X

27: Dr Adrian Owen: Does Brain Training Improve Mental Performance?

Have you been using Dual-N-Back or other braining tools? A look at failed brain training experiments and how to assess real mental performance improvement with Dr. Adrian Owen.

In today’s fast paced, technologically advanced world strong mental performance is of utmost importance. From our abilities in the work place to our interactions in social situations we are expected, and constantly asked, to be able to perform with the highest level of mental function. Therefore, it is important that we both protect and improve our minds in order to get the most out of life and increase our overall satisfaction.

In the last few years, brain training apps, such as Lumosity and Dual-N-Back, have become increasingly popular as a way to improve cognitive performance and working memory abilities over time.

However, there is a bit of controversy surrounding the use of these apps:

Does brain training improve mental performance?

This episode addresses this question and more as we discuss some of the research that has been conducted to try and assess our mental performance. Whether it is brain training, diet changes or just sleeping better, these tools might help us decide if we are actually getting the bang for our buck so we can make a positive impact on our lives and mental performance.

Just because a lot of people believe in it and are sure that it is true, if it hasn’t been scientifically proven, then it’s very likely not the case…I think that the commercial brain training is a very good example of that
– Dr. Adrian Owen

Today’s guest is Dr. Adrian Owen who has looked specifically at the effectiveness of brain training on a broad population to see if it is actually having an impact on our mental capabilities. Currently, he works as the Canada Excellence Research Chair in cognitive neuroscience and imaging at the Brain and Mind Institute, University of Western Ontario, Canada. Previously, he worked at the Cognition and Brain Sciences Unit at Cambridge, UK and has published more than 200 peer-reviewed scientific papers over time.

The episode highlights, biomarkers, and links to the apps, devices and labs and everything else mentioned are below. Enjoy the show and let me know what you think in the comments!

What You’ll Learn

  • The Cambridge Brain Sciences was set up to research and assess brain training tools (06:59).
  • Previously, brain function was researched by testing brain damaged participants (10:30).
  • In the 1990’s brain imaging techniques (PET scans and fMRIs) became important tools for brain assessment (11:40).
  • Dr. Owen explains further the definitions of fluid intelligence and crystalised intelligence (17:56).
  • Research using these brain training tasks, games, exercises, etc. usually focuses on fluid intelligence (20:22).
  • Dr. Owen describes further the brain-based tests used by Cambridge Brain Sciences (20:52).
  • Damien and Dr. Owen discuss the use of these cognitive tests to assess your own brain performance on a regular basis (22:43).
  • Cambridge Brain Sciences is hoping to encourage people to use their tools to assess whether brain training and interventions (such as coffee, etc.) can affect their own cognitive performance (25:12).
  • If you are going to run your own “experiments” to test the training or interventions, be your own scientist and carefully employ “good” research techniques (26:16).
  • Remember, what works for you may not always work for another (27:24).
  • Dr. Owen begins discussing “transfer” of training: to improve upon many aspects, not just the one (29:06).
  • The Cambridge Brain Sciences study also compared the lifestyles of the participants as related to their performance on the different tests analyzed in the study (36:18).
  • Damien and Dr. Owen discuss the damage that occurs to the brain from aging, injury, etc. and the fact that these cognitive declines are specific to each individual person (41:07).
  • Neuroplasticity is defined and discussed as a “change in the brain” following the learning process (45:04).
  • Dr. Owen discusses the use of EEG, a cheaper alternative, to analyze aspects such as consciousness that have previously been assessed with an fMRI, a more expensive machine (51:51).
  • Dr. Owen shares his thoughts for the future of cognitive performance including brain training and a short description of neuroenhancers, often called “smart drugs” (55:00).
  • Dr. Adrian Owen’s one biggest recommendation on using body data to improve your health, longevity and performance (1:00:10).

Thank Dr. Adrian Owen on Twitter for this interview.
Click Here to let him know you enjoyed the show!

Dr. Adrian Owen

Tracking

Biomarkers

  • Electrical activity: is assessed by electroencephalogram (EEG). When enough concurrent electrical activity is generated by neurons firing, simple periodic waveforms are distinguishable. Rhythms generated by electrical activity are measured by their frequency and amplitude. Frequency is expressed in the unit Hertz (Hz) while amplitude is recorded in microvolts (μV).

Labs and Tests

Tools & Tactics

Interventions

  • Brain Training: This episode is all about evaluating the effects of brain training, and more specifically the daily effects that may occur after the use of cognitive games. There is an incredible variety of these types of exercises available, produced by a number of companies and organizations.

Other People, Books & Resources

People

  • Jessica Richman: Dr. Richman studies citizen science and crowd sourcing. She did a podcast about the microbiome and crowd science with The Quantified Body which can be found here.
  • Aubrey de Grey: A scientist, author, and activist who was featured on a recent episode on The Quantified Body where he discussed longevity and anti-aging techniques.
  • Randy Engle: A research scientist known for his work with brain training.
  • Barbara Sahakian: Dr. Sahakian is a researcher who studies “smart drugs” and neuroenhancers.

Other

Full Interview Transcript

Click Here to Read Transcript

[Damien Blenkinsopp]: Adrian, thanks so much for joining us on the show.

[Dr. Adrian Owen]: Thanks for having me.

[Damien Blenkinsopp]: Excellent. How did you yourself get into this whole of area cognitive science—assessing performance, Brain Training and all these areas? What was the thing that first stimulated you to get interested in this area?

[Dr. Adrian Owen]: Actually I’ve been interested in cognitive assessments since my PhD. Back in the late 80’s, I was working on assessing frontal lobe function. In those days, it was pre-brain imaging; we just used to test patients who’d had part of their brain removed and then designed cognitive tests to try and work out what it is that they couldn’t do, so I’ve been in the area of assessing cognition for 25 years now.

The move into Brain Training actually came much more recently, in about 2009, I got very interested in the amount of attention that was being paid by the general public to whether Brain Training could make you smarter and I got in involved with a study with the BBC to test that.

[Damien Blenkinsopp]: Well, give us a quick overview of that so that everyone can hear about it because it was quite a big project at the time.

[Dr. Adrian Owen]: It was. It started because the BBC came to me and said, “Well we want to do a programme, we’d like to do a huge study to promote public understanding of science. Could we get a lot of people involved in this, and obviously Brain Training works, right?” I stuttered, “Well hold on, stop. What do you mean ‘Obviously Brain Training works’? Let’s talk about that,” and they said, “Well, this company or that company have sold a 100,000,000 units this year, the whole world is training their brains,” and I said, “Well, is the whole world getting smarter?” I was very intrigued by this idea because I thought it’s funny, out there in the world we’ve got perhaps one of the largest public science experiments running right now—at the time I was living in London, England, and there were people sitting on trains with their handheld devices all training their brains and I thought, “Well, I haven’t seen any evidence that any of them are getting any smarter,” and certainly looking around among my friends, it wasn’t the case that those who were super smart would say, “Well, it’s because I’ve been using this device.” So I thought, “Well there is something interesting in there that a lot of people believe it and trusted in it and it would be a fun thing to try and test.”

