of the general public, using the tools that we were able to develop during the Human Microbiome Project, to essentially allow anyone who was interested in finding out about their own microbiomes to be able to do that at a reasonable cost.

Jeff Leach and I launched as a collaboration between the Earth Microbiome Project and the Human Food Project. The crowd funded initiative where basically it’s donation supporters. And people can find out directly about swabs from their gut, and how it compares to the gut microbes of other people around America, or around the world, especially including the people who were analyzed in the Human Microbiome Project.

And also including people in Africa and South America, and soon people in Asia, to try to compare what the microbes look like, and how do they relate to health and disease.

So, unlike the Human Microbiome Project, where there were very rigorous exclusion criteria, so you could only participate if you were certified by a physician as being extremely healthy, in American Gut, we are interested in anyone, essentially to see what kinds of microbiome configurations are out there in the wild when you give everybody the opportunity to participate.

[Damien Blenkinsopp]: Great, great. That’s a great back-story.

[11:54] What’s the number of samples that you’ve collected to date? You said it’s called American Gut, but it sounds like it’s not just focused on America now, that it’s spread out and it’s available to more widely internationally. Is that correct?

[Rob Knight]: Yeah, that’s correct. So it’s relatively expensive to pass inspection internationally because the shipping regulations are fairly burdensome. So what we’ve been doing is we’ve been launching spin-offs in other countries. And so we started with Australian Gut, and with British Gut essentially because it’s a lot easier to translate all the instructions from English into English, rather than to tackle those translation issues.

But we’re hoping to expand to a lot of other countries. And at the moment with the transition from the University of Colorado to the University of California, we’re essentially in a holding path, and at the moment waiting for AMX approval. But we’re hoping to scale up the project dramatically, and greatly facilitate the ability for people all over the world to participate.

[Damien Blenkinsopp]: Which approval did you say you were waiting for? Was it an academic program approval?

[Rob Knight]: Institutional Review Board Approval. So in order to ensure that the project was conducted ethically and that the results that we get are going to be meaningful, everything we do in American Gut has been approved by Institutional Review Boards from the beginning.

I moved from the University of Colorado to the University of California right at the beginning of this year. What’s happening right at the moment is we’re waiting for the ethics approvals to be transferred from one institution to another, which can take a lot of time.

[Damien Blenkinsopp]: Right, right. Got it.

[13:19] How many samples have you collected to date for the project?

[Rob Knight]: We’ve released data from about 4500 samples. We’ve sent out about 9,000 kits. We have about another 1500 samples in hand that we’re just waiting for that ethics approval to be able to move forward on sequencing.

So, for anyone who’s listening, if you’re wondering where your results are, we’ll be able to get them out pretty soon. We just need to make sure that everything is completely compliant with all the regulations that apply to the Human Subject Research in the United States. Just to make sure that everything is completely above board.

[Damien Blenkinsopp]: Excellent. So, has any analysis come out of it, or insights yet that you’ve been able to do?

[Rob Knight]: Yeah, absolutely. So one thing that was exciting about it, or already, in the Human Microbiome Project, this paper, which came out in Nature in 2012, we looked at about 250 healthy subjects. So I think we reported data for 242 where there was information from all body sites.

So you have about 250 people involved in that project. Versus American Gut, where you have thousands of people involved. As a result, with a much larger population size we have much more statistical power to look at subtle effects.

And we also put on the questionnaire all sorts of things that were considered too crazy to ask in the HMP. But in the intervening time we’ve discovered so much more about what the microbiome does, especially in a range of different animal models. And it seemed a lot less crazy to ask those questions in 2012 than it did in 2008.

As a result, we’ve been able to see associations between the microbiome, and all kinds of things you might not have expected. So you might have expected that how old you are affects the microbiome, which it does, but you might not have expected that, for example, how much sleep you say you get a night is also linked to the microbiome. And we see a statistically significant effect of that.

Similarly, you might have expected that how much alcohol you drink affects the microbiome, but you might not have expected that we can also pick up a difference based on how much you exercise. Or I should say how much you say you exercise, because all of this is reported data. But how much you say you exercise, even whether you say you do it indoors or outdoors, has an effect.

So we’re really picking up a lot of interesting associations. And what we’re hoping to do in the next stage of the project is to take a bunch of these associations and turn them into something where we can start to get causality. So what we’d love to know, if we see in association with alcohol and an association with exercise, or with sleep or with any of these other things, is to actually encourage people to change what they’re doing in those respects, or you know more obvious things like diet, or antibiotics.

Where the idea is that if you take a sample before you have a change in any of those things, and then you have the change and then you take another sample again after. Can we start figuring out which of those changes are actually caused by those different lifestyle things that you could be doing. This is watching simply effect.

[Damien Blenkinsopp]: Right, because a lot of when we’re thinking about the microbiome, and –just to make sure I’m correct here — you’re just looking at the gut, right? The microbiome of the gut?

[Rob Knight]: Well, actually with American Gut you can look at the microbiome. So most people are looking at their gut biome, but it’s also interesting to look at other body sites. We have been sending out a number of batches of kits that allow you to sample multiple sites simultaneously.

So another project we’re doing, we’ve been looking at skin. So for example, we had a very interesting paper that came out in PNE of last week with Pieter Dorrestein doing very high resolution maps of the skin in relation to the microbes, to the metabolites. And then there’s also a lot of interest in the oral microbiome, the vaginal microbiome, and so on.

So, although the gut microbiome is where most attention has been focused, there is a lot of interest potentially in looking at other body sites. And linking them not just to health effects of that site, but also to all over the body. So for example the gut microbiome has been linked to asthma and to rheumatoid arthritis, and to cardiovascular disease, all of which takes place in sites outside the gut, but are nonetheless affected by the microbiome.

And it’s entirely possible that, for example, the oral microbiome, or the skin microbiome might also be having systemic effects we’re only just beginning to understand. Whether it’s through interactions with the immune system or through release of particular metabolites, or other mechanisms.

[17:32][Damien Blenkinsopp]: Maybe it’s too early to say this, but have you seen anything that would indicate that the microbiomes are related to each other, in terms of if you have a different gut microbiome it may influence or be influenced somehow by the fact that your nose or your skin biome is different also?

[Rob Knight]: Well that’s a very interesting and controversial question. So actually, the fifth Human Microbiome Project main papers, which said that there are statistically significant but relatively weak associations between the different body sites, and then later that’s been confirmed by other researchers using different statistical methods.

At the moment there’s a lot of debate about how strong the associations are, and what effects they have on health when you’re looking at the overall configurations. But certainly some individual organisms that are very interesting. So, for example, Dan Littman at NYU has shown some very nice work linking Prevotella in the guts to rheumatoid arthritis. And so we’ll probably see a number of other associations like that with specific organisms at one site having unlikely effects on what happens, what helps with other sites in the body.

[Damien Blenkinsopp]: Very, very interesting.

I think the surprising thing for a lot of people of what you just said is that there are a lot of lifestyle factors not related to diet. Because we normally think of the biome, and especially the gut biome, being immediately related to our diet, and what do we eat, but [not] a lot of things you mentioned, sleep, age, exercise. And you said exercise indoors or outdoors can be different as well, is that correct?

[Rob Knight]: Correct, yeah.

[Damien Blenkinsopp]: So you know, it’s very interesting. These small changes in your lifestyle, nothing to do with diet, can have significant impact on the gut also, which we haven’t looked at.

[Rob Knight]: Sure, although I should clarify that long term diet has the largest effect that we’ve seen. The work with Gary Wu and others at Penn came out in 2011 in Science. What we saw there is this long-term dietary pattern had a profound effect on the gut microbiome, especially changing the ratio of Prevotella to Bacteroides, two of the major taxa in the gut. And only changing the overall configuration, more than essentially anything else.

So the only thing we’ve seen that gives you comparable changes is either antibiotics or acute infection with some kinds of pathogens. Like C. diff, for example, has a very large effect on your gut microbial community. So long term diet is really very important.

Short term diets, unless it’s something really extreme, is a lot less important than what we see in long term diet. This was maybe consistent with people’s experiences with going on a diet for a short period, losing some weight, but then going off the diet and bouncing back again. In general your microbiome is very resilient.

[20:05]Damien Blenkinsopp]: This comes to the topic of variability of the microbiome over time.

I did see one presentation of yours where you were showing the biome of a newborn baby, actually, as it was growing up. And you’re showing the changes at that stage of its life, which were quite significant at that stage. But for adults who are fully developed, in our day to day, week to week lives, are our microbiomes changing significantly? Or are they very, very stable?

[Rob Knight]: Both of those are true. So, our microbiomes change statistically significantly one day to the next. And especially when we do things like travel or take antibiotics, or if we have a chronic, immunologically associated disease. Like, for example, inflammatory bowel disease, or rheumatoid arthritis, or other conditions where there’s a lot of variability in whether you’re in remission or whether you’re having a relapse.

There can be fairly large changes there, but typically small compared to the differences between different people. So we tend to be stable in terms of, especially if we’re healthy and there’s nothing particular going on, we tend to be stable in the sense that we’re more similar to ourselves day to day than we are to other people.

But that doesn’t mean that you can’t detect the differences one day to the next. And so a very interesting question at the moment is what is the significant of those day to day fluctuations? Might it actually be more important how much you vary than what your current state is right now. And that’s one of the things that we’re just starting to investigate at the moment.

[21:29][Damien Blenkinsopp]: Yes, and in terms of how meaningful data would be for someone who’s collecting it for themselves, if they take one sample and they get one reading is that meaningful to them? Or would you suggest they take one this week, and one next week. How would you go about making sure you have something representative?

[Rob Knight]: Right. Well having one sample is certainly a lot better than having no samples, in terms of getting some information about what’s in your gut. Because even having one sample is going to do a tremendous amount to place yourself on the microbial map, relative to other people.

The question about how frequently you should sample and how many samples you should take to get a baseline, that’s something that’s actually a very active research topic at the moment. And we have collaborations with a number of different investigators exploring that in different contexts.

So, for example, one thing we’ve been doing is work supported by the Crohn’s & Colitis Foundation of America with Hans Herfarth and Balfour Sartor of the University of North Carolina, where we’re trying to address exactly that clinical question. If you have patients with IBD should you sample daily, should you sample weekly. So how does that compare to what you should do in healthy controls.

Unfortunately, the only way we can assess that baseline data is to take very frequent samples. And it’s difficult to get people to do that. So for example, I’ve been collecting my own samples daily for over six years now. It’s relatively difficult to get people to come up to that kind of level of commitment.

[22:50][Damien Blenkinsopp]: So, I’m interested. What kind of insights have you learned about yourself from that n=1?

