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Abstract

Background: Metabolic therapy using ketogenic diets (KD) is emerging as an
alternative or complementary approach to the current standard of care for brain
cancer management. This therapeutic strategy targets the aerobic fermentation of
glucose (Warburg effect), which is the common metabolic malady of most cancers
including brain tumors. The KD targets tumor energy metabolism by lowering
blood glucose and elevating blood ketones (beta-hydroxybutyrate). Brain tumor
cells, unlike normal brain cells, cannot use ketone bodies effectively for energy
when glucose becomes limiting. Although plasma levels of glucose and ketone
bodies have been used separately to predict the therapeutic success of metabolic
therapy, daily glucose levels can fluctuate widely in brain cancer patients. This can
create difficulty in linking changes in blood glucose and ketones to efficacy of
metabolic therapy.

Methods: A program was developed (Glucose Ketone Index Calculator, GKIC) that
tracks the ratio of blood glucose to ketones as a single value. We have termed this
ratio the Glucose Ketone Index (GKI).

Results

The GKIC was used to compute the GKI for data published on blood glucose and
ketone levels in humans and mice with brain tumors. The results showed a clear
relationship between the GKI and therapeutic efficacy using ketogenic diets and
calorie restriction.

Conclusions

The GKIC is a simple tool that can help monitor the efficacy of metabolic therapy in
preclinical animal models and in clinical trials for malignant brain cancer and
possibly other cancers that express aerobic fermentation.



Introduction

Dietary therapy using ketogenic diets is emerging as an alternative or
complementary approach to the current standard of care for brain cancer
management. Prognosis remains poor for malignant gliomas in both children and
adults [1-5]. Although genetic heterogeneity is extensive in malignant gliomas [6-8],
the Warburg effect (aerobic fermentation of glucose) is a common metabolic malady
expressed in nearly all neoplastic cells of these and other malignant tumors [9-11].
Aerobic fermentation (Warburg effect) is necessary to compensate for the
insufficiency of mitochondrial oxidative phosphorylation in the cells of most tumors
[9,12-14]. Mitochondrial structure and function is abnormal in malignant gliomas
from both mice and humans [15-19]. Normal brain cells gradually transition from

the metabolism of glucose to the metabolism of ketone bodies (primarily -



hydroxybutyrate and acetoacetate) for energy when circulating glucose levels
become limiting [20,21]. Ketone bodies are derived from fatty acids in the liver and
are produced to compensate for glucose depletion during periods of food restriction
[20]. Ketone bodies bypass the glycolytic pathway in the cytoplasm and are
metabolized directly to acetyl CoA in the mitochondria [22]. Tumor cells are less
capable than normal cells in metabolizing ketone bodies for energy due to their
mitochondrial defects [2,12,23].

Therapies that can lower glucose and elevate ketone bodies will place more
energy stress on the tumor cells than on the normal brain cells [12,24]. This
therapeutic strategy is illustrated conceptually in Figure 1, as we previously
described [25]. However, daily activities and emotional stress can cause blood
glucose levels to vary making it difficult for some people to enter the predicted zone
of metabolic management [26]. A more stable measure of systemic energy
metabolism is therefore needed to predict metabolic management of tumor growth.
The ratio of blood glucose to blood ketone bodies 3-hydroxybutyrate (f-OHB) is a
clinical biomarker that could provide a better indication of metabolic management

than could measurement of either blood glucose or ketone body levels alone.

Methods

The ‘Glucose Ketone Index’ (GKI) was created to track the zone of metabolic
management for brain tumor management. The GKI is a biomarker that refers to
the molar ratio of circulating glucose over $-OHB, which is the major circulating

ketone body. A mathematical tool called the Glucose Ketone Index Calculator



(Supporting File 1) was developed that can calculate the GKI and monitor changes
in this parameter on a daily basis (Equation 1). The GKIC generates a single value
that can assess the relationship of the major fermentable tumor fuel (glucose) to the
non-fermentable fuel (3-OHB). Because many commercial blood glucose monitors
give outputs in mg/dL, rather than millimolar (mM), the GKIC converts the units to
millimolar. Included in the program is a unit converter for both glucose and ketones
(B-OHB), which can convert glucose and ketone values from mg/dL to mM and from
mM to mg/dL (Equations 2-5). The molecular weights used for calculations in the
GKIC are 180.16 g/mol for glucose and 104.1 g/mol for $-OHB, which is the major
circulating ketone body measured in most commercial testing kits. The unit

converter allows for compatibility for a variety of glucose and ketone testing

monitors.
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The GKIC can set a target GKI value to help track therapeutic status. Daily

GKI values can be plotted to allow visual tracking of progress against an initial index



value over monthly periods. Entrance into the zone of metabolic management
would be seen as the GKI value falls below the set target value (as illustrated in
Figure 2). Additionally, the GKIC can track the number of days that an individual

falls within the predicted target zone.