So we set up a BBC programme called Bang Goes the Theory. We advertised this as a way of assessing whether Brain Training worked. We got people to log into a specific website that we’d set up; the website had a lot of training games on it.

[Damien Blenkinsopp]: So is this the current website that is up today or is it different to the Cambridge Brain Sciences website?

[Dr. Adrian Owen]: That is actually entirely different but did feature in that study. What we use Cambridge Brain Sciences for, was to assess whether the training had worked because we wanted something truly independent to look at pre-imposed testing scores. Cambridge Brain Sciences is not a training site; it’s a cognitive assessment site that I’ve set up with one of my colleagues out of Hampshire. We got everybody to log into Cambridge Brain Sciences to get a sense of their cognitive performance before they started training and then everybody would log into one of the BBC sites.

I split them into three groups, basically. There was a group who trained specifically on reasoning tests, things to improve your ability to reason and think through the solutions to problems. Another group, a second group, which were randomly assigned obviously, would log in and do memory tests and attention tasks, things that emphasised other aspects of cognition that weren’t necessarily problem solving and reasoning. The third group, basically, just had to do a simple exercise that involved using a computer for about the same amount of time. They would look up the answers to complicated questions on the web and that was just to make sure that the control group used the computer for the same period of time over the six-week training period. We had people log in several times a week for at least ten minutes per session for six weeks, and a lot of people took the challenge. We had tens of thousands of people logged in; only about eleven and a half thousand people survived, did the distance, did the pre-testing and the six weeks of training and the post-testing, but nevertheless, twelve thousand was a fantastic result and an enormous uptake.

[Damien Blenkinsopp]: So we have discussed a bit previously on this show about crowd sourcing of science, like crowd science and citizen science, so this is basically like an early example of you leveraging the crowd to get some science done and some validation.

[Dr. Adrian Owen]: It was great. Actually it was a lot easier than I thought it would be. We’ve used the same method subsequently to connect a number of scientific studies. The secret I think really is if you can engage people in something that they are actually interested in, and clearly there was a lot of public interest in Brain Training and whether it worked. Having the BBC, obviously, was enormously helpful because it was a popular science programme and they used it as a vehicle to promote this, but I think it’s great if you get people interested and they feel like they are part of something and they’re helping to answer a question.

[Damien Blenkinsopp]: We had Jessica Richman—I don’t know if you know her work? She is really into citizen science and crowd sourcing of science. She gets up in presentations and talks about that. A new biomes project looking at the microbiome: they are getting lots of data from lots of different people around the world and feeding into that to try and start understanding the microbiome.

We discussed it and seems like it’s going to be an exciting time for crowd science. It’s already started; it’s the internet; it’s also that people, as you said, are interested in these things now—whether it comes to cognitive performance, which is a big thing when it comes to everything in our lives; if you think about it, it’s your work, your relationships, everything.

Just to take a step back, how would you look at our brains and what areas would you split it into in terms of performance? It’s also been a little while since you did that study, what do you see as the important aspects of performance for us cognitively in our lives?

[Dr. Adrian Owen]: I think that’s a really great question and actually, it speaks to a much bigger question about how psychology and brain science have evolved over the last fifty years. When I started working in this area, doing my PhD, 25 years ago, we didn’t have any direct ways of accessing brain function. We would basically assess behaviour, and as a consequence, we had many so-called cognitive models that were based on things that we all think we can do. We know that we can remember stuff, so we would have memory models; we know that we can attend to different things and some of us can attend to multiple things at the same time, so we would have models of attention. The only way we had of actually testing these models in terms of the brain, was to assess patients who had damage to one or more of the modules that were assumed to be involved in these models. So we would test brain damaged subjects, participants who had had tumours removed from their brains, for example, and a bit of healthy tissue had gone at the same time and we could try and work out whether the model really worked. Looking back, it’s a rather awkward way of investigating brain function because you are continually looking at people who are impaired in order to try and work out how the rest of us actually work.

In the late 1990’s, brain imaging really took off. In the beginning it was a technique known as positron emission tomography, or PET, and that soon gave way to FMRI or Functional Magnetic Resonance Imagining, which has absolutely exploded and is really the tool of choice for many now-called cognitive neuroscientists. Many psychologists now think of themselves as being what we call cognitive neuroscientists because they take brain-based models on board as well as cognitive models.

Brain imagining has allowed us to access the brain in a different type of way, which is principally to look at the brains of healthy participants. So now, instead of trying to work out how healthy brains work based on how unhealthy brains work, we can actually look at healthy brains doing their thing, and what this has done has changed, in many ways, how we think about behaviour and how we think about cognitive functions. Certainly, in my lab, a guiding rule has really been, “Well, let’s only really start to stress about this or fret about this if this is biologically plausible.” Even if there are things that we feel that we have in life and we can achieve in life, if it’s not something that by looking at the brain you could see how that could be accomplished, then my first guess is usually that we are barking up the wrong tree.

[Damien Blenkinsopp]: Could you give an example just to clarify that? It seems like something a little bit harder to visualise.

[Dr. Adrian Owen]: Well, unfortunately most of the examples I would give you would be things that I don’t work on and I don’t work on them because they are good examples of this. I suppose an illustration of the sorts of thing I’m talking about is that there are many things that people have attempted to look at with brain imaging that I think probably are not easily explained in terms of networks within the brain, like how we fall in love or why we trust each other or where do we get a sense of justice from, these big, squishy, emotional things that are not easily reduced down into measurable components within the brain. Whereas memory, how is it that we lay down memories for words or how is it that we acquire language, or how is that that I can attend to two things at the same time, these are things that are much more easily thought about in terms of what we know about the structure of the brain and networks within the brain. Not everybody agrees with me: there are certainly a lot of people out there that think we are going to solve the riddles of love by using brain imaging, but that’s not the way I work.