[Rob Knight]: As you know it’s always relatively difficult to draw conclusions from a sample size of one, but it does look like things like travel have a fairly large effect. We’ve seen that for a number of different locations.

So I should clarify that only about the first two years of that have been sequenced so far. Most of the rest are in a queue for processing, but it keeps getting bumped due to things like making sure we get the American Gut results and so on. The rest of the time series is currently pending.

We’ve done the DNA extraction so that’s currently pending sequencing. And some of the things that we’re going to be really interested to follow up on, having a time series that goes that long is, for example, the seasonality effects that we seen in American Gut. And we see those even within one individual. Because if you can repeat that for many years, then you can start to see systematic patterns.

I’ll tell you about some results from another study, which is one by Lawrence David and Eric Alm at MIT, where they sampled themselves daily for a year and collected a very large number of auxiliary variables. I think they collected over 100 variables every day, including everything they ate. All kinds of things like how much exercise they did, how much they slept, and so on.

And they found very few systematic associations. So, for example, about the only thing they saw in diet was citrus, which had a significant effect, whereas many other things that they recorded did not. And they also saw associations with travel, and associations with getting GI illnesses. And that was about it.

So, I think the issue is that a lot of the effects, although they might be important, they’re probably subtle and cumulative. And so although you’re going to get very interesting information from some of these n=1 studies, like this study. And by Larry Snar here at UCSD has been doing looking at his own gut in the context of IBD, in the context of my studies myself.

Although there’s going to be some interesting stories that come out of them, those are going to be most interesting in terms of the technology development, of asking how frequently should you sample to establish a baseline, and over what interval to you need to sample to get a decent view of dynamics.

But we did a study with Noah Fierer and Rob Dunn, Greg Caporaso that came out in Genome Biology towards the end of last year looking in healthy students at the variation of the gut microbiome over the course of the semester. One thing that was very interesting about that, looking at weekly samples, was the variability itself seemed to be very important for relating to the variables that we had about each subject, and each sample.

And so it’s entirely possible that the variability itself was going to wind up being really important. But of course, it’s also a lot more difficult and a lot more expensive to look at than just looking at a single snapshot. And so the single snapshots are still very valuable, I meant to say, even though you could potentially get more information by looking at the dynamics than you would from a single snapshot.

It’s like having a video of an event can often be very informative, but that doesn’t mean that photography has vanished as a discipline despite the fact that we all carry around little video cameras on our cellphones.

[26:08] [Damien Blenkinsopp]: Great.

So in terms of the variability, is it looking that that’s a positive or a negative association? Maybe you can’t really call it yet, but have you got an idea on which way it would be going? Like, for instance, is it potentially that the microbiomes when it’s healthy it’s able to adapt a lot more to the day to day situation, travel and all those things, so it would vary more. Or have you got any insight on that yet, or ideas on which way it might go?

[Rob Knight]: Yes.

So we don’t really have enough information at this point, and as you say it could go either way. Either you might want to see a fair amount of flexibility in your microbiome to be able to adapt to different circumstances, or you might want to see more resilience, and if it’s wandering all over the place it’s more likely to fall off a cliff, and to input the community configuration.

Right now we don’t have the basis to discriminate between those two. Most of the variability studies have been done at baseline in healthy people, and that doesn’t necessarily let you conclude anything about disease.

Most of the disease studies have looked at a relatively small number of samples. Often just a single sample where you’re looking at a case controlled paradigm where you round up some healthy people, round up some sick people, and you look at the differences at that state. So, really we’re waiting for the right kinds of studies to be done for variability in these diseased populations.

[Damien Blenkinsopp]: Great, thank you very much. I mean, we could get a couple of guidelines, just for people who are already using American Gut or one of the other services.

[27:26] I’m actually just about to take some antibiotics, for instance, so I’ve got a kit I intend to use, and then once the course is finished I intend to use it again. And actually based on your presentation, I intend to do one 30 days later to see if it will recover. Is that something reasonable as a baseline experiment? Just to see what’s going on.

[Rob Knight]: Yeah, that’s certainly very reasonable.

You might want to look at Dave Relman’s paper, it came out in Pathobiology a few years ago. And what he had there was three subjects who were taking ciprofloxacin from a healthy baseline, and they measured how long it took them to come back.

What was interesting about that is three people, they all responded totally differently. But then it’s kind of difficult to figure out what you should say about that, because the sample size is only three, and they all responded very differently from one another. But it’s certainly reasonable.

One thing that’s very interesting at the moment is the concept that maybe you should freeze your stool before you take the antibiotics, so that you could potentially replenish the members of your community. And again I should point out that that’s still in its very early stages as a therapy. This is not medical advice or anything.

But the concept that you might want to have that material available in case we figure out how to replenish your microbes from it later, kind of the way people are saving their cold blood for the stem cells. It’s certainly very interesting, and has a lot of potential.

And of course, right, you’ll be hoping for is that in the relatively near future – and there’s a lot of companies and a lot of academic research groups interested in this now – the idea that you might not actually have to take the stool itself, but rather isolate just a few of the beneficial microbes from it, encapsulate those into a pill and swallow those, for example. That’s shaping up to some very interesting research direction, although at this point it is very much in the lab and not in the clinic.

[Damien Blenkinsopp]: It does sound safer, also compared to the current fecal transplants. I think one of the concerns of fecal transplants is we don’t really know what’s in them.

[Rob Knight]: Yeah, that’s exactly it.

[Damien Blenkinsopp]: You know, because just the state of technologically today.

While you might make someone better in some extreme cases, like C. difficile, obviously that’s helpful. But for someone else who has maybe taken a lot of antibiotics and they had gut issues, to take a fecal transplant could be seen as a little bit extreme, as currently we’re not exactly sure what’s in it, and we could be putting something in there that we’ll discover later is not such a good thing.

[Rob Knight]: Yes, that’s certainly a concern. I’m on the science advisory board for the American Gastroenterological Association’s Microbiome Center, and one thing we’re actively trying to set up is a long term registry for fecal microbiome transplant, essentially so that we can track people who’ve had them over time, and make sure that it remains effective.

So for Clostridium difficile associated disease, it’s remarkable effective. Like 90 to 95 percent effective in many different studies. And the last large scale study comparing it to antibiotics for C. diff actually had to be stopped early because the people who got the FMT were responding so well that it was unethical to continue withholding FMT from the people who were on the antibiotics.

So, how widely that’s going to work for other conditions, we don’t really know. One thing you can do for antibiotic associated diarrhea that’s very effective is probiotics. There’s a number of different ones that are now pretty well supported by clinical trials at reducing both the severity and duration of antibiotic diarrhea.

And so in general, it’s not because the organisms themselves are establishing in your gut, but they’re creative a favorable environment where they can crowd out the weeds, like the proteobacteria and things that often come back after antibiotics. And essentially they’re creating more favorable conditions for your own microbes to come back.

[Damien Blenkinsopp]: Great.

[31:06] So, to kind of backtrack a bit. So in the presentation I saw, you saw after the antibiotic treatment, which was a baby with earache I believe it was, the microbiome pretty much came back to where it was before.

[Rob Knight]: Yup. But remember that’s an n=1 study, because we just had one kid in there. Yup.

[Damien Blenkinsopp]: So is that a possibility for some? We always talk about antibiotics like it could be potentially permanent. Because everyone’s pretty concerned. I’m pretty concerned when I’m going on a course of antibiotics now what kind of impact down the line is it going to have.

But it seems like it can depend on the severity, because antibiotics are used in many different cases. They can be used for a couple of days in some cases, sometimes, and there’s lots of different forms of antibiotics, which have different impacts as well, and potentially more severe or less severe.

It seems that in some cases the microbiome may be able to recover, and in other cases it’s not able to fully recover, and it’s quite variable for the moment, I’m guessing. Or do you have any insights as to the insights of antibiotics and how it varies?

[Rob Knight]: Basically what we know at this point is that different antibiotics have very different specificities, so they’ll target different bugs when they’re growing in the lab in isolation. We know a lot less about what effects the antibiotics have in more complex settings. And so the same microbe might only be targeted by antibiotics in some stages in it’s growth cycle.

And so Pete Turnbaugh, he’s now at UCSF but did this work while he was at Harvard, did some very interesting research looking at the effects of the same antibiotics microbes in different communities, that had come from different individual people. And so what he found is even if you have the same microbe, whether the same antibiotics would target that microbe depends a lot on who it came from.

And that’s very interesting. It just suggests that there’s a lot of complexity that we don’t understand at this point about how microbes are going to be targeted by a particular antibiotic, or will escape that depending on what other microbes are around. Depending on whether it’s expanding its population or contracting it, and all kinds of other factors.

So I think we’re just right at the beginning of understanding what’s going on in the complex situation of the human body itself.

[Damien Blenkinsopp]: Yes, absolutely.

[33:16] I think a bit of context to that is if you look at the size of DNA in our genetics versus the microbiome, right the microbiome is a lot bigger, and we don’t fully understand DNA yet. So, basically is it a much bigger task to understand the microbiome?

[Rob Knight]: Yes, it’s a tremendously more complex task. So each of us has about 20,000 human genes, but the size of the microbial gene catalog is somewhere between 2 and 20 million. So, by that measure you could say that we’re only about one percent human, and about 99 percent microbial in terms of the gene counts that we’re carrying around with us.

And so, on the one hand understanding it is tremendously complicated. On the other hand, if you look at other fields where there’s tremendous complexity, like say nutrition for example, but if you ran a potato through the mass spec you’d see all these compounds that you’ve never seen before, and that you don’t understand, and that don’t appear in any catalog from any chemical company. On the other hand, that doesn’t mean that we don’t know a fair amount about what happens if you rely on potatoes as your main food source.

And additionally, if you look at, for example, a lot of chronic diseases from a century ago, so things like rickets, goiters, and so on. A lot of those kind of diseases have just been completely eliminated by knowing that there’s some nutrient that if you give it to the whole population, like for example iodine in salts or fortifying milk with vitamin D, fortifying flour with thiamin, and so on, you can just eradicate these diseases from the whole population.

And so, in the same way it’s going to take us a long time to understand the microbiome, but it might not take that long before we understand how replenishing some of these microbes might potentially be really important for addressing some of the chronic diseases that affect us now, including many of the chronic diseases still linked to the immune system.

[35:11][Damien Blenkinsopp]: Great, great. And there are also macro levels. It’s a pretty good example, I think, you just gave nutrition, because we look at the macros and there’s lots of discussions about proteins, fat, and carbohydrate breakdown in diets. And in the same way there’s macro levels of our microbiome, right? There’s groups of Firmicutes and Bacteroidetes and others on a macro level, which I guess you could see patterns with those as well, and don’t necessarily have to dig down to the fine levels.