Results

The GKIC was used to estimate the GKI for humans and mice with brain
tumors that were treated with either calorie restriction or ketogenic diets from five
previously published reports (Table 1). The first clinical study evaluated two
pediatric patients; one with an anaplastic astrocytoma, and another with a
cerebellar astrocytoma [27]. Both individuals were placed on a ketogenic diet for
eight weeks. During the 8-week treatment period, GKI dropped from about 27.5 to
about 0.7 - 1.1 in the patients. The patient with the anaplastic astrocytoma, who did
not have a response to prior chemotherapy, had a 21.7% reduction in
fluorodeoxyglucose uptake at the tumor site (no chemotherapy during diet). The
patient with the cerebellar astrocytoma received standard chemotherapy
concomitant with the ketogenic diet. Fluorodeoxyglucose uptake at the tumor site
in this patient was reduced by 21.8%. Quality of life was markedly improved in both
children after initiation of the KD [27].

The second clinical study evaluated a 65-yr-old woman with glioblastoma
multiforme [28]. The patient was placed on a calorie-restricted ketogenic diet (600
kcal/day) concomitant with standard chemotherapy and radiation, without

dexamethasone, for eight weeks. The patient’s GKI decreased from 37.5 to 1.4 in the



first three weeks of the diet. No discernible brain tumor tissue was detected with
MRI in the patient at the end of eight weeks of the calorie restricted ketogenic diet.
It is also important to mention that the patient was free of symptoms while she
adhered to the KD. Tumor recurrence occurred 10 weeks after suspension of the
ketogenic diet.

The third study, a preclinical mouse study, evaluated the effects of diets on
an orthotopically implanted CT-2A syngeneic mouse astrocytoma in C57BL/6] mice
[29]. Mice were implanted with tumors and fed one of four diets for 13 days: 1)
standard diet fed unrestricted, 2) calorie restricted standard diet, 3) ketogenic diet
fed unrestricted, or 4) calorie restricted ketogenic diet. The mice fed a standard
unrestricted diet and a ketogenic diet had rapid tumor growth after 13 days, and a
GKI of 15.2 and 11.4, respectively. The group fed a calorie restricted standard diet
had a significant decrease in tumor volume after 13 days, along with a GKI of 3.7.
The group fed a calorie restricted ketogenic diet also had a significant decrease in
tumor volume, along with a GKI of 4.4.

The fourth study evaluated the effects of diets on an orthotopically implanted
CT-2A syngeneic mouse astrocytoma in C57BL/6] mice and an orthotopically
implanted human U87-MG human xenograft glioma in BALBc/6-severe combined
immunodeficiency (SCID) mice [30]. Tumors were implanted and grown in the mice
for three days prior to diet initiation. After three days, mice were maintained on one
of three diets for 8 days: 1) standard diet fed unrestricted, 2) ketogenic diet fed
unrestricted, or 3) calorie restricted ketogenic diet. Tumor weights at the end of 8

days were reduced only in the mice that were fed a calorie restricted diet and



experienced a significant decrease in GKI. Groups of mice that did not have a
reduction in tumor weight had GKI’s that ranged from 9.6 - 70.0. The groups of mice

that had a reduction in tumor weight had GKI’s that ranged from 1.8 - 4.4.

The fifth study evaluated the effects of diet and radiation on mouse GL261 glioma
implanted intracranially in albino C57BL/6] mice [31]. The mice were implanted
with tumors, and three days later they were placed on either a standard diet fed
unrestricted or a ketogenic diet fed unrestricted. Mice were also assigned to groups
that either received or did not receive concomitant radiation therapy. Without
radiation, mice that were fed a ketogenic diet had a GKI of 6.4 and had a median
survival of 28 days, compared to a GKI of 50.0 and median survival of 23 days for
the standard diet group. With radiation, mice that were fed a ketogenic diet had a
GKI of 5.7 and a median survival of 200+ days, compared to a GKI of 32.3 and

median survival of 41 days for the standard diet group.

In addition to these studies, Table 2 shows a clear association of the GKI to the
therapeutic action of calorie restriction against distal invasion, proliferation, and
angiogenesis in the VM-M3 model of glioblastoma. The data for the GKI in Table 2
was computed from those mice that were measured for both glucose and ketones in
comparison with the other biomarkers as previously described [32]. When viewed
collectively, the results from the published reports show a clear relationship
between the GKI and efficacy of metabolic therapy using either the KD or calorie

restriction. Therapeutic efficacy of the KD or calorie restriction is greater with



lower GKI values than with higher values. The results suggest that GKI levels that
approach 1.0 are therapeutic for managing brain tumor growth. Further studies will
be needed to determine those GKI values that can most accurately predict efficacy
during metabolic therapy involving those diet or procedures that lower glucose and

elevate ketone bodies.