So, this is a very long-winded answer to your original question, but it’s just to really tell you about how we tend to think about cognition now, and it’s almost a bottom-up approach, we use the brain: we use the brain; we look at the brain and we say, “Let’s look at different areas within the brain and try and work out what they are doing,” rather than trying to explain what it is we are able to do in the world in terms of areas of the brain. That is an interesting approach because it turns out that the brain isn’t really organised how we imagined it would be organised. There isn’t a bit of the brain that lays down your memories, so spending a lot of time looking for that area of the brain isn’t a very rewarding thing to do. There are certainly many areas of the brain that are involved in laying down memories, and they work together as a network, and they play really quite different roles and some of those roles are overlapping. As you have probably guessed, it’s really complicated.

[Damien Blenkinsopp]: It’s a lot more complicated than some of the jargon we have learnt. When we think about cognitive performance and the standardised testing and also some of the apps like Dual N-Back, which was the brain training app that we’ll come back to which was supposed to increase working memory and so on. So we have things like working memory, fluid intelligence versus crystalised intelligence; for you, do those things still exist today? Are they still effective ways of explaining our performance in the real world—Whether it’s work or whether it’s problem solving?

This world is getting more and more complex and faster and faster and, obviously, some people are pushing the edge, some people are taking new tropics or they are trying to do all sorts of things to stay on top of where they are in performance, in their jobs, and everything. Are these still terms that we can think about or is it moving away from that? Because we’ve taken the lid off the brain and we realise that it is much more complex that we thought and we can’t really reduce it to these ideas anymore.

[Dr. Adrian Owen]: The answer is yes and no. To take your question backwards, we definitely can’t reduce the brain in terms of those ideas anymore. I don’t think that thinking about the brain in terms of fluid intelligence is a very sensible way to go about it.

We actually had our most recent large-scale study, which we published in a journal called Neuron at the end of 2012, that involved 44,000 members of the public, and there we specifically addressed this question. We got everybody to do a fairly large number of cognitive tests online and then we tried to look at whether we could estimate people’s fluid intelligence, or IQ as it’s often referred to, using these different, specific cognitive tests. It turns out that you cannot explain the variance; you cannot actually explain everybody’s performance in terms of a single factor. Whichever way we cut up the data, there was no way of explaining or reducing people’s data to a single factor, say an IQ factor or fluid intelligence factor. It turns out that there are at least three different components in performance, I’m sure it’s not just three but there are at least three.

That paper was really designed to take a swipe at the community who are still looking for evidence of fluid intelligence or IQ in the brain, because we accompanied it with a brain imaging study that produced exactly the same results. It said that if there is something like IQ, there is a way of comparing one person to another person in terms of a single measure then we should be able to find evidence of it in the brain somewhere, but actually we weren’t able to do that.

[Damien Blenkinsopp]: So it’s really the dynamic relationship between different parts of the brain, so just focusing on developing and aspect—if we can actually do that—is potentially erroneous.

I just wanted to make sure that people at home understood the difference between fluid intelligence, IQ and crystallized intelligence and how it relates to their lives. Can you just give a quick overview of what that means when people are talking about that?

[Dr. Adrian Owen]: I’m certainly not an IQ expert and I think maybe the best way to think about this is that these are measures that are out there in the world that clearly measure something, but they measure something in the same way as having a driving test measures something: you take a driving test and you pass or you fail, but you probably get a score on it as well. That score means something but it doesn’t tell you everything about somebody’s ability to drive. If I got a 94 and you got a 96, how much would that really tell us about the likelihood of you causing a collision on the road or me causing a collision? That doesn’t mean it’s useless having a driving test; it’s a measure that we have constructed to measure something out there in the world that, an aspect of people’s abilities, and we use it for a purpose, which is to determine whether people should be allowed out on the road in a dangerous vehicle or not. IQ is a little bit like that. It is a measure that has been around for many years. It’s often divided into two components: crystallized intelligence and fluid intelligence. Crystallized is really the stuff that you’ve learnt, the stuff that you have acquired since your childhood, stuff you know.

[Damien Blenkinsopp]: So is it that the harder you studied the more you tend to have?

[Dr. Adrian Owen]: Well, that may be true; it may be that the more of it you had to start with the harder you study, I don’t know. But fluid intelligence is more related to problem solving, reasoning, our ability to work through problems, plan for the future; that is assumed to be something that is not necessarily as related to what we have learnt and the knowledge that we have acquired over time, but it’s—I’m going to choose my words very carefully here—something that many people think of being an innate ability that some people have a very high fluid intelligence, an ability to reason their way out of problems, and other people have a rather lower fluid intelligence.

The whole concept of IQ is often divided into those two things. I think for obvious reasons, most people are more interested in fluid intelligence than they are in crystallized intelligence because fluid intelligence gets wrapped up in arguments about genetics and whether one person is better than another person. It’s not just because they have had more education, it’s because they’re somehow inherently smarter. All these arguments about brain training and smartness and how intelligent you are, are actually usually referring to some measure of fluid intelligence, rather than crystallized intelligence.

[Damien Blenkinsopp]: That is the thing people tend to work on. These brain training aspects are trying to change that because we already know that crystallized intelligence can be changed.

[Dr. Adrian Owen]: Exactly, you can learn more stuff.

[Damien Blenkinsopp]: Yes, exactly. So to look at what you did at Cambridge Brain Sciences, what were you actually looking at in terms of assessing people there? Was it relating to these concepts we have been talking about?

[Dr. Adrian Owen]: You mean the study with the 44,000 people?

[Damien Blenkinsopp]: Yes, what is the assessment that Cambridge Brain Sciences does when you take that test or when they did it?

[Dr. Adrian Owen]: I think what’s interesting about Cambridge Brain Sciences, and is perhaps a little bit different to many other online testing studies, is that, basically, it’s brain based. These are all tests that we’ve either devised or have been based on tests that other neuroscientists have devised to assess specific brain functions; these aren’t tests that are set up to assess a cognitive ability. We don’t have a memory suite thats designed to test your memory; we have essentially groups of tests that are assigned to assess specific brain functions. Most of these tests now have a 25-year history of being used in my lab and in other labs around the world. A lot of them were based on patient studies that we did in the late 80s and early 90s, or on non-human studies that other neuroscientists have conducted to look at how the brains of monkeys perhaps compare with the brains of humans. So all of these tests have been used in many neuroscientific studies, so they are genuine scientific tools, if you like. We’ve dressed them up slightly to make them a little bit more appealing to the person in the street, but basically, what they are testing is something that addresses a specific scientific question about the role of particular brain regions’ in cognition. In that context, I think they are very useful for trying to understand how different people’s brains function compared to one another.

[Damien Blenkinsopp]: Before we spoke—I took the test about a year ago—so I just wanted to revise it and I took it again today, and was horribly disappointed to see that one of the areas had declined quite specifically.