[Rob Knight]: Yes. That’s exactly right. Although in the same way that micronutrients are really important, some of the rare organisms might be really important.

And a useful analogy is something like Yellowstone National Park, where the reintroduction of wolves caused a profound change to the ecosystem. But if you go to the park – and not without, but you’d never get permission to do this right – but if you went to the park, and you round up say a cubic kilometer of material and then run that through DNA sequencing, you wouldn’t find a lot of wolf DNA.

And the reason why we know their important is you know people shot them all and the ecosystem changed, and they reintroduced them and the ecosystem changed again. So on the one hand, what technology is that we have right now, we’re probably missing the equivalent of the microbial wolf that could be playing really important roles.

On the other hand, if you were trying to understand that ecosystem, you’d be crazy to ignore the pine trees and the bison and the other really abundant taxa as well. So you can tell a lot looking at what’s common as well as needing to know what’s rare to fully understand the system. But I think we’ll be able to do a lot with the understand that we have now.

And it’s important to remember that that understanding has increased dramatically just in the last decade. So in 2005 it was a major achievement to sequence the gut microbial communities out of three people. And that was expanded by a fifth to hundreds of people, and then to thousands of people. And we’re just getting a much broader picture of what kind of microbes are in there, and what their roles are in responding to different things.

And so, the idea that you might be able to look at the microbes in somebody every single day for a year, would have been an impossible dream in 2005 but the technology has gotten so much better that it’s been done for a number of people now. And the prospects for developing further technology to open that up to the whole population I think will totally transform what we can know about microbial sides of yourself.

So, being able to push that additional technology development forward I think is one of the most critical things we can do at this point.

[Damien Blenkinsopp]: Excellent, thank you very much.

[37:44] One of the things we kind of skipped over but I thought might be interesting for the audience is you spoke about probiotics being useful in connection with the antibiotics treatment, and specific types of probiotics.

Do you know specifically what those are? Or could you point us to any papers which highlighted those? And in terms of the timing, do you take them while on the antibiotics, or is it a post treatment?

[Rob Knight]: The different studies that have been done at the moment haven’t really had a lot of consistency in methodology, so it’s difficult to make specific recommendations. It’s a fairly complex topic. I cover this in a reasonable amount of detail in my book, Follow Your Guts, which is just coming out tomorrow. But essentially I give a few examples of pointers to studies that have been focused on individual probiotics that have shown to be effective for particular conditions.

So one thing to remember with this is although there’s a tremendous amount of enthusiasm to probiotics and they’re very widely available, most of the specific products don’t have any particular evidence backing them. And so it can be a bit daunting to wade through the literature and try to find the ones that are actually supported by clinical trial data.

At the moment, at least to my knowledge, there’s no really good resource that summarizes the clinical trial information to tell you what species, what strains, and what products containing those strains have actually been shown to be effective. Although that’s something that’s a clear opportunity, where if someone sets it up that will be tremendously valuable for the public, especially given the level of enthusiasm.

One problem at the moment is, in the US at least, that the FDA’s official stance is that a dietary supplement can’t modify a disease endpoint. So as a result, if you find that your product actually does modify a disease endpoint, then it gets re-regulated as a drug, and so the manufacturing standards are certainly much more stringent.

And so if you want your yogurt with live and active cultures to continue to be a buck or two a cup, rather than being a thousand bucks a cap, which is about what it would cost if you had to manufacture it as biologic, there’s that issue to consider as well. So, that’s also a substantial problem for research in this area.

[Damien Blenkinsopp]: Right, so again, in that case we’re kind of hoping that no one tries to do clinical trials with the probiotics in products. It’s kind of no-win situation in that respect.

[Rob Knight]: Well it is a bit of an issue. It’s sort of like the issue with dietary supplements for athletic performance. So any time one tends to actually be effective, like say steroids, for example, it gets banned immediately. So you can draw your own conclusions about the effectiveness of the ones that are still on the market.

[Damien Blenkinsopp]: I guess one of the nicer things about that is currently when we take antibiotics it’s not really acknowledged that it causes any specific disease, although people may have gut upsets and any issues like that.

So I guess if these supplements continued to be marketed, and perhaps trials are just done on the basis of changing microbiome, that wouldn’t interfere because it’s not a disease endpoint. A specific disease endpoint, as I understand it, would be a specific classified disease, which is currently basically regulated today. So as long as they stay out of those disease areas, is it not a problem?

[Rob Knight]: Yeah, that’s exactly right. And that’s in part why as a consumer, it’s often very frustrating to see what claims are being made because those claims are now typically very carefully worded and very carefully negotiated.

[41:05][Damien Blenkinsopp]: So I know that you’re also involved in the Ancestral Microbiome Project.

[Rob Knight]: Uh-huh

[Damien Blenkinsopp]: Could you give us a quick update on how far you’ve got with that, and also what it is for the people at home.

[Rob Knight]: Sure, absolutely.

So the goal of this project is essentially to compare the microbiomes of different people living relatively isolated lifestyles and seeing whether they contain microbes that we as Westerners have lost with the hygiene or antibiotics. Or diets perhaps, that cause us to lose some of those kinds of microbes that could be beneficial.

There was a paper that just came out two weeks ago led by Cecil Lewis at the University of Oklahoma on the Matses who are a group of hunter-gatherers in Peru. There’s another one coming out soon that I can’t tell you about because it’s embargoed. But there’s some ongoing work that we’re doing with the Hadza in Tanzania, and the project that’s led by Jeff Leach.

So the Hadza are the last hunter-gatherers in East Africa in the Rift Valley where, of course, humanity evolved. So they’re the last group that’s still exposed to the microbes and to the mammals and to the plants that we would have evolved with during our early evolution. And so they’re very exciting to look at from that standpoint.

But basically the idea is to compare different groups and to understand first there’s still anything that they have in common that we might have lost more recently. And then the second thing is that try to understand similarities and differences in different human populations in terms of their microbiomes and how those microbes relate to different lifestyle features, to human genetics and to other factors.

It’s going to be incredibly fascinating from a science point of view. And from the point of view trying to figure out how our microbiomes should be shaped to optimize health.

[Damien Blenkinsopp]: Yeah, this is great.

I understand that Jeff — have you spent time with the Hadza as well, or has it just been Jeff that’s spent the time with the tribe?

[Rob Knight]: I went there for a week last year. It was just a spectacular experience.

[Damien Blenkinsopp]: I understand that Jeff, at least just spending time there, his microbiome changed. And he also used a fecal transplant from the Hadza to see a more extreme change.

But what I thought was interesting was just living amongst them and spending time with them, he saw some changes in his microbiome also. But I guess you haven’t had your sequenced yet, but potentially over that week you would have seen the same changes.

[Rob Knight]: Possibly. We don’t have the sequence data for that, although that would certainly be interesting to look at.

I should note that’s also true if you start living with a new partner, for example. You’ll converge on their microbiomes relatively rapidly. And one thing of interest at the moment is trying to figure out how much your microbiome records about the people you’ve lived with and the places that you’ve lived.

We don’t really know the answer to that at this point, but it’s certainly interesting to think about.

[Damien Blenkinsopp]: Well it is, just from a health perspective as well. Especially as it’s getting quite common to have IBS and things like that these days. It kind of makes you question these kind of things. How communicable is it, or not? I guess there’s a lot.

[Rob Knight]: Yeah, that’s a great question. I don’t [think] there’s been done a lot on communicability of IBS, but there are some probiotics that have done pretty well in clinical trials for IBS.

[Damien Blenkinsopp]: Yeah. So we’ve got a solution anyway.

[Rob Knight]: Yeah, and it has been linked to the microbiome by a number of different studies including some work we did with [unclear 44:25]. So yeah, it’s definitely a fascinating area. And the potential that some of these conditions could have microbial cures as well as microbial causes is very interesting.

[Damien Blenkinsopp]: Great, thank you very much Rob.

[44:40] So what are the best ways for people to connect with you, and learn more about you and your work?

[Rob Dunn]: Well, my TED Talk is a really good starting point. There’s a book associated with that Talk called Follow Your Gut, which is going on sale tomorrow actually.

[Damien Blenkinsopp]: Is that on Amazon?

[Rob Knight]: Through Amazon, and also I think it’s available as an iBook through the Apple Store. That’s a good way to find out more. It’s a relatively short book. The idea is to make it a friendly general introduction rather than going into a lot of technical detail about a whole lot of names that you’ve never heard about.

And also it’s got an Appendix that gives you a good overview of how you should interpret your American Gut results, and what things you can and can’t learn at this stage, and what we hope to be able to find out from us in the future.

[Damien Blenkinsopp]: Great, we’ll put links to all those in the show notes.

[45:22] Are there any other good books or presentations for people interested in the microbiome in general, and learning more about it? Are there any references that you commonly give out to people, which are good resources to check out?

[Rob Knight]: Yeah, Marty Blaser’s book. So Marty Blaser’s book Missing Microbes is fantastic, and really gets into a lot of detail about how hygiene and antibiotics may have led to the rise of a lot of autoimmune diseases, and other chronic diseases that are a problem today. And also one specifically about the dangers of over prescription of antibiotics. So I definitely recommend that one.

Ed Yong’s blog, Not Exactly Rocket Science, routinely covers microbiome topics. As do Carl Zimmer’s columns. Michael Pollan wrote a very nice piece in the New York Times in 2012 called “Some of My Best Friends are Germs,” and he’s continued to cover the microbiome on and off since then. Those pieces are all very good.

Jonathan Eisen and Jessica Green both have talks that are available through TED. Jonathan’s talk gives a very good introduction to what microbes are and what they do out there in the world. And Jessica’s features, it’s focused more on the built environment. And it’s talking about the relationship between the microbes in our bodies, and in the spaces we inhabit, and how we might want to design buildings that are green not just in terms of the plants, but also in terms of the microbes. So not just energy, but also microbial use.

So those would be some really good places to start. There’s definitely a lot of more technical resources out there, but you can probably get to those from the ones that I mentioned. And especially the references in Marty’s book and in my book are a good place to get started with more technical material.

[Damien Blenkinsopp]: Great, thank you so much for that. That’s very extensive, clearly.

[47:11] So I’m also interested what your personal approach is to body data, whether it’s for your health, your longevity, or your performance. Do you track and metrics or biomarkers for your own body on a routine basis?

You’ve already said that you take stool samples every single day. Is there anything else you do? And those stool samples, just by the way, for instance if you go to the toilet twice per day, do you take two stool samples, or are you taking one per day?

[Rob Knight]: Initially I was taking one per day, and I’m trying to capture all of them to the extent possible.