Discussion

We present evidence showing that the GKI can predict success for brain cancer
management in humans and mice using metabolic therapies that lower blood
glucose and elevate blood ketone levels. Besides ketogenic diets, other dietary
therapies, such as calorie restriction, low carbohydrate diets, and therapeutic
fasting, can also lower blood glucose and elevate 3-OHB levels and can have anti-
tumor effects [24,33-38]. The GKIC was developed to more reliably and simply
predict therapeutic management for brain cancer patients under these dietary
states than could measurements of either blood glucose or ketones alone. The data
presented in Tables 1 and 2 support this prediction. Although the GKI is simple in
concept, it has not been used previously to gage success of various metabolic
therapies based on inverse changes in glucose and ketone body metabolism.

As brain tumor cells are dependent on glucose for survival and cannot effectively
use ketone bodies as an alternative fuel, a zone of metabolic management can be
achieved under conditions of low glucose and elevated ketones. Ketone bodies also
prevent neurological symptoms associated with hypoglycemia, such as

neuroglycopenia, which allows blood glucose levels to be lowered even further



[22,39]. Hence, ketone body metabolism can protect normal brain cells under
conditions that target tumor cells [40]. The zone of metabolic management is

considered the therapeutic state that places maximal metabolic stress on tumor

cells while protecting the health and vitality of normal cells [41]. We have presented

substantial data showing that the GKI is validated in several studies in mice. We fell

that prospective validation of the GKIC will be obtained from future studies using

ketogenic diet therapy in humans with brain cancer and possibly other cancers that

cannot effectively metabolize B-OHB for energy, and depend upon glucose for

survival.

The GKI can be useful in determining the success of dietary therapies that
shift glucose- and lactate-based metabolism to ketone-based metabolism. As a shift
toward ketone-based metabolism underscores the utility of many dietary therapies
in treating metabolic diseases [41,42], the GKI can be used in determining the
therapeutic success of shifting metabolism in individual patients. The GKI therefore
can be used to study the effectiveness of dietary therapy in clinical trials of patients
under a range of dietary conditions, with a composite primary endpoint consisting
of lowering the subjects’ GKI. This will allow investigators to parse the effects of
successful dietary intervention on disease outcome from unsuccessful dietary
intervention.

Recent clinical studies assessing the effects of dietary therapy on brain
cancer progression have not measured both blood glucose and ketone bodies

throughout the study periods [43,44]. Future clinical studies that intend to assess
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the effect of dietary therapy on brain tumor progression should measure both blood
glucose and ketone, as these markers are necessary to connect dietary therapy to
therapeutic efficacy. Preclinical studies have demonstrated a clear linkage between
GKI and therapeutic efficacy. The GKI will be an important biomarker to measure in
future rigorously designed and powered clinical studies in order to demonstrate if
there is a linkage between GKI and therapeutic efficacy, as the few case reports in
the literature suggest.

The zone of metabolic management is likely entered with GKI values between
1 and 2 for humans. Optimal management is predicted for values approaching 1.0,
and blood glucose and ketone values should be measured 2-3 hours postprandial,
twice a day if possible. This will allow individuals to connect their dietary intake to
changes in their GKI. As an example, Figure 2 uses the GKIC to track the GKI values
of an individual on a ketogenic diet, with a target GKI of 1.0. When an individual’s
GKI falls below the line denoting the target metabolic state, the zone of metabolic
management is achieved. Further studies will be needed to establish the validity of
the predicted zone of management.

It has not escaped our attention that the GKIC could have utility not only for
managing brain cancer and possibly other cancers dependent on glucose and
aerobic fermentation for survival, but also for managing other diseases or
conditions where the ratio of glucose to ketone bodies could be therapeutic. Such
diseases and conditions include Alzheimer’s disease, Parkinson’s disease, traumatic
brain injury, chronic inflammatory disease, and epilepsy [41]. For example, the

ketogenic diet has long been recognized as an effective therapeutic strategy for
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managing refractory seizures in children [45,46]. Therapeutic success in managing
generalized idiopathic epilepsy in epileptic EL mice can also be seen when applying
the GKI to the data presented on glucose and (3-OHB) [47]. Healthy individuals can
utilize the GKIC to prevent diseases and disorder, and manage general wellness.
Further studies will be needed to determine the utility of the GKIC for predicting

therapeutic success in the metabolic management of disease.
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Figure Legends

Figure 1. Relationship of plasma glucose and ketone body levels to brain
cancer management. The glucose and ketone (3-OHB) values are within normal
physiological ranges under fasting conditions in humans. We refer to this state as
the zone of metabolic management. As glucose falls and ketones rise, an individual
reaches the zone of metabolic management. This can be tracked utilizing the
Glucose Ketone Index. The dashed lines signify the variability that could exist
among individuals in reaching a GKI associated with therapeutic efficacy. We
consider GKI values approaching 1.0 as potentially most therapeutic.

Figure 2. The Glucose Ketone Index Calculator tracking an individual’s GKI
with a target GKI of 1. The individual glucose and ketone values are displayed,
along with the corresponding GKI values. The GKI values are plotted over the course

of a month in black, whereas the target GKI value is plotted in red. Tumor
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progression is predicted to be slower within the metabolic target zone than outside

of the zone.
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