[Dr. Adrian Owen]: Well, you are obviously getting a bit older, you are just going to have to deal with this.

[Damien Blenkinsopp]: Does that actually mean that my cognitive… sometimes will it be an off day? Let’s talk about practice first; what would you suggest people use these for? From my own perspective, if I’m hoping, as you just brought up, not to have an aged brain, you know a brain that’s aging too rapidly, I might want to do it once a quarter, once every six months, just to check where things are. Is that a reasonable use of that?

[Dr. Adrian Owen]: It’s perfectly reasonable use of it. I think it’s a very good way of assessing your current cognitive performance based on using the same tools that cognitive neuroscientists are using these days. I think you have to be very careful, there obviously is variance. We try and take account of practice effects by making sure that novel problems are served up each time. So in all of those tests, you won’t have seen exactly the same things that you saw a year ago, they’ll be different and there are algorithms built into that to make it infinite; you could test yourself as many times as you want and you won’t encounter the same problems. But saying that, there is obviously an initial practice effect. The first time you sit down and do them, the entire concept is novel. You’re sitting and doing an online test you’ve never seen before, you’re trying to work out where the instructions are, so there is going to be a difference between your very first time and your second time. We generally suggest that people have a go once and then start testing themselves once they are familiar with the environment.

[Damien Blenkinsopp]: I think I’ll just put my bad score today down to that then.

[Dr. Adrian Owen]: I think that would be entirely reasonable; that’s something that we can deal with. But people also need to be careful about the circumstances in which they test themselves: if you didn’t get any sleep last night, then the chances are that your cognition is going to take a hit. You’re going to be less attentive, less able to focus, your memory might be slightly impaired. In some senses, the downside of having people test themselves at home is that they could be intoxicated, they could have had a few beers beforehand, there are all sorts of things that might have affected.

[Damien Blenkinsopp]: Or you could be a bit under the weather, as you said not having slept. I actually experienced that with another tool, Lumosity; I don’t know how similar it is to Cambridge Brain Sciences, or if you are up-to-date on that, but it is a brain training tool that is quite widely used.

[Dr. Adrian Owen]: It is. Lumosity is actually very different to Cambridge Brain Sciences, in that they have gone much further in trying to turn things into games and entertainment, and of course their focus is on training. Although you can use Cambridge Brain Sciences to train, we’ve never made any claims about training, we are not encouraging people to try and train their brains using Cambridge Brain Sciences; we are trying to encourage people to use it to assess whether training works or assess whether any form of intervention works. If somebody wants to know whether a cup of coffee in the morning makes an effect, take Cambridge Brain Sciences twice, once before your coffee and once after and see if there has been a change.

[Damien Blenkinsopp]: So you think it could be useful for those small interventions? A lot of people are taking nootropics or coffee—you’ve heard of bulletproof coffee, where you put butter in it? All sorts of people are trying different things at the moment, including myself. If we have a standardised tool to assess ourselves and you think it can make the difference between one… could we test ourselves once each day at the same time? Are there are a lot of things we have to control for if we were going to run our own little experiments, in terms of getting realistic information out?

[Dr. Adrian Owen]: I think it’s the perfect tool for doing those sorts of things; it’s extremely sensitive, by that I mean it will pick up small changes. Because of the way that we measure performance in these various tests, it’s designed to pick relatively small changes. I would encourage people to try their own experiments at home with it but, of course, you should try and do it scientifically. Try and do it the way that we would do it in the lab, which is control as much as you can except the variable that you are looking at. So, try and do it at approximately the same time of day, try and make sure there are no huge confounding factors like you haven’t had any sleep for one test and you did for the other; keep as much as you can the same and then vary what it is you are interested in, whether it is in drinking coffee or taking your regular sleeping pill or whatever it is that you are particularly interested in, then do it.

Repetition is the corner stone of scientific enquiry. I don’t think that one single participant performing one manipulation pre-imposed coffee does not make a Nature or a Science paper, I can tell you that. If you are interested in it and see that you have promising early results, then try to repeat it, maybe try it on somebody else to make sure it works on multiple people. But these are all basic principals in science really.

[Damien Blenkinsopp]: I think there is an interesting aspect here when it comes to an n=1 experiment, is that we have personal biologies which are different: caffeine is metabolised differently, for instance. Some things, which in the world of science, because we are not aware of them, they won’t work; when we test ten people, we get a variance of results because we aren’t aware of a specific aspect of biology which varies in people quite differently. But when we’re doing an n=1 experiment, if we do control it well and we do it at the same time of the day, and we try to control for these things, we can see some repetitive thing that happens in us, and maybe it’s not going to happen in our friends, but we have that ability to see, “I wanted to improve my brain performance; this apparently does. I don’t know why it doesn’t work for other people but there you go.”

[Dr. Adrian Owen]: That is a very interesting point. The problem is when people then make claims based upon things like that. This is the problem with the whole brain training literature really is that people are making extremely broad claims, and I think that if you really boil it down, what the person in the street is hearing or is interested in is brain training—whatever that is—makes me smarter—whatever that is—and actually, the devil is in the detail, because brain training obviously works in a sense that if I teach myself to ride a bicycle, I have trained my brain. My brain is now able to operate all my limbs to ride a bicycle when it wasn’t able to do that before, so in that sense, brain training works; but that’s not news. If I practice long division, I’m going to get better at long division; again that’s not news, that’s learning. But in a sense, it’s brain training.

[Damien Blenkinsopp]: You’ve touched on basically the aspect of why everyone focuses on brain training. The point is not to get better at one thing; it’s to improve your ability to deal with new things.

[Dr. Adrian Owen]: It is and actually, that’s where the science gets really complicated and controversial because a lot of people, and I don’t think it’s uncontroversial to say that a lot of people with commercial interest, would like to claim strongly that there is so-called transfer: if you practice this one test, you are going to get better at all of these other things. Scientifically, that’s actually been something that is extremely difficult to demonstrate unequivocally that you really do get better at all those other things, because often all of those other things are quite closely related to the thing you’ve been training on, which is a bit like learning to ride a bike and then suddenly finding out that you are also better at spin class; it is not that surprising.

[Damien Blenkinsopp]: The biggest example that I can think of, I don’t know if you know other ones, is the Dual N-Back, or even the N-Back applications, which you will find on iPhones. I think a lot of people have come into contact with them these days. I played around with it for a while until I started reading some of the conflicting research and I thought I’m not sure this is such a great use of my time. The idea there is that you play this game and then it increases your working memory and your ability to solve problems and, basically, we are talking about the fluid intelligence that we mentioned before, which everyone wants to be able to do. What is your viewpoint on the effectiveness of these types of things and what kind of brain training did you test when you were looking at this?