So in terms of auxiliary data I must admit that I’m not nearly as diligent as some other people who are interested in this sort of thing have been at tracking every single thing they’re doing every day. In part that’s informed by some of the studies where people have tracked a tremendous number of measures and not seen a lot. So that’s been relatively difficult to justify that level of additional time commitment.

Mostly what I’m tracking are things like, so periodically I’ll do a food and dietary inventory. Tracking things like travel is important. I would track medications except I essentially haven’t had any during that interval. But it’s the sort of thing that I would keep track of if it became relevant. That kind of thing.

[Damien Blenkinsopp]: Great, great. I’m guessing that most of these things are something that you’re doing in the realm of science, because you’re exploring the specific subject.

Do you think you would control for any of these if you weren’t involved in the science itself, out of a personal interest? How would you kind of modify that, if you weren’t currently studying you as an n=1 experiment to further the science? On a personal level, what kind of things do you think you would be doing?

[Rob Knight]: All kinds of things are interesting, it’s just a matter of how much time you’re willing to put into it, and how much money. So it would be very interesting to do blood and urine metabolites frequently, perhaps even daily.

It would be very interesting to get finer grade resolution on fitness, like with an activity tracker, that kind of thing. Given what we’re now starting to find out about brain microbe links it might be really interesting to, for example, track EEG readings over time and draw those microbial data.

You could even imagine doing like an MRI of yourself every day to see whether that complex multifarious specs tracks what the multifarious specs to find biomarker biome. Although that’s definitely a level of efforts and expense that it’s just not worth it at this point.

But what I think this is one of these things where the more data you have, the more potential you have to find out something really interesting that you wouldn’t have expected.

[Damien Blenkinsopp]: Great, thank you so much.

[49:44] The last question, what would be your number one recommendation to someone who is trying to use data in their life for better decisions about their health, their performance, or longevity? Something about their body. What would be your number one recommendation on how to use data effectively?

[Rob Knight]: There are a lot of different ways that could answer that question, but I guess my number one recommendation would be that what’s in the literature, like randomized controlled trials about what works and what doesn’t, are probably a really good guide as to what you should do initially.

Now, you might want to modify that based on observations of your own body, because anything that’s in the literature has got to be based on population averages. And one thing we know about people is that there are tremendous amounts of variability. So what works on average in the clinical trial is not necessarily going to be what works for you individually.

So, start with solid evidence from clinical trials, especially randomized placebo controlled trials, and then modify that based on your own observations about your own health whether it’s meticulously recorded, and you have over a long enough period of time that you have reproducible observations, not just off one anecdote.

[Damien Blenkinsopp]: Thank you there for some great insights into randomized controlled studies, and the averages also, which comes up sometimes on this show. Averages don’t necessarily mean you. So thank you for reinforcing that point.

Rob, thank you also for making time available today. I really enjoyed this show. You’ve obviously got a very, very deep background in this stuff, and we covered a lot of material. Looking forward to read your book also.

[Rob Knight]: Okay, great. Well thanks Damien, and thanks again for your interest in this, and this is only going to get more exciting as we find out more and more about the microbiome.

Leave a Reply

A couple of cutting edge and very relevant quantified body topics today- quantifying the microbiome and the state of crowd science

We’re looking at the microbiome, which you probably have seen is the big new topic in the health media and news the last few years. Research is increasingly relating differences in our microbiomes to a range of disease conditions, primarily chronic and gut related ones. If you’re already buying the probiotics or prebiotics in the health store – the reason you’re doing that, is for the microbiome.

But what, if anything, do the probiotic and prebiotic products do for us? How dangerous is taking antibiotics – through changes they make to our microbiome? How does what we eat influence our microbiome?

It’s hoped that quantifying the microbiome, understanding what types of bacteria and other things make it up, will provide a lot more insights into our microbiomes – but how far has the science behind quantifying it advanced? How reliable is it? – and can it lead to us making decisions that improve our microbiomes that in turn lead to better health and less disease.

As we’ll see this is really cutting edge currently – and changing fast. But we have an excellent guest today to bring us up to date on all this.

Jessica Richman, is CEO and co-founder of uBiome. uBiome is the largest crowd science, or citizen science driven project to date. uBiome, already the most popular of the consumer microbiome services, is just about to go through a revolution thanks to recently having gained significant funding, and the backing of Y-Combinator as well as many big name investors such as Marc Andreeson and Tim Ferriss.

“The best ideas are not the ones in our building because you can’t hire everybody in the world who is thinking about your problem. The best ideas are out there in the crowd somewhere and the idea is to bring [those ideas in].”

Jessica, herself, has an impressive background having started and sold her first company in high school… and having accumulated countless scholarships and awards in academic institutions including Oxford and Stanford universities since. Her major interests include network analytics, innovation, collective intelligence, and crowd science.

The show notes, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

itunes quantified body

Show Notes

  • What the microbiome is and how it varies across our bodies.
  • The many different aspects of the microbiome (bacteriophage, fungi etc) and why uBiome provides solely data on the bacteria in your microbiome in order to deliver their service at the low $89 price point.
  • The different areas of health that the microbiome and its status and and is increasingly being linked to in research studies.
  • Different approaches to quantifying the microbiome and their accuracy: cultures vs. microarrays vs. next generation sequencing.
  • 23andMe’s model for delivering consumer based low pricing via focusing on genetic SNPs (Single Nucleotide Polymorphisms).
  • The 5 body sites that you get quantified with uBiome (the same used in the Human Biome project).
  • How uBiome is avoiding the FDA regulatory landmine that 23andMe got hit with and which forced it to cut down the information, range and depth of services they were providing to consumers.
  • Citizen science or crowd science and what it means for the future of science and potentially the medical world.
  • Comparing different sequencing methods of uBiome, American Gut and others and progress being made to one common standard.
  • What should we be aiming for in experiments we run on our biome? Diversity? different ratios of the different types of bacteria?
  • The value of getting a baseline sequencing of your microbiome now to compare with in the future (especially if you should get chronically ill in the future).
  • Do probiotics impact the microbiome? If so, how do they impact it? Conflicting anecdotes, research studies and “marketing hype” from all the probiotic supplements and foods now available.
  • Personal insights from Jessica on how what she tracks about her own body, experiments that have worked, and her top 3 recommendations for people trying to improve their bodies and health through the use of data.

Give some love to Jessica on Twitter to thank her for this interview.
Click Here to let her know you enjoyed the show!

Lab Tests and Devices in this Episode

  • uBiome Microbiome Sequencing: The lab tests discussed in this episode. These can be ordered by anyone and done from a kit sent to your home.This is a sample chart output from their interface with my sequencing showing that I have more firmicutes and less bacteroidetes than the standard person on a paleo diet:
    damien-paleo-biome
  • 23andMe: The largest and cheapest service for getting your genetic sequencing (a subset of your total genetic makeup).
  • American Gut: The other main consumer microbiome sequencing company (not for profit).
  • Ketonix: The breathe analyzer for assessing your ketone body levels and whether you are in a ketogenic state. We covered this topic in detail in a previous episode with Jimmy Moore.

Other Resources Mentioned in this Episode

Jessica Richman & uBiome

Other People, Resources and Books Mentioned

  • The Human Microbiome Project The original NIH (National Institutes of Health) funded project to first sequence the human biome between 2007 and 2012.
  • Ilumina The solution uBiome is using to do their next generation sequencing of the biome.
  • 23andMe’s regulatory conflicts with the FDA
  • Jeff Leach Jeff heads up American Gut and has published his own self experiments to change his gut and move it towards a more diverse gut microbiome by interacting with Hadza hunters from Tanzania (read about it here)
  • Chris Kresser Chris, a functional doctor who works with patients on improving their gut microbiomes, has discussed that taking probiotics doesn’t change the microbiome’s makeup, but seems to impact it in via other changes or modulatory effects.
  • Probiotic foods: Jessica says she feels better with Quest Bars, while Damien has noted anecdotal beneficial effects with this Kefir product.

Full Interview Transcript

Transcript - Click Here to Read

[Damien Blenkinsopp]: All right Jessica, thank you very much for being on the show.

[Jessica Richman]: Hi, it is great to be here. I am really grateful for the opportunity.

[Damien Blenkinsopp]: Sure. So to kick it off for you, let’s talk about what the microbiome actually is. I understand it is not just the gut. So how would you describe the microbiome?

[Jessica Richman]: The microbiome are organisms, the microorganisms, that live on or in all of us. And there are many different microbiomes in the body. I think we should take a step back first though and say why is it called the microbiome? What is a biome? So a biome is an ecological area. So in the macrobiome, the biome that we are part of – you can be part of the rainforest, or a desert, or a tundra. And these are environments in which organisms live. And in the body, the microbiome where it actually could be anywhere, not just in the human body, but the microbiome are the microenvironments live in. So if you think about it, it is very different living inside your nose than it is living on the surface of your nose. So inside your nose it is windy, it is warm, it is slightly wet, and there are immune system interactions with human cells. On the outside of your nose it is probably colds, it is dryer, it gets sunlight, there are different kinds of cells that the bacteria are interacting with and if you think about it, it is a very different type of place to live for a bacteria.

[Damien Blenkinsopp]: So you could use the analogy of looking at the world and the jungles, the deserts, and all these different kind of things living in them?

[Jessica Richman]: Exactly, right. And if you think about it the outside of your nose is much more like a desert and the inside of your nose is more like the rainforest, let’s say. It is a very wet environment for an organism to live in. So if you think about it that way, it makes sense that there are microbiomes all over your body and all these spots have very different types of organisms in them and the microorganisms are very influenced by the environment they are in and what can survive in various environments. it is very different, just like plants of the rainforest don’t do very well when they are in the desert. But microorganisms that normally live in the rainforest die off when they are put in the desert. And it is not just bacteria, of course, there are also other microorganisms.

So there are fungi and yeast and all sorts of other organisms that live there and there is this whole ecosystem that we were just never able to see until recently because now it has just become less expensive to sequence the DNA on these organisms, some of which can’t be cultured. So previously you would figure out what was living there by trying to grow it in a petri dish, but that means you have to have the right food, the right conditions, it has to be able to be grown in that kind of environment and not all organisms can be. So now we are finding out things that were just impossible to see before. So now we know more about the microbiome and we have learned that my nose, the inside of my nose, is much more like the inside of your nose than my nose is like my foot, let’s say, because these are very different environments.

Our feet have more in common – the same spot on your body but very different types of places. So the NAH funded a project called the human microbiome project which was sort of supposed to follow after the human genome project to learn about the human microbiome, and they looked at 250 people and they established a lot of the sort of basic technology for doing this. And what we do with the biome is we have scaled up that technology and made it possible for anyone to have access to the same technology to understand what is in their microbiome at various sites and then what to do about it.

[Damien Blenkinsopp]: Is this like PCR DNA analysis?

[Jessica Richman]: So it is next generation sequencing, which is – there are a number of different platforms but kind of the leading one at the moment is by a company called Illumina, and they make what is basically a camera. It is funny, we just got one, and it looks like a printer/scanner – like an HP printer/scanner combo, one of those things you buy at an office supply store. It looks like that but what you actually do is you put a tiny tube of liquid in it that has the DNA in our case of 500 different people’s microbiomes, and it is seriously a tube that is less than an inch long. And you stick it in there and it is a camera that takes pictures of each of the base pairs of the DNA as it goes along and then tells you what the base pair is. So it is really amazing technology. They have really, they have changed the world.

[Damien Blenkinsopp]: So just to be clear, is that something you are going to be using or is that what you have used to date?

[Jessica Richman]: Yeah, so that is what we use right now. So right now we do next generation sequencing and we have been sending that out to various people to get – we sort of do all the processing and they just kind of – it is kind of like sending out your printing to Kinko’s or something. You prepare the document of what should be in it, and then they do the printing part. We have now brought that in house because we have brought in some funding and we sort of have the opportunity to bring it in house, which gives us a lot more flexibility, it is lower cost, we can do things faster because it is right here. So this is the technology we have been using all along and this enables us to really, inexpensively, make consumer price points for $89 to be able to tell you exactly what is in the DNA of all the bacteria that are living in your microbiome.

[Damien Blenkinsopp]: Yeah, so what are the limitations of this? Just a minute ago you were talking about the fact that the microbiome has fungi and bacteria. Today even there are viruses, bacteriophage, viruses that infect bacteria, and all this crazy stuff that we don’t hear about but it is so super complex. So are you just looking at the bacteria aspect of it?

[Jessica Richman]: Yeah, so we have the capability to look at fungi and even to do full metagenomic sequencing, which is to look at every organism, all the DNA that is in the sample, whether it is bacterial or human or plant or from the food you have been eating or every bit of DNA that is in the sample. But we currently sell to consumers the bacteria because it is simpler, it is easier to compare, and we have more people who have those kinds of samples. But there are definitely things that we are developing for the future, products that we are developing for the future based on specific other slices of the microbiome, like fungi. And full metagenomic sequencing is really expensive – it is thousands of dollars so it is not really a good – there is this much consumer demand for that.

[Damien Blenkinsopp]: Right, so that people understand 23&Me is pretty well known and they took a similar approach. They are only scanning certain aspects of genetics.

[Jessica Richman]: Well, it is a little different. So 23&Me looks at snips. So they look at our single nucleotide polymorphisms that are specific parts of the human genome that are known to be correlated with specific research outcomes. What we do is we look at all the bacteria. So there are other technologies that some people use that are based on microarrays that will only look for certain bacteria. So instead of – it is kind of an intermediate point between a culture-based method. That is maybe too technical. With culture you say is X bacteria there, yes or no? Does it grow or not? And maybe it couldn’t grow or maybe you did it wrong, whatever so there is some fallibility built into that. With the microarray method you say are any of these 96 bacteria there? And it can check for all of them. WIth the next generation sequencing you can find everything that is there and we are selectively looking at just bacteria because it is sort of priced so that the consumers can pay.

[Damien Blenkinsopp]: And is this a selection of bacteria I assume there is going to be classification, or a library of what is known well today? Maybe there are just some things that we don’t know there. so does it see everything?

[Jessica Richman]: That’s true, yeah. Well, it is everything that is known plus all the things that we are finding. so there are some public databases of bacteria and what we have done is we have taken the public databases and then added our own and basically enhanced them and so we had it in – they are polydatabases so people upload a lot of junk to them that they think is a good idea to upload and they are not very well curated academically. So we have taken those databases and cleaned them up and streamlined them and added a bunch of things to them to make them better.

[Damien Blenkinsopp]: Yeah, I think what is coming across is that this is quite new and it is exploratory. So the human microbiome project, how long ago was that –

[Jessica Richman]: So that started in 2007 and went until 2012 and we started our company with a crowdfunding campaign, actually, two months after the human microbiome project ended. So we sort of had this – you know, my background is not in biology. It is in computer science and economics and I was doing PhD in computational social science and learning about applied math relating to social networks. And I just saw there is so much interesting information relating to biology and some of the same skills that I was learning could be applied to this new information that was coming out. So we started this project right after the human microbiome project ended. And it is really new. The human microbiome project was really groundbreaking and helped establish this whole field. and you can see the number of scientific papers that are related to the microbiome is on this exponential curve up as the human microbiome project progresses. but we decided to take this technology and bring it to the public.

[Damien Blenkinsopp]: Yeah, and so at this stage now, for the consumers, what do you think – what can they get from it, if they get their biome? First of all you have talked about microbiomes. So you do the gut, you do the nose, genitals, mouth?

[Jessica Richman]: Mouth, skin, and genitals. Those are the ones we currently do. So we have the technical capability to do other sites and we are going to be launching some products that relate to the skin, for example, between your toes and things like that. But at the moment we do those five because those are the five that were in the human microbiome project. So it sort of gave us a basis for the data and sort of sample collection procedures that have been well validated. Yeah, we sample all those microbiomes of those five different sites. Then what consumers can get out of it is they can see what is in their microbiome, first of all, and then how that compares to other people and then how it compares to existing studies of the microbiome.

So right now in our [user interface – 00:12:50], it is very nerdy. It is very [inaudible 00:12:52] from our crowdfunding campaign, but you can see what are your bacteria, how does your distribution compare to other people’s distribution of bacteria, and then you can learn a little bit about each of the bacteria that are in your sample and how they relate to existing studies, which studies involved with which bacteria we are building right now. And this should be out in the next few months, like two or three months. We are actively in the development process and this is software that will go a step further and give you much more data analysis about what is in your sample.

The cool thing about doing it now is you are basically biobanking your samples. So if you sample now it is not like it is lost and you missed your opportunity, it is the only way to sort of grab what your microbiome is like now and then as our interface gets better and as our data gets better that sample gets better but you can also compare it to future samples.

[Damien Blenkinsopp]: Right, so it is the same as genetics. Basically you will be able to re-examine that same sample and still be updated?

[Jessica Richman]: Exactly, but actually we store the data so we don’t need to re – we can resample it later if technology changes completely and we need to totally resample it we can do that. but we also have the data from that sample and let’s say you sample now and you are like, ‘Oh, that’s interesting, my bacteria are fine.’ But then six months from now you want to make a radical change in your diet and you said, you know, maybe I need to cut out dairy, I don’t know, and you try that. Then we can sample afterwards and we can show you the difference between those two things. And we will have the earlier sample so we will know what it was like before.

[Damien Blenkinsopp]: Right, so you are talking about things that influence it and I guess it is quite an important point to mention that your microbiome can change. There is a lot of emphasis on the gut these days. that is the one they talk about most in the press and stuff so i guess it is the one with the most research?

[Jessica Richman]: It is, it is the one with the most research and it is also the one with the most – it is the richest environment for bacteria and that is why the most research is done there, because it has the most bacteria of any site in your body. And also obviously because that is where you process food and waste, and it has the most biological activity relating to all parts of your body. So they found really interesting connections between that and the brain, for example, that are not what you would expect. There are really interesting relations between the microbiome and depression or autism or things that you might not expect, but they don’t say that, for example, about the nose microbiome because that is just less likely.

[Damien Blenkinsopp]: Right, so in terms of you just mentioned a few diseases and conditions – there were things like obesity mentioned, diabetes, acne, allergies. There is quite a range which are now linked in some research to the microbiome. How far along do you think that is? Do you think that has got quite a long way to go or do you think it is interesting for someone to say, who has one of these conditions, to get their microbiome done?

[Jessica Richman]: I think it is not that far off, and I probably think that because this is our field and what we are working on and we know the possibilities, that things can happen quite quickly. I think it is not that far off because we’re collecting all this information that can be useful in actually doing something about it. At the moment this is a consumer product and it is not intended to treat health conditions or diagnose health conditions, but we will have the information and when we do find something interesting we can then pursue the proper channels in making sure that it is available to people who have health conditions and need it.

[Damien Blenkinsopp]: Yeah, so I mean, you stepped on the 23&Me landmine.

[Jessica Richman]: Exactly. Well, we didn’t step on it. We were collateral damage or something.

[Damien Blenkinsopp]: So you said something very important there, it is a consumer and not a medical product. How is that evolving? Are there things that you have to do or are there limits? Can you give us an idea of how you are going to go over that?

[Jessica Richman]: We try to be really careful. And we try to be careful because we don’t want to get into the trouble that they got into, but also because there is sort of a really important public health responsibility to not give people information that is dangerous, poorly understood, that will lead them to do things that are bad for them without understanding why or mistakenly thinking they understand why. I think it is really important to do that. So we are careful to – we are sort of pursuing a two-prong strategy.

One is for things that involve diet, wellness, health, and people’s curiosity about science that is fairly safe in my view. And then things that involve serious health conditions, we are being much more careful with that and we want to make sure we have much more validated information and that we go through the right channels and that people have expert consultation with their doctors or even at the very least with clinicians doing research to share that information. I think it is just a matter of trying to be conscious. And there aren’t any written rules. There is nowhere that we can say, ‘Oh here is where the line is, let’s be careful to make sure that we are on the right side of it.’ But we are just kind of using our judgement at this point to make sure that we are thinking through the issues and trying to be responsible about how we give people information.

[Damien Blenkinsopp]: Yeah, good to hear you are thinking ahead. So we talked a little bit about things that can affect it. Do you know of any clinicians that are starting to either take this themselves or maybe send their patients to give them an idea? A lot of clinicians are trying to tackle things which aren’t very well treated or documented, like dysbiosis and IBD, all of these kind of gut issues, which at the moment is hard to find some clinicians who can say this is the exact approach to fix this. It is not coded and it is more of an art to say the least.

[Jessica Richman]: Right, there is no standard care for a lot of things. And that is difficult because patients are then left without a good answer, even though he went to the doctor to try to get help. I think what we’re doing at the moment is that this is not a diagnostic test. It can’t be used by a clinician, and I sort of want to underscore that. But we haven’t evolved in clinical research, so if a doctor wants to put together a research study of their patients or the participants that they solicit, we partner with them and we provide them basically with a consumer produc. But since they are a clinical researcher they can have a study and they can sort of design this study the way that they want and then communicate with their participants the way they want, which is a way to sort of frame it experimentally so that it is not basing a diagnosis on it or giving medical advice based on the test, but they can use it to learn things about the entire population of people that they are working with.

[Damien Blenkinsopp]: Right, and it can better inform the doctors instead of guesstimating all the time.