[Dr. Adrian Owen]: I’ll answer the second part of your question first, so we actually used various types of brain training tests and some of them were similar to the N-Back tasks, they certainly involved a lot of working memory and, as you know, we didn’t find any significant transfer effects. Even when people had trained for six weeks for ten minutes several times a day, they clearly got better at everything they trained at, every single test that was trained people got better at, but they didn’t transfer to other tests, and actually in our hands, they didn’t transfer to other tests that were quite similar.

So for example, we had what’s called a spatial span task, where you simply remember the locations of various boxes on a computer screen, and in many ways that is very similar to a commonly used psychological test known as digit span, where you just remember a series of digits, in the sense that these are very discreet things that you have to remember one after the other and you repeat them in the order that they were presented—one of them are blobs in different places on the screen and the other one are numbers.

I think it would be reasonable to hypothesise that if you got better at one of those things, you might be improving your performance at the other one because there is quite a lot of overlap between them. Lots of brain processes are likely to be the same in both, but actually that wasn’t the case. We found that even with tests that were reasonably closely related to one other, like that, working hard at one didn’t actually improve your performance at the other. But again, that is one study; that’s the study that we conducted, that’s the results that we reported; other people have certainly reported other results and have suggested that training on working memory is beneficial.

I think one of the really big problems here is working out what is working memory, and what tasks do and don’t involve working memory. It’s very easy to say, “Well, this is a working memory task that has been designed by cognitive neuroscientists to assess working memory. We’re going to assess the effects of training on this other task, which is not called a working memory task; it’s called a fluid intelligence task. That must mean that if there’s an effect, there’s transfer,” but what people need to understand is these are just names that we assign to things. For a very simple example, working memory is involved in absolutely every single aspect of our life. You and I having this conversation, a working memory is absolutely essential to have this conversation because you are listening to what I’m saying and you are trying to accommodate what I’m saying in order to generate your next question, and I’m doing the opposite to you, and all the time we are remembering what each of us is saying and that’s how we are having a conversation.

[Damien Blenkinsopp]: It’s a bit like a computer ram. Everyone’s got computers; they need ram to have things working. It’s like working cash flow, working ram and it’s actually being used versus the stuff we have stored in long-term.

[Dr. Adrian Owen]: Exactly, that’s a perfect analogy. But would we, based on that comment I’ve just made, conclude that language involves working memory. Most people who work on language—psychologists and cognitive neuroscientists—don’t think of working memory as being a component of language, but they recognise that in the process of using language, and us talking to one another or even just generating speech, we need to use our working memory system. So, that is just an example where you need to look very carefully at the test because just because it’s called a fluid intelligence test doesn’t mean that it doesn’t involve working memory, and certainly it does; any cognitive test involves working memory because you have to remember the instructions of how to do it. You have to implement those instructions, you typically have to remember where you are in the test—Am I half way through? Am I near the end? It doesn’t matter what the test is about. I can’t easily think of a cognitive test that wouldn’t require working memory. That’s not a complete answer to the question, it’s not a complete explanation to why it is that training on working memory appears to improve fluid intelligence, but it’s just one example I think of the problems that arise when people try and make claims about transfer from one thing to another without really exploring the components of the individual test and saying, “Have I just trained up something that’s helping this person to do this other test?”

There is a lot of discussion/argument in the cognitive literature about exactly that. That’s why we’ve taken the Cambridge Brain Sciences’ approach, which is to not just rely on one test, but to have a whole array of assessment tools. Now, I guess our position on brain training would be that if brain training works, then you should be able to train on this one test, whatever it is, this magic brain training task and, in general, your performance on this whole slew of other tests, which brain sciences should get better. I honestly think that is what most members of the public would expect and are expecting from what they read about brain training. It’s not that if I train on my working memory, my performance on this one test of fluid intelligence is going to improve; they are thinking, apparently, if I train on working memory I’m going to get smarter. The best way we have of measuring am I smarter is to do an entire battery of different cognitive tests that assess planning and memory and attention and all these different aspects, so I think you do have to look at the big picture and when you look at the big picture, the data are really far from equivocal. It’s not clear that training on any one test or even any one battery of tests will generally improve you on most aspects of cognition.

[Damien Blenkinsopp]: Is that to say that every time say I’m doing the Cambridge Brain Science test, or you are, you’d expect to get roughly the same scores, unless you’ve had some injury, something negative, you would expect some age decline as you referred to earlier, but you wouldn’t expect there to be jumps? Even if beyond brain training we’d been exposed to new environments perhaps, a new job, perhaps we’ve taken on a new course, we’d taken on some new studies, a PhD, whatever it is, I’m assuming that you wouldn’t really expect those measures to change much?

[Dr. Adrian Owen]: Actually, in the study we published in Neuron in 2012, we looked at a lot of these different components. Because we had 44,000 people logged in, we also asked them a lot of questions about their lifestyle. That obviously doesn’t directly address your question in that people weren’t assessed at different time points, but we had an awful lot of people that had an awful lot of different lifestyle and behavioural characteristics. We had young people, we had old people, we had smokers and non-smokers, drinkers and non-drinkers, gamblers and non-gamblers, brain trainers and non-brain trainers. We could do some of these comparisons and try and look at what difference things make, and it’s actually surprising. A lot of things that I wouldn’t have thought would necessarily affect performance really did make a difference: your general level of anxiety, for example, affected performance, but it didn’t affect the performance across the entire battery; it had selective performance on a subset of tests. Similarly smoking, whether you were a smoker or not I should say, didn’t affect cognitive performance across everything; it had specific effects on clusters, on known groups of tests. I think that’s more likely what people are going to see if they repeatedly test themselves, perhaps pre and post to brain injury or using one of these interesting manipulations we discussed earlier, like whether you had a cup of coffee or whether you’ve lost a night’s sleep. They won’t see a global deterioration of cognition; they’ll see specific problems in various areas. Perhaps your memory would be affected or your ability to attend or problem solve would be affected.

[Damien Blenkinsopp]: One of the main things I’m interested in looking at is a lot of the things are hyped. A lot of the things that we consider spending time in, so some of the big things at the moment are mindfulness meditation. You’ll see most executives today doing some form of mindfulness or transcendental meditation, basically repeating a syllable versus just focusing on being mindful. Me myself, I try these things and my friends were all trying these things to increase our performance because we are all entrepreneurs and we are just trying to do better at life and get more out of life and so that’s what everyone wants these days.