[Jessica Richman]: Exactly, right, And it can also press for publishable research. Some of the doctors are doing really cutting edge things and they want to add this to the repertoire and say oh, this is really interesting when i compare patient group X to patient group Y I notice X has this interesting thing, their microbiome, that is publishable research. So we are contributing to science through clinicians who were doing clinical research. A lot of the doctors that are sort of on the cutting edge also do research as well as treat patients, so they can kind of wear both hats.

[Damien Blenkinsopp]: Great, right. I know that this kind of connects with the topic that you are a big fan of, the citizen science?

[Jessica Richman]: Yes, don’t get me started!

[Damien Blenkinsopp]: We will definitely put a link to your TED Talk on that for background, but briefly, what is citizen science? What is that about?

[Jessica Richman]: Sure, so citizen science is a word for non-scientists, non-PhD researchers who work in academic labs. Sometimes they are people who have PhDs but aren’t researchers. They are contributing to science in some way. It started with – and actually, it is really interesting. So Susan Science, that term and the use of that concept, was started by ornithologists, who study birds. And there aren’t enough ornithologists who gather data about all the birds. So there are a lot of amateur birdwatchers who contribute to the science ornithology by spotting birds in various areas or by reporting on the things that they have seen.

So it started out there but this concept of involving the public in research is really just a type of crowd sourcing. So the term we use for uBiome now is crowd science, because I think it sort of communicates the fact that this is not about their citizenship or what country you are part of or whatever, but the idea that the whole crowd can be a part of science. And not just data collection, as in bird watching, but also hypothesis generation, funding of science, evaluation of science. We haven’t done all these things yet, but we really want to.

[Damien Blenkinsopp]: That is interesting because uBiome is basically – you just brought up a whole bunch of things. And that is what uBiome is.

[Jessica Richman]: Exactly. So our goal is to use the fact that people are interested in the microbiome, that it affects all of us, that we all sort of are potential research subjects because we have a microbiome and that we do think that change, to allow us to change the way science is done and to have people fund science, evaluate science, learn about their bodies, and contribute that knowledge to help others, and i think that it is really a change in the way science, which is this very institutional system, it is very much like the change from only four broadcast channels to like YouTube.

[Damien Blenkinsopp]: Right, that is a perfect analogy. It is about – this is taken from your talk, but it makes perfect sense. It is like participation – a good example I thought you gave also there, I mean, obviously YouTube allows anyone to participate and everyone sees people putting forth innovation, innovative content, and that then goes to TV and other places, which is a good analogy. If TV was science, now and again they will find something in the crowd which is useful and they will integrate it, so it is kind of like taking that participation.

[Jessica Richman]: Exactly, and then it makes it something everyone can do. I mean, YouTube is full of teenagers covering pop songs or something that would never have even been possible to be shared before because you would never waste your really expensive broadcast spectrum on something like that. But you don’t know who is going to be the next pop sensation and you can find that. And it is kind of a trivial example, but you can see that in the world of science and you don’t know who will come up with a really interesting discovery. And this was part of the theme of that talk, that I think it is not – a researcher who is paid to study an area is obviously passionate about their work and is an expert and what they are doing is really valuable. But a person who is suffering from that condition is also really valuable and I feel like they have been totally excluded from the system at this point and integrating in their own knowledge about themselves can add so much.

This is an example that I didn’t give in the talk but I think is really interesting. A friend of mine is a spinal cord researcher and she told me – I should probably verify this a little bit better. What she told me was really interesting. She said that the field of spinal cord research changed really dramatically when – most spinal cord researchers are not spinal cord patients. Most of them are not – they kept on working on trying to get people to walk. What they finally realized after there was a researcher who was a spinal cord injury patient who did a survey to say, ‘What do you actually want us to be researching?’ And it turned out that most spinal cord injury patients have accepted the fact that they are not going to walk, and that is sort of just the way it is. But what they want to be able to do is all the things we do. They want to be able to get around easily, they want to be able to sit comfortably. They want to be able to socialize, they want to be able to go to the bathroom comfortable.

They want all the things that we take for granted. And that is actually what they care about, not learning to walk again. That would be nice, but that is not affecting their lives as much as just basic quality of life now. And that really touched me because I thought, ‘How much time and money is spent researching the wrong things that patients don’t actually care about?’ Because it sounds really good. We are going to make them walk again. It just sounds like you are the great savior that is going to come in and solve all their problems. But maybe they want totally different problems solved.

[Damien Blenkinsopp]: Yeah, and you see a lot of communities which get kind of negative and fed up with the way things are being tackled and they are also the most motivated as well as all the passion and motivation because obviously it is effecting their lives. So if we could harness that motivation and passion that could obviously help push things forward. But it seems like citizen science, what it needs and what you spoke about is basically helping to organize and structure this crowdsourcing because obviously if everyone just goes off in their different directions and it is not controlled that is just a mess.

[Jessica Richman]: Yeah, I think so. And I think our role is to sort of create the infrastructure that makes it easy for people to study things. And that is what we want to do that helps us business wise and it also just helps us make that change in the world happened have the average person be able to have access to these cutting-edge DNA sequencing technologies that most people don’t have access to just by making it as simple as you buy a kit, you answer some questions, and then you get some results.

So I hope to see this in other areas too because I think there are so many things that are sort of very disorganized in the approach of patients who have them or even just subjects of interest, or things that people are just curious about and that greater scientific establishment is not super concerned with, whether [inaudible 00:25:28] is good for you, or something like that. Nobody cares about that because they obviously have much more important things to worry about in terms of public health but it is interesting to people. And I think people should be able to fund the research that they either desperately need or that they just are curious about, and I think that should be open to everybody.

[Damien Blenkinsopp]: I think that another analogy is that if you look at businesses as entities and the way they have evolved over time. It used to be from top down they would design products and push them on the consumers and that wouldn’t work so well but they have become these marketing – they are a lot more integrated, they look at customer feedback and in a way you are talking about applying that same concept to science as well, having this feedback mechanism which helps to direct the research also from the end user or the end benefitter.

[Jessica Richman]: Exactly. I think that is true. I mean, it is sort of changing from the sort of theory of the firm and having this institution that broadcast things out to people, to this network where people can interact in a much flatter environment. And I think that is very beneficial for innovation because it will help us, the best ideas. This was something we were talking about, we work with some researchers and they were saying the best ideas are not the ones in our building because you can’t hire everybody in the world who is thinking about your problem. The best ideas are out there in the crowd somewhere and the idea is to bring them in.

[Damien Blenkinsopp]: Well, it is very exciting. I hope you help to push that movement forward, obviously.

[Jessica Richman]: I hope so, too. It is something I care a lot about.

[Damien Blenkinsopp]: Well, it is these kinds of things which really change. It is a revolution rather than just an evolution. So that needs to be given efforts. So the other thing I wanted to touch on is obviously there are a lot of different things that can affect the microbiome. Some of the things we have spoken about so far is diet, right? Everyone kind of understands that diet can impact it. And we look at things like probiotics, prebiotics, dietary fiber, high-fat versus low-fat diet, artificial sweeteners have been in the news recently. How do you kind of look at the diet influence and how far – how much understanding we have? Is it a big impact? Is it a major impact? Do we have to look broader than that?

[Jessica Richman]: That’s a good question. So it is a major impact but the questions are teasing. it is a very complex impact. So the question is – and this our science team, is trying to figure out teasing apart those different effects, people who eat very healthy diets also tend to exercise a lot and be young and healthy otherwise, and sort of have this cluster of things that is sort of separating out what is the effect of diet. What is the effect of exercise?

And we are lucky with the microbiome – it is sort of a great feature, the microbiome, that changes over time in response to a change – we can say, ‘Okay, you are not much older and you are still equally healthy but you have changed your diet and here is how your microbiome changed in response.’ And we can see those differences. That is very interesting, but there are a lot of effects to tease out. We definitely see huge differences. Now that we have looked at thousands of these we can say, ‘That is a vegetarian,’ because you can just kind of tell by looking at the microbiome. Which is really kind of fun, actually.

[Damien Blenkinsopp]: My results are actually kind of weird, like compared to everyone’s.

[Jessica Richman]: Oh tell me more, interesting.

[Damien Blenkinsopp]: I have got very high, very low [inaudible 00:28:25] and very high [inaudible 00:28:30], so like 78%.

[Jessica Richman]: Interesting.

[Damien Blenkinsopp]: Yeah, so I was actually looking at the American –

[Jessica Richman]: The American Gut.

[Damien Blenkinsopp]: Right, the American Gut and Jeff Leach and what he is doing in Tanzania with the hunter-gatherers. Could you give your perspective on that? I am sure you are aware of that more than I am.

[Jessica Richman]: It is very interesting. Their scientific project out of the University of Colorado that is working on some similar things, and I think are differences that were not just America and not just the gut, so I said that was sort of a very easy comparison to make in that way. And also they are non-profit and part of an academic research project and we are for-profit. But I think there are also some technical differences in terms of the sample, collection techniques, lab extraction techniques that are really technical, but suffice to say there isn’t a standard microbiome extraction method and we both used well-documented, very much validated research methods, they are just different methods.

[Damien Blenkinsopp]: Well just on that, because there was a little bit of controversy on that when someone published that. Could you talk a little bit about that? Is that because there are differences in samples? Are there differences in the approach? Because the two samples came back a little bit different from the two companies.

[Jessica Richman]: There are a number of differences. They came back a lot different and I think the reason is – there are a few things. We used a different sample collection technique so when you sample with the American Gut they take a swab and they rely on the swab drying out so that it doesn’t change in transit. Basically, you just send back a Q-tip, or a sterile swab, in the mail. And it isn’t preserved in any way and there is nothing to freeze the DNA at that point in time. So it leads to – there is an argument to be made that it leads to overgrowth because things are growing as you are transiting in the mail to their lab and before the sample is processed.

[Damien Blenkinsopp]: And maybe some things are dying as well?

[Jessica Richman]: Well, dying is okay, because they are there. When you look at the DNA, dying is okay but it is other things from the air landing on it, growing in it, and then you think that was what was in the gut, not what was actually – you don’t know what happened after the gut. And everything that is there you see is there. And they do some correction for that with bioinformatics, but it just leads to different results. The results are biased in different ways.

Then as far as the actual extraction technique, we both use slightly different – and this is too technical, but we use slightly different kits for the extraction of the DNA that leads to different results, but it seems to me to there is a reasonable way to translate between the two based on that part of it.

[Damien Blenkinsopp]: Right, and you had a blog post on that.

[Jessica Richman]: Yeah, we did a blog post on that.

[Damien Blenkinsopp]: If people are interested in the technical aspects of that.

[Jessica Richman]: Yeah, we did a blog post on that and I think going forward it would be – one of the things we are really interested in is having a more standardized method so that everyone is kind of on the same page about what that is. And I know there are some academic standards with this, but we would love to be involved in that and do some comparison studies and sort of see how they compare. Because it is in everyone’s interest to have a standard for how microbiomes are measured.

[Damien Blenkinsopp]: Right, and they have that now for DNA, right?

[Jessica Richman]: Exactly.

[Damien Blenkinsopp]: So you just have to do the work, the collaboration to get to the same point?

[Jessica Richman]: Well, everyone has to agree. And getting academics to agree on things is really an emerging field. I think this has happened in many emerging fields with their different standards and everyone thinks their standard is the best. So us being no exception to that. So I think we are a little ways from having a translation between the two methods. I think that will be much more important as we move towards clinical results, where you actually want to get the same result everywhere that you do it. Where as in academic research labs this is far from uncommon – only 10% of the studies in the biological sciences can be reproduced. So this is not something that has never happened before.

[Damien Blenkinsopp]: Yeah, and this is a common point that comes up in this podcast, whether it is blood samples or heart rate variability, there are different standards at the moment because a lot of this stuff is still new. So I guess the rule for consumers if you start with uBiome, stay with uBiome so that you can compare. If you start with American Gut, stay with American Gut because otherwise you can’t compare your results.

[Jessica Richman]: Exactly. And we wish they were more interoperable, but that is the current standard. I mean, the goal of American Gut is a little bit different too. Their goal is to map the American Gut, what is in it, which is a really interesting scientific goal and very laudable, but that is different than our goal, which is to give consumers valuable information about their own microbiome while contributing to science. So that is a very different goal because our main focus is on giving the individual what they want and then letting them have more control over science.

[Damien Blenkinsopp]: So going back to Tanzania and [inaudible 00:32:55] because what was interesting there is it is difficult for us to know what we are aiming for, what is good, what is bad in the microbiome. You are doing interesting stuff at uBiome because you have these categories which, if you don’t mind explaining quickly, what you do there.

[Jessica Richman]: Yeah, of course. So we compare – we sort of pick – so in our new version these will be much more flexible than they are right now, but what we did not for this first version is we have specific categories of people that have very different microbiomes from each other and you can compare yourself against them. And you can say here is my comparison against vegetarians, people on the paleo diet, people who have taken antibiotics recently, people who drink a lot – exactly, people who drink a lot of alcohol.

So we sort of compare against those categories and those are interesting ones that we sort of see a really dramatic difference right away, so it is very interesting for people to do that. Compared to hunter-gatherer tribes, it is really interesting. I was actually talking to someone and we do research projects for researchers also. I was looking at vaccines in the developing world and we usually come at this from such a totally different angle because people assume that people in the developing world had the perfect gut and if we could only go back to our hunter-gatherer ancestors we would all be so healthy.

And I suppose that is true for chronic diseases, diseases of civilizations, but it is not true when you are very sick with acute illness because your water isn’t clean and you want to be vaccinated against it, for example. So it was really funny to have this conversation with this vaccine researcher who was saying this is really interesting. You are assuming that the gut of people in the developing world is better, but maybe that isn’t true.

[Damien Blenkinsopp]: But yeah, it is just true. The whole point is they are looking at the [inaudible 00:34:36] and other people because supposedly haven’t changed much over time. I think the most interesting thing that I saw there was the diversity. How important do you think diversity is because the argument was that the [inaudible 00:34:45] have a much more diverse microbiome, so that is good. Is that true? Is that for sure?

[Jessica Richman]: That is such a good question. Many studies have shown – I will answer this a bit eventually. Many studies have shown that there are positive outcomes correlated with diverse microbiomes. For example, there have been studies in elderly patients that when they are sicker, when they have less diverse microbiomes, and perhaps that is part of the moving to a more institutional diet as you move into assisted care or assisted living facilities or something. Part of that is the microbiome becomes less diverse and that is worse for you. There has been a lot of research about how eating a variety of foods, sort of following [inaudible 00:35:28] food dictums will make you have a more diverse microbiome and that is associated with a lot of healthy outcomes. So there is a lot of research and I think that it makes a lot of sense that it would be healthier.

There is also research about that a lot of health conditions are because there is a cornerstone species you just can’t get rid of, for example, C. difficile infections are one species that has sort of taken over your microbiome and that makes you very sick. So I think the evidence is there and the diversity is good, but the scientist in me to some degree used to say this is good and this is bad because there is always some kind of exception to that.

[Damien Blenkinsopp]: Yeah, and like we said before it is very early stages. So it is just kind of indicators. So I guess an interesting thing when I am looking at your biome now and if I compare myself to people taking antibiotics. Antibiotics are known to kill of bacteria of course and part of your biome. So everyone can kind of see, yeah, that is not a good thing for your biome. I think that is kind of commonly accepted now. So that is one interesting thing you can do in your biome, and sort of compare yourself to people taking antibiotics. Am I more diverse, am I less diverse, or the same. And to give you a rough idea of how healthy you are?

[Jessica Richman]: Right, what we want to do – I wouldn’t make the claim that it makes you more healthy but we can definitely say that with antibiotics, how were you before you took them versus after you took them. I think that would be really interesting. So it is not just you to the population, it is you to yourself. And so you get a sample now, a sample after you take antibiotics, and and then see the difference between the two. And then sample a few months later and see if you have gone back to where you should.

Because most people bounce back to where they were, where they feel fine and it sort of looks like that microbiome is very similar, but maybe that is not true of you and it would sort of be the only way to tell. So there is a lot of really interesting stuff there in terms of tracking your own health and sort of having a baseline that you store now, so you find out, for example, that you have Lyme disease or some other health condition that makes you take chronic, long-term doses of antibiotics, you kind of know back where you were when you started.

[Damien Blenkinsopp]: Right, and then at least you are like okay, I was healthy at that point, maybe I should try to get back to where I was in terms of my microbiome. So at least you have –

[Jessica Richman]: And some of this is all in the future but the part that is not in the future is we can store the sample now and we can tell you what is in the now. And the part that is in the future is okay, how do we get you back to where you were and how do we know what is a good change and what is a bad change. Those are all the things we are working on really actively and we should have some answers, not in the next few months but in the near future. but there are just a lot of really interesting things we can do once we have the data stored then we can kind of have a basis for comparison.

[Damien Blenkinsopp]: So there are a whole bunch of people doing experiments right now, and I think we can call that citizen science or crowd science, right – there are people taking dietary fiber. I am quite amazed because I just got back to the US and I am going into like Whole Foods and places, and probiotics is huge. It has grown out of proportion and you see even in the drinks, like half of the drinks seem to be probiotic drinks now. So obviously that is really, really pushed but to some people, like clinicians like [inaudible 00:38:20] if you know him, and he is like well, there is evidence to say that probiotics don’t change your microbiome that much. So in terms of experiments, you might do one yourself or you might think are kind of interesting, what kind of things would you think?

[Jessica Richman]: Oh, this is so good. So one of the things that we would love to do and that we are sort of trying to set the infrastructure for is to test out different probiotics on different people. Well, we won’t test it on them – they will take it and then we will test them and you know, of course, this will be part of us researching the effects of the probiotics on the individual. This will be part of a study where we can compare like to like. Like people taking like probiotics and sort of their outcomes. I think it is really interesting.

There are a lot of studies that show that either probiotics are mixed or that they don’t work. But then there are a ton of anecdotes from people, and we hear from them all the time, who say this changed my life. This actually worked. And I don’t think that they are all making it up or they all – it is all the placebo effect. I think it really is having an effect on some people. But the question is who and under what conditions and how do you know and what is it doing. And these are all really good questions.

[Damien Blenkinsopp]: Yeah, I guess from what we know it is not actually affecting the microbiome it is affecting something else. I mean, you call it the microbiome but maybe it is not the bacteria or who knows.

[Jessica Richman]: Right, maybe it is not the bacteria. I mean, it is an ecosystem there, right? So it could be –

[Damien Blenkinsopp]: Maybe it is protecting you from the yeast overgrowth. Or who knows?

[Jessica Richman]: It could be, right? Exactly. Maybe what you want is not the presence of that bacteria but the absence of something else. I think that part is probably the easiest. I think if it is doing something there is some mechanism, right? So that part we can figure out later. I think it was the most immediately useful to people who have questions or problems and want to take something but don’t know what or don’t know if it is worth it for them to do it. It is just to see what probiotics have what effects on what people. I think that would be really valuable.

[Damien Blenkinsopp]: I think it is really interesting in these areas where people are spending a lot of money. It is obvious to me that people are now spending a lot of money on probiotics and they are starting to spend a lot of money on prebiotics and you see all the supplements now and the people talking about resistant starch. If people are spending money on these things, I think it will be really useful when data actually starts coming out to prove it. The marketing always goes way faster, the hype goes way faster than any of this stuff really, and who knows – it is anecdotal. For myself, I think i do better with [keffir 00:40:33]. When I come to the US I love the [Keffir 00:40:36] so I will drink that and I tend to feel way better with that. But I have heard other people say that but who knows why or what that is about.

[Jessica Richman]: So don’t you want to – I mean, don’t have you have this natural drive to be like, why, why me? Who, and who else?

[Damien Blenkinsopp]: I will be doing another sampling of uBiome this month to see if that has change anything because I have doing more of that lately.

[Jessica Richman]: So I started eating – I don’t know if you ever eat Quest Bars, which have prebiotic fiber and it is [inaudible 00:41:02] invasively so they are indigestible fiber that is not supposed to count as carbohydrates. I feel differently when I eat them versus bars that have maltodextrin or something in them, and it is sort of obvious, digestible carbohydrate. So it is really interesting and we get to do a lot of experiments around here and just sort of see what the difference is.

[Damien Blenkinsopp]: So Jeff Leach is arguing that dietary fiber has a bigger impact on changing your microbiome based on his self tests. And what do you think of that?

[Jessica Richman]: So that is interesting. There are a lot of things you could say about that. And one, there are all those sorts of things. So I think the answer to all these thing is sort of more research. That is interesting, and a lot of things have been discovered by scientists looking at themselves and saying, ‘Huh, that’s interesting. I wonder why that happens.’ Or when I do X, Y happens, but I think you really do need – and what the crowd science lets you do and what the power of the internet lets you do is say okay, that is an interesting hypothesis. Now let’s have a thousand people test that and see what happens. Then you can find an answer to it. So I think that is the goal, and that is what is great about crowd science. It is not my opinion versus his opinion, it is his hypothesis versus the data that we see.