But the question is, really, could we potentially test what you just said about anxiety because I’ve always of anxiety as like a distraction. If I’m trying to problem solve on a test or problem solve at work, I know for a fact that if I’m distracted I feel more anxiety and it feels like it’s harder work because I’m not really focused. It is like half of my working memory is taken up by whatever the distracting mechanism is. Meditation, yoga, things like this are supposed to improve that, so it would be interesting for people to do interventions at home and for people to do scientific studies on this to see if this has far more impact than brain training if you want to enhance your cognitive performance.

[Dr. Adrian Owen]: I come from very much the same philosophy that you do. I am always intrigued by what the current trend is; what is it that people are doing and believing. I would strongly encourage people to go out and try these things.

I think the problem is the best tool that we have for assessing anything is science and we have a scientific process, and we have a very well worked out system for what is acceptable science and what is not acceptable science and what scientists have to do to make sure that their peers agree with this, and these sorts of thing. People do need to be slightly careful I think on relying too much on just running their own experiments and finding out about stuff and assuming that it’s the whole story. But I think as long as people try and remain scientifically rigorous and go out and test these things, I think they are all perfectly plausible things to investigate.

A rule of thumb I always have is just because a lot of people believe in it and are sure that it is true, if it hasn’t been scientifically proven, then it’s very likely not the case, for whatever reason. I think that the commercial brain training is a very good example of that, where tens of millions of people clearly believe in this because the large manufacturers of these things sell tens of millions of units of these things, so there are a lot of people who think it might work, but the scientific evidence doesn’t support it and most people should be able to see that by looking around them in the street. Talk to your smartest friends and find out why they think they are smarter, I bet you can’t find somebody who says, “Oh, it’s because I’ve been using this brain training system for six months.” It’s not that all of our smart friends are brain trainers and all of our less smart friends are not brain trainers. The evidence is out there in society that brain training in a commercial big sense clearly doesn’t work, that all the smart people aren’t the brain trainers and the less smart people the non-brain trainers. Again, that doesn’t mean there’s nothing in there and no type of brain training could have any effect, it just means that the sorts that most people are buying into at the moment, it isn’t doing what they believe it’s doing.

[Damien Blenkinsopp]: We don’t have any concrete scientific studies saying, without conflicting studies coming up a couple of years later, “Well, actually this isn’t repeatable.”

An aspect I wanted to relate back to is, because I hear this a lot, I hear about the brain aging and how we have got to protect ourselves. A lot of people are concerned about Alzheimer’s of course, it’s is one of the biggest fears of people, and losing our brain is something that obviously we care about a lot. When we are talking about aging of the brain, what does that actually mean? What’s going on there?

[Dr. Adrian Owen]: Again, it really depends on who you are; if you are dementing, by that I mean you have something like Alzheimer’s disease, then your brain is generating abnormal clusters or groups of cells within the brain that are seriously detrimental to performance and are affecting your memory and your attention, your ability on many tasks. If you have Parkinson’s disease then basically you have a reduction in a particular neurotransmitter known as dopamine, which we know is important for many tasks and for the normal functioning of many parts of the brain, and that again will have really rather specific effects. For the rest of us, maybe a lot of us have had small strokes during our life that we are not aware of. We are all very familiar with people who have had a major stroke that may have affected a large portion of their ability to move a part of their body, but there is a school of thought that over the course of our life, many of us have small strokes that don’t have measurable effects, but by the time you get to your 70s and 80s, that stuff is all adding up, you’re starting to see impairments.

Head injuries; I spend a lot of my time working with very severe head injuries, but of cause concussion is very much in the news these days. Over the course of most of our lives, most of us sustain a fair number of bangs on the head. It may not have resulted in a clinical concussion, but the brain, in spite of the fact that it is well protected by the skull, is an extremely vulnerable organ. We know that a blow to the head can have a serious effect. So I think all of these things, along with what most of us assume as aging, this non-specific atrophy of the brain, brain cells just shutting down or dying; all of these things can add up to the aging process and this is why aging is such a mystery because of course it’s all so different in each and every one of us, because we’ve all had different experiences and been exposed to different things in life.

[Damien Blenkinsopp]: What you’re saying is that it is very complex. Aging is this name we give to lots of biological changes, like damage accumulation. We’ve recently had Aubrey de Grey on, and he talks about aging and he splits it into seven different areas, so it’s quite interesting for him to break it down and say well, actually, it’s because you have cellular garbage building up and to actually break it down and describe it. So it’s interesting to talk and clarify a bit because everyone talks about brain aging, and as you say, it can be different for different people. If we are trying to prevent this, since you brought up the injuries, have you been able to improve the situation of people with injuries beyond just kind of assessing what stage they are at? Are you able to at least get them to recover somewhat, so it kind of gives up some hope for the aging process as well?

[Dr. Adrian Owen]: There is obviously a big difference between mild brain injury and severe brain injury. Some of the work we are trying to do now is to look at concussion, and again we are using Cambridge Brain Science; we are assessing concussion in people like American football players, who often suffer many serious concussions within the course of one season, and looking at whether by carefully measuring their cognition pre-imposed concussion and we’re coupling that in some cases with brain imaging studies to see what the actual impact of the brain is. We are trying to look at ways in which that sort of damage can be mitigated.

For very, very serious brain injury, I do a lot of work in patients who are in coma or a vegetative state, and there the damage is often so severe that it is very hard to work out where to start as far as rehabilitating people is concerned, or getting them back to a normal life. That doesn’t mean that there won’t ever be any answers or that there aren’t any potential answers on the table, but it’s a much harder problem to solve.

[Damien Blenkinsopp]: So when people talk about neuroplasticity, because that’s one of the things that gave people a bit more hope there, what does that refer to?

[Dr. Adrian Owen]: It’s a very broad term which has slightly been taken out of context. Two ways in which it is used often is in studies of healthy participants who are taught to do something that they couldn’t do previously. There was a very well publicized study a few years ago about people being taught to juggle. They were non-jugglers to start with, they were scanned at various points during the learning process, they were expert jugglers at the end, and there were changes in their brain that had occurred as a result of them learning to juggle; those changes were, I suppose, why they were able to juggle. Neuroplasticity had occurred in the brain and they had acquired a new skill. It’s a great study; it’s very well carried out and they use some beautiful new technical methods, but in a way, the result isn’t surprising because of course the brain has to change to do stuff and to learn stuff and that is how we retain these abilities to do things for many years. Once you have learnt to juggle you can usually do it for years and years after, even if you don’t continue to practice. So there is that kind of neuroplasticity, which I think, again, some people have taken out of context and said, “Okay, so the brain is totally plastic. We can all just move things around and learn to do new things,” and it’s not quite as simple as that.

The other way is, again, very good studies that have looked at the results of things like strokes, patients who have had a stroke and have learnt to do things that they lost as a result of the stroke. Perhaps they couldn’t move an arm, and through a process of continued rehabilitation, they regain the ability to move that arm. In some cases it’s been shown that it’s not that the bit of the brain that was damaged has been fixed, it’s that a different part of the brain has taken over the role that was carried out by the damaged part of the brain. Things have shifted around and, again, it is another example of neuroplasticity. There is no doubt that this happens; I don’t think anybody is questioning that this is something that the brain is able to do, the question is how widely can it be applied? It doesn’t mean that any of us can just reallocate resources within our brain, because we happen to have a large frontal lobe, let’s shove it all up the font and do it with our frontal lobe; things aren’t quite as easy as that, but neuroplasticity is an interesting idea and it is, as you, say something that is gaining a lot of attention.

[Damien Blenkinsopp]: It sounds like it’s potentially a zero sum game, the reallocation of what you have rather than being able to re-build capacity that was lost for whatever reason.

[Dr. Adrian Owen]: I think so, certainly in the case where there has been a specific type of brain damage. It is very rarely the case that part of the brain that has been seriously damaged can be repaired. I can’t think of examples where that part of the brain has been made to work again. It is usually about reallocation of existing resources, but there’s a lot of truth in the old saying about how much of our brain we are using at any given time. We have quite a lot of brain and it is an extremely complex organ that is very, very well interconnected, so I think most of us do have a lot of potential for neuroplasticity, as long as the damage that you’ve received is not too severe. So although it’s a zero sum game, I think there’s plenty of potential there.

[Damien Blenkinsopp]: I just did want to bring up one study that I saw recently, which was a bit more optimistic. You might have heard of it, I’m not sure, it was a reversal of cognitive decline. A novel therapeutic programme, it was in September 2014, and it was basically a multidisciplinerary approach. They had ten people do ten different things at the same time, so it wasn’t one of these controlled experiments where you’ve just got one thing going on. They just wanted to see if we throw everything at these people, can we help them? And it seemed like it was pretty positive: nine out of ten had some objective and subjective improvement and six out of six who had stopped working, went back to work. I don’t know if you saw that study, it was on Alzheimer’s and other patients; it was published in the Journal of Aging.

It’s with things like that you wonder, potentially, there are way to improve our situation. Maybe it’s not regrowing capacity, but there are ways of allowing our brain to work better in the conditions that it is in and continue to live the life or improve our performance as per whatever we are looking to do.

[Dr. Adrian Owen]: I think that is a really great example of where the point is to just not move too far away from the data. So I don’t doubt for a minute the results of the study, but what’s important is that you stick to that result and you say, “Okay, so when people of that kind, patients in this case, perform multiple tasks at the same time, their lives improve and they go on and live better lives than they did before,” and that’s the important message; that’s what that paper measured, that’s what it set out to measure, that was the result that it demonstrated and that’s what you should take away from it. Rather than say thinking, “Ah, so brain training works then!” which is, as we have been discussing, it is just a much bigger issue and, actually, that study doesn’t show that brain training works; it shows that a specific group of tests in a specific type of patients can improve their lives in specific ways. So that suggests that some aspects of brain training work, but one shouldn’t take away from that that if, “Okay, I go and buy this product to make me smarter, it’s going to make me smarter.”

[Damien Blenkinsopp]: Maybe I should have been clearer here. It wasn’t brain training; it was ten different interventions in terms of exercise, meditation and yoga to de-stress, basically doing everything you can think of that people say we should do to live healthily. So that’s what I meant when they threw everything at them, they were just like, “Have a programme and you have to do everything that we are supposed to do to be healthy. Now, is this going to make any impact in terms of your brain cognitive performance?” Again, I guess the same point remains: are you an Alzheimer’s patient? But it might be an interesting test to do yourself, if you are willing to do ten little interventions and then to use something like Cambridge Brain Sciences test to see if it has had any difference after a month or something.

[Dr. Adrian Owen]: I think so. I think you would get a pretty good pre-intervention assessment and a post intervention assessment with something like Cambridge Brain Science, it would be a perfect way to test that. As you say, it could be different in healthy participants. We know a lot about the difference between patients and healthy participants. Patients, in a sense, have much more to gain. There is an argument that those of us who can claim to be healthy are already doing as good as we can, we’re working at our cognitive optimum levels and maybe we can’t get any better, whereas somebody who is already declined 20% from their best, has that opportunity to climb back up to the top again. These are all important factors that may produce differences in the so-called healthy population versus any kind of patient.

[Damien Blenkinsopp]: Great, great, thanks for that. Just to bring up, it is interesting that you have been looking at EEG and the use of that. We spoke about functional MRI technology, which of course is extremely expensive and limited to research studies primarily because there is not so many of them. So you have been doing some work with EEG, which is interesting because it means that potentially some of those applications could be used broader because EEG is more accessible. So could you give us an overview of how you used it and where it could be applied potentially, this kind of approach?

[Dr. Adrian Owen]: Again, just to sort of qualify something that you have said, although EEG is much cheaper than FMRI, there’s EEG and there’s EEG. The EEG systems that we use actually cost more than 100,000 pounds each, so these are not things that you are going to be able to go and buy down at Radio Shack or Best Buy; these are extremely sophisticated, expensive pieces of scientific technology. But of course, the potential of EEG is that if we get it right with these expensive tools, we can make it cheaper; one could reduce the number of electrodes—instead of the 128 that we use, perhaps you can answer that question with just five or six. Those are all scientific and technical questions that we are trying to solve. FMRI, for various technical reasons, is not going to get a lot cheaper at any time soon. We’re not going to be having portable MRI scanners that we can all take home with us very soon, so there isn’t the potential for things getting much cheaper or more portable with MRI in the way that there is with the EEG.

What we have been trying to do is to use the EEG systems to achieve many of the same things that we have done with the MRI, mostly this is with the very serious brain damaged patients, it’s trying to determine whether some patients who appear to be in a vegetative state might actually be conscious but locked inside their head. We’ve had quite a lot of success with that over the last ten years using FMRI, and we are now pretty good at detecting something like one in five patients who appear to be entirely vegetative, and sometimes have been that way for many years, when we put them in the scanner we can detect that they are actually there, they are conscious, they are aware of what is going on around them, they are laying down memories and if they could, they would probably express opinions about the situation that they’re in. That is something that we have been trying to replicate with the EEG, and technically, it’s much harder, it’s proved to be much harder with the EEG. We’ve done it, we’re about at the same stage with the EEG that we were with the FMRI. But even though it’s simpler, it’s a portable technology, you can take it to the patient in their hospital, scientifically in terms of what you are measuring in the brain, it’s a little bit harder to actually analyse the data and interpret the data, so it’s had it’s own difficulties, but we are continuing to work in that area to try and improve things.