[Damien Blenkinsopp]: Right. I guess a good principle for the people at home is before you do anything get your microbiome done so that if you are going to take probiotics or you are going to take resistant starch or prebiotics. At least you can see what has changed, if anything has changed, especially if it has any health impact. Especially a negative one, and you want to kind of go potentially back to it in order to reverse that.

[Jessica Richman]: Right, exactly. Or even just to have it banked so that then in the future you will be able to win the science of therapeutics and diagnostics is caught up to the science of just processing the samples and the data will be there exactly.

[Damien Blenkinsopp]: So on that point, basically how stable do you see the microbiome in terms of we often talk about how often is it worthwhile and it adds value to track the data? Because it is not that expensive now, microbiomes, but it is relatively cheap and I assume eventually it will be even cheaper. But how quickly does the data change? We know that the microbiome changes but how long is it worthwhile?

[Jessica Richman]: We haven’t done the study. It would be really cool to just test everyone’s microbiome for a day, test 100 people’s microbiome for a day. And we haven’t done the study every day for like two weeks. We haven’t done the study yet but we have talked with certain partners about doing this. And we may be launching something about this. But there are research studies that have been done on this and there is sort of a change every two weeks for if you make a major change, if you change your diet you will see it within two weeks. Antibiotics of course act much more quickly but if you have a dietary change or a habit change you will see it within two weeks.

[Damien Blenkinsopp]: When you say a habit, what could that mean?

[Jessica Richman]: Let’s say you start running marathons or something. You start training for a marathon –

[Damien Blenkinsopp]: Exercise, or –

[Jessica Richman]: You exercise, you move, you travel to a different country and eat completely different food. I suppose that is a dietary change too, but you drink different water and it may not be that consciously you are changing your diet but you are in a totally different place.

[Damien Blenkinsopp]: We are still talking about diet a lot, but actually just if I am living in another country, it is the fact that I am touching things, if I am living in a different environment where the bacteria could potentially be different, or if I am living with a new partner, for example.

[Jessica Richman]: Right, well probably not your gut microbiome but definitely the oral microbiome changes when people start kissing a new person. So that makes sense.

[Damien Blenkinsopp]: Yeah, and the genital microbiome I assume, too.

[Jessica Richman]: Exactly, the genital microbiome as well. We do collect genital samples and we do ask questions about that, and it is really interesting. We are adding data insights for the other sites as we do for the gut microbiome, and it is really interesting.

[Damien Blenkinsopp]: I guess there are less people doing genitals because it is a bit more of a politically sensitive topic.

[Jessica Richman]: Yes, that is sort of it. Also, we sell it in a pack with the other sites. So yeah, I think there are definitely less people doing it but it is still kind of interesting, the kind of insights that you can come up with because you kind of see how people’s habits – and it may not even have entirely to do with sex, it may have to do with women after menopause, how is your microbiome different? Or different parts of your menstrual cycle, or in men if you are circumcised or not. Or if – you know, just sort of other things that are not directly related to sexual activity but have to do with your own body and how it changes over time.

[Damien Blenkinsopp]: Yeah, this is a fantastic subject. I would like to ask you –

[Jessica Richman]: It is always great to have genitals and mouths on the podcast.

[Damien Blenkinsopp]: For my next workup I want to get the whole thing but whatever, I would like to find it all out. I am not bothered about political sensitivities. So what do you think will happen in the next five or ten years in this area?

[Jessica Richman]: Gosh, I think it is going to be really exciting.

[Damien Blenkinsopp]: What are you excited about?

[Jessica Richman]: Oh, there is so much I am excited about. So I think there is going to be a real explosion of therapeutics, the proper word for this, but let’s describe that in a little more detail. I think that a real explosion of drugs, probiotics, diagnostic tests, and just really taking this data and doing something useful with it that helps out specific groups of people either with serious health conditions or even very minor health conditions like acne or athlete’s foot. I think there will just be this explosion of valuable products that come out of this kind of data. And I am really excited about that because I think there are a lot of really amazing problems we all have.

[Damien Blenkinsopp]: So out of interest, how would a product develop or work with you?

[Jessica Richman]: We do work with researchers that are doing this kind of thing and basically what we do are really big studies about specific questions. These really big study about specific questions, someone is looking at dandruff or if they are looking at athlete’s foot or they are looking at heart disease or autism or something, sort of a major – something with much more important consequences. We designed a study with them and then we partnered with them and they use our research techniques. And depending on the type of study, they will often just use our kits where we handle the whole study process for them. And they basically give the participant the uBiome product and then they also share the data so that they can use it for academic purposes to publish a paper about it.

[Damien Blenkinsopp]: That feels like a great model. That is real crowd science.

[Jessica Richman]: It is crowd science, exactly. And what is unique and what I really like is that in almost all cases the participant gets their own data too, which is really unusual in scientific studies. Usually you participate and maybe you even get paid to participate but you never get your own data. And I have never heard of a study where you get your own data. But here the participant gets to do their own study also at the same time. Their data is banked and they can access it later. They can do whatever they want with it and at the same time they are contributing to a scientific study that they find interesting.

[Damien Blenkinsopp]: The other exciting news for you guys is you have joined Y Combinator with [Anderson and Co. 00:47:52] and you have obviously got big investments now in terms of microbiome project and you are by far the biggest investment. And so correct me if I am wrong, but what does that mean for you and where you can take the company now?

[Jessica Richman]: So what we can do is we can scale up and we can make sure that the experience is as good as possible for the user, so revamping our website, revamping our boxes, and making customer service better. Like, all those sorts of things are just sort of making the experience better for people. But we could also be able to analyze the data in more detail and come up with really interesting insights for the participants so they could get valuable information. That is what that money is for, to sort of give us the resources to make things better much faster.

[Damien Blenkinsopp]: And a couple of personal questions before we finish, that would be great. What kind of data metrics do you track for your own body? Anything like the microbiome, anything else on a routine basis?

[Jessica Richman]: That is a good question. I track all my food in My Fitness Pal, me and like 25 million other people or something. It has got every food – you know, if you travel to China there is like the fast food chains that are in there too. It is sort of like every possible food.

[Damien Blenkinsopp]: So are you taking photos? Or how are you doing that?

[Jessica Richman]: No, I just enter everything.

[Damien Blenkinsopp]: Have you got a special app or anything that you like?

[Jessica Richman]: I use my fitness pal, which is the most popular one. I am probably in there six times a day logging everything I eat. And then I also do lots of little experiments with myself in terms of how much protein I am eating, how much fat I am eating, and I just started using [keto sticks 00:49:22] recently, and I had never used those before.

[Damien Blenkinsopp]: Yeah, oh, I just got – do you know the ketonics? I just did an interview, the last interview, but anyway the ketonics allow a slightly better correlated – because it measures your breath which is more correlated with the blood levels.

[Jessica Richman]: Awesome – I was looking at the blood kits also and they have those.

[Damien Blenkinsopp]: They are very expensive.

[Jessica Richman]: Yeah, they are very expensive. maybe that could be a business expense, I don’t know. Anyways, I am starting with the sticks and just sort of sampling and seeing how it can correlate how I feel with ketosis. If I feel warm and tired, then that is probably because I –

[Damien Blenkinsopp]: Are you going to be trying intermittent fasting or anything like that?

[Jessica Richman]: I might. I gained the startup 30 so I think I am trying various things. So we will see, intermittent fasting is really interesting and I don’t think I will do the warrior diet because that is the one where you eat once a day and I feel like I would just sort of keel over. But it is really interesting and I like that our users are generally people who are interested in these kinds of things and I like that we can bond over our various weird potions that we are eating and trackign about ourselves.

[Damien Blenkinsopp]: So what has been the biggest insight that you have learned about your biology through doing some kind of tracking or –

[Jessica Richman]: That is a good question. That is a really good question. I think in terms of the microbiome, I think I have sort of – my cofounder is a lifelong vegetarian who has never eaten meat in his entire life. And his parents were vegetarians and he hasn’t eaten meat. So his microbiome is very different than mine because I have sort of been an omnivore my whole life and it is really interesting to see the differences between people who share a lot of environments in common but eating very different foods, so I think that was a really interesting insight. As far as tracking myself over time, I think I am lucky and that I don’t have a health condition that sort of gives me an unusual microbiome. Mine is very normal so that hasn’t really shown up very much in the things that I am doing. I am tracking a lot of these dietary changes, which I just started doing, so we will see how they go.

[Damien Blenkinsopp]: Well, that is a good point you bring up. Someone could have a microbiome done and then if they fit straight in the middle of the road, then it is probably not a bad thing.

[Jessica Richman]: Exactly, it is a very good thing.

[Damien Blenkinsopp]: It also just depends on how extreme the experiments you are doing on yourself are.

[Jessica Richman]: Right, exactly. And I think I am just sort of dipping my toe in the water of cool things people can do to track their health, but there are definitely users who do much more interesting things and sort of want to see the effects of them.

[Damien Blenkinsopp]: Right, so what would be your number one recommendation to someone trying to use some form of data to make a better decision about their body’s health and performance?

[Jessica Richman]: I think there is sort of advanced versus not advanced. So I think the very basic thing is tracking what your food and exercise, it really changes your behavior dramatically. And I have noticed this and it is a very obvious thing and advanced quantified self people are going to be like, ‘Ha ha, I have been doing that for 20 years.’ But for the average person I think it really makes a big difference because you just start seeing – you don’t want to eat junky food when you know you are going to record it. And you start seeing how good you feel when you eat certain foods versus other ones and I think it is really motivating and it is really disciplining.

So I think that is sort of the basic recommendation. I think advanced recommendation is sort of don’t be afraid of scientific literature. Working with scientists and as a scientist, you see what goes into scientific research and you see that it is this really messy field where people are trying different things and sometimes they work and sometimes they can’t be reproduced. So don’t be afraid to delve into literature and see what is there for you and then try to make it work for you. And don’t sort of take it as received wisdom, that it has to be exactly right.

[Damien Blenkinsopp]: Yeah, that is a great point. Thank you, both of those are great point like the psychological benefits and accountability. I think that is probably one of the biggest things that is happening right now with all the devices and everything, just reinforcing behvaiors.

[Jessica Richman]: Yeah, I think it can’t hurt and it takes a little bit of attention, but I think it is attention well spent because it helps people learn to track themselves better and learn to understand what is going on when they feel a certain way, what is likely to be causing it. And I think it is really beneficial.

[Damien Blenkinsopp]: Jessica, thank you so much for your time today. I know you are very, very busy at the moment so it has been great that you have made the time for the show.

[Jessica Richman]: This was so fun, I am so glad. Thanks for taking the time to talk with me. This is really great.

[Damien Blenkinsopp]: Thank you very much.

[Jessica Richman]: Awesome, I will talk to you later. Bye.


Leave a Reply