[Damien Blenkinsopp]: I wish you success there, it sounds like a very useful application that is going to help a lot of people.

So to round off the interview, what are you expecting in the next five or ten years in terms of our ability to assess cognitive performance or cognitive abilities? Are you expecting any big exciting changes or interesting things that might be helpful in this area?

[Dr. Adrian Owen]: I’ll tell you what I’m not expecting, I don’t think that we are going to suddenly get a brain training magic bullet. I really don’t think we are suddenly going to find that doing a particular task three times a day, six times a week is suddenly going to improve cognitive performance. The reason for that is you just have to look out there in the world and we would have worked this out by now if that was going to be the case. If there was some reasonable thing that one could do to boost one’s cognitive performance in terms of practice or brain training, then I think we would know about it by now. So that’s not what is going to happen.

We are learning an awful lot of information about things like the effects of drugs on the brain, how drugs affect different brain regions; there’s a whole area that we haven’t touched on here about so-called neuroenhancers, drugs that one can take to up your performance, to improve your cognitive abilities, and we are starting to learn much more about how those drugs work, the neurochemical systems that they work on in the brain, and I think it is entirely plausible that new drugs, so-called smart drugs, will be developed that will have specific and perhaps reasonably large effects on cognition.

I think the other thing is that people are waking up to the importance of trying to keep your brain healthy, trying to preserve what cognitive function you have, and we are seeing changes in society. Society is generally getting healthier, people are stopping doing a lot of things that are now pretty clear weren’t good for us and are affecting our brain in various ways, so I think that will also feed into public knowledge about ways of preserving function during aging for example. I’m not anticipating any huge revolutionary changes except, potentially, in the smart drug area.

[Damien Blenkinsopp]: Great, thanks. That’s good to hear. Is there anyone besides yourself you would recommend to talk about these subjects, like cognitive assessment or potentially, the brain training area, that they have looked at it in detail and assessed the potential of it?

[Dr. Adrian Owen]: Randy Engle in Georgia has published a lot on the so-called brain training, and he is an extremely smart and approachable individual who has a lot of very intelligent things to say about some of the statistics that have been used, some of the controls that have been used. His is a largely negative view, I would say, about the effects of brain training. You won’t have to go very far to find somebody who would be happy to talk to you about the positive aspects of brain training, so I won’t promote that by dropping any names in.

As far as smart drugs are concerned, somebody like my former PhD adviser, Barbara Sahakian in Cambridge, UK, is doing a lot of work on smart drugs and the effects of cognitive enhancement. She is certainly very knowledgeable in that area and I’m sure she’d be happy to talk to you.

[Damien Blenkinsopp]: Great, great. Thank you very much.

Just to round off, I’d like to get a view into your personal life and if you are using any type of data. Are you tracking any type of data in a routine manner or looking at anything in your life from time to time, maybe once every six months, or anything to assess your health, your performance or your longevity?

[Dr. Adrian Owen]: I’m just afraid to do that. I do, of course, log into Cambridge Brain Sciences every so often just to check how I’m going.

[Damien Blenkinsopp]: Out of interest, did you get a decline similar to me?

[Dr. Adrian Owen]: Well, when you get to 48 years old, it is inevitable that some things are just not working quite as well as they used to. Sometimes I’m surprised that I’m as cognitively preserved as I am, but I’m not the sort of person that monitors my performance on a regular basis. I, of course, get to scan my brain very often, and I guess that’s one answer to your question. Because of the context of my brain imaging research, I get to go inside the MRI scanner to test out various new things we are trying and to test new sequences in the scanner, etc., so I do get the opportunity to see my brain really quite frequently. I’m always on the look out for anything that looks a little bit abnormal, any sort of accelerated atrophy or lumps and bumbs here and there. It is impossible not to be intrigued by these things if you are a neuroscientist.

[Damien Blenkinsopp]: Right, especially if it’s your brain you’re looking at. I guess it is like the whole medicine thing, when you start googling stuff, you get the whole placebo effect of, “That sounds like something I have.” We’ll call it the anti-placebo effect, you should never start googling if you have some little random symptom because you’ll end up that probably google will say you have cancer or something.

[Dr. Adrian Owen]: Google always says you have cancer.

[Damien Blenkinsopp]: One last thing; we have spoken a lot about data today and controls, what would be your one big recommendation to people that are using data in their lives—they are trying to make some sort of decision, use data to improve their lives on any dimension, whether it’s longevity, performance or health—what would be your one recommendation in terms of what they do with data or how they use it?

[Dr. Adrian Owen]: I think there’s a scientist in everybody. We are all interested in questions about the world, about our lifestyle, about the effects of our lifestyle on our brains or on our ability to think. I think my one recommendation would be for people to try and stick to the scientific method. We’ve homed this idea over hundreds and hundreds of years now, we know how to conduct rigorous scientific experiments; you don’t have to be an expert in statistics, you just basically have to follow a few simple principles. Make sure when you test something, you are controlling as much as you can about other factors, try and make sure that the effect is reproducible, try and make sure that it’s reliable. There are many fairly basic scientific principals that one can apply to everyday life. Don’t just google something or read about something in a newspaper and assume it’s true. Go out and test it, but when you do that, test it using as many basic scientific principals as you can and I think you won’t go far wrong if you do that.

[Damien Blenkinsopp]: That’s a great bit of advice. I don’t know if you know if there’s a book or something that would give someone a basic introduction to the scientific method? I don’t know if that exists.

[Dr. Adrian Owen]: I’m sure it does exist, but off the top of my head I can’t think what would be a good place to point people, but I can send you something that you can accompany this podcast with.

[Damien Blenkinsopp]: That would be great, I’d really appreciate that, that would be very helpful.

Adrian, thank you so much for your time today and all the questions and answers you’ve been giving us. It’s been really interesting.

[Dr. Adrian Owen]: That’s my pleasure. It was a lot of fun. Thanks very much.

Damien Blenkinsopp:

View Comments (1)

  • Very interesting episode.

    Last year, I was playing around with a couple of the APPS and found that I was definitely getting better at the game.

    I call it a game because I ended up seeing that the "improvements" did not necessarily transfer over to other APPs or activities, but what I do think these games were good at were in creating (and maintaining) focus. Which perhaps is something that experts would argue is a key to improving brain performance, but does not necessarily make us smarter?

Related